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L Introduction

PMBGA

m ‘“Linkage learning” in GAs is the identification of building
blocks to be conserved under crossover.

m Probability model building genetic algorithms achieve linkage
learning via exploring the probability models of genes.

m In the literature, several attempts to apply PMBGAs to
problems in the continuous domain have been made, including
continuous PBIL with Gaussian distribution, real-coded PBIL,
BEA, and the real-coded BOA.
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L Introduction

Discretization

m Most GAs work in discrete domain. If we want to use GAs to
solve problems in continuous domain, some discretization
must be made.

m In this paper, a new discretization scheme is proposed, which
can be integrated into PMBGAs easily.

m ECGA is extended to real-coded ECGA as an example.
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How to simulate the process of GA?

m Assume the population size n approaches infinite, and we
want to perform simple GA on this population.

m Randomly pick S individual. The winner replace other S-1
loser.

m Perform n selection to generate n individuals.

m Repeat 2 and 3 until the population converges.
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Procedure of cGA

Initialize an L-dimensional probability vector P[] to 0.5
P ={0.5,0.5,0.5,...,0.5}

S solutions are generated by polling this vector

The gene positions of the fittest of these S solutions are
rewarded

Repeat step 2 and 3 until the P[] vector implies a single
solution
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Example of cGA

Assume L =4,5 =4 E = 0.01. Initialize

P = {0.5,0.5,0.5,0.5}. The fitness function is OneMax.
Generate 2 chromosomes:

0111 fitness=3

1010 fitness=2

1000 fitness=1

0100 fitness=1

Since best chromosome is 0111,
P ={0.5—0.02,0.5+0.02,0.5 + 0.02,0.5 + 0.03}

Repeat until all values in P are zeroes or ones.
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LProbabilistic Optimization and Linkage Learning

Two main assertions

m Learning a “good” probability distribution is equivalent to
learning linkage.

m One “good” distribution can be found by searching for a
jointly small representation of two components:

the compressed representation of the population under the
given distribution
the distribution’s representation given the problem encoding
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LProbabilistic Optimization and Linkage Learning

Probabilistic Optimization and Linkage Learning

GA'’s population can be interpreted as representing a
probability distribution over the set of future solutions to be
explored.

In the sense, the role of crossover can be played by a more
direct representation of the distribution itself, like what the
cGA does.

Therefore, a good probability distribution is equivalent to
linkage learning.



Adaptive Discretization for Probabilistic Model Building Genetic Algorithms

LProbabilistic Optimization and Linkage Learning

Minimum Description Length Models

Mitchell, Machine Learning:

By reliance on Occam’s Razor, good distribution are those under
which the representation of the distribution using the current
encoding, along with the representation of the population
compressed under that distribution, is minimal.
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LProbabilistic Optimization and Linkage Learning

Implements of MDL models

Model Complexity =
ns
logN x Z 2%
i=1

Compressed Population Complexity = N 7™ E;
25i
Ei = —pjlogap;
j=1

m E;: the entropy of ith subset
m s;: the size of ith subset

m N: population size
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LProbabilistic Optimization and Linkage Learning

Marginal Product Model (MPM)

A marginal probability model partitions genes into several subsets.
Each subset has it own distribution.
Here is an example of MPM over four genes:

[0.3] [1] 2]
00 05 0 05 0 06
01 0 1 05 1 04
10 0
11 05
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LProbabilistic Optimization and Linkage Learning

Combine MPM and MDL model

Population: 1010, 1101, 0010, 1001

MPM 1 MPM 2
03 [l [ 01 [ B
0 1 0302 0000 2 0 2
01 01 112 0 112 1 2
10 1 10 2
11 2 11 1

m Model complexities of both distributions are
logx4(22 + 2t + 21) = 16.

m The population complexity of second distribution is 3.5, and
the population complexity of first distribution is 3.3133.



Adaptive Discretization for Probabilistic Model Building Genetic Algorithms

LProbabilistic Optimization and Linkage Learning

Procedure of ECGA

Generate a random population of size N.
Perform tournament selection with tournament size s.

Model the population using a greedy MPM search.

m Initial: assume that all genes are independent.

m Attemp to merge all pairs of subsets, choosing the best
merging result as new probability distribution.

m Repeat until there's no imporvement.

Building-block-wise crossover.

Calculate fitnesses.
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Discretization

Discretization is a must, but it's the most dangerous step.

Without discretization, the genotype space becomes very
huge.

Fixed-length vs. varied-length coding.
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L Split-On-Demand

Code Tables

Dimension 1 Dimension 2

Interval Code Interval Code
-100 ~ -50 o -100 ~ 0 ]
-60 ~ 1 0 ~ 50 1
0 ~ 50 2 50 ~ 100 2
50 ~ 100 3

An example code table constructed by
Split-on-Demand for a real-parameter optimization
problem of two dimensions.

-100 =50 0
(a) Split configuration on dimension 1

-100 0 50
it configuration on dimension 2

100
100 0 [} 50 100

(¢) Combined split configuration on both dimensions

Figure 2 Tllustration of the solution space split ac-
cording to the cade table given in Figure 1.
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Split-on-Demand Process

Random choose a middle point between lower bound and
upper bound. And split the dimension into two parts.

Count the number of individuals in two regions.

If the number of individuals is not less than N x ~, split the
region recursively.

Each dimension has its own partition.
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L Split-On-Demand

Code Tables

1

2
-100 100

(a) Population distribution and 2 split positions at genera-
tion 1. y=0.5. 10 x v = 5.

2 3 1 4
-100 100

(b) Population distribution and 4 split positions at genera-
tion 10. y=04. 10 x y=4

3 2 3 4

-100 100

(c¢) Population distribution and 5 split positions at genera-
tion 20. y=0.3. 10 xy=3
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real-coded ECGA

Generate a random population of size N

Tournament selection

]

Use SoD to encode each dimension
Model the population with MPM search

[~ I o}

Perform a BB-wised crossover

B o

Every L generations, perform local search

[~

Return to step 2
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Example on Sphere Model

Initial Population
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Example on Sphere Model

After tournament selection
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Example on Sphere Model

Generating new population
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Example on Sphere Model
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Conclusion

Experiments

Population size = 250, P. = 0.975, tournament size = 8, v = 0.5,
€=20.998, L=5

Function 17 2T 37 4T 57 Function |16 18 19
ledBest  [1.30e4-0: 2 T9e++03)1.07e4+07]4.37e4-033.70e0: LedBest  [2.17e+02)] A1.0Te4-031.01e4+0:
Tediar 5. 76405 +07|8. 14e-+036 86e+0: Medianf3 30e++02] A1.12e4-0311 10e4-0:
Worst |3.6: 311.22e4049.05e+07]1.45e4+049.03e4+-0° (Worst |.13e+02] 21, 16e4-031.16e+0: &
lean 316.40e4-03{4.33e4-07]8. 33e4-036.7Te4-0: Mean  [3.22e4+02f 2{1.12e4-031.10e4-03f1.12e4-0:
ledBest d Tle-02 [1.31e401[0.15e+04[2.37e+01|5.43e 00 LedBest  [1.01le+02[1.17e+024. 15e+02[3.83e+024.48e+02
[cwlianl 2.42e-01 |5.81e4+011.01e406{7.49e4-01[4.22e+01 Medianfl.29e+02]1.58e+02]9.17e+02/8.01e+02}8.93e+02)]
Worst 1.5 1.52e402[3.52e406]3.08e4+022 . 21e++02) (Worst 10D5+(]2 2.21e4-021.01e-+03{9.69%+02[1.02e40:
Tean 5.02e4-01)1 +-06]1.03e+026.24c401 Mean 2 )2 8. 34e4-028.14e4-02}8.3624-02
lebBest . ]l.l» 13]11.14e-13|6.06e-08 | 1.23e-04 Lef{Best il 243.00e4-02{3.00e++02}3.00e
[cwli;\n{ 68 2.16e-12 | 5.98e-05 [ 7.44e-04 Median] 12[1.29e4-02{9.08e4-02{8 .00 +02f8.
Worst | 2.58e4-02] 1.40e-02 |5.48e++00) (Worst [|1.55e+02]1.51e+021.00e+039.64e+02|1.
lean ]Ue 13 211.03e401f 1.25e-03 | 3.78e-01 Mean  [1.22e+02]1.30e+02|7.79e+02|7.95e+02|7.7.

T Considered solved

T Considered solved according to the given aceurs rding to the given acenracy.

* Comparable to the results abtained by other ‘\lgouthms ¥ Camparable to the results obtained by other algorithms.
Table 1: Error values for function 1-5. Table 4: Error values for function 16-20.
Function |61 il a ] 10 Function |21 257 24
TedBest  [3.58e+07] l420+(]3 | [4.8Te++01]5.95e+01 led[Best 1. 1de+03[0 21 02e 030 540+ 021826
ledian|1.08 ): 6. 78e+018.52e+01] Medianfl.30e-+0: 3]1.31e4+031.19e+0: 2
Worst ) 5. 12¢+01f1 05402 Worst [1.35e40: 3{1.35e+031 346403118064 0:
lean |1.19e08[L. ) .G6e+01f8.53e+01 Mean  |1.28e+0: 1.20e4-03{1.17e++03{1.86e4-0:
ledBest  [8.83e+01{1.23e4+0312.04e401] 3.75e-01 [3.32e4-00) 1ed|Best 5.00e+02 12| (][lc+(]2 6%
[cwliau‘;ﬂﬁc-%—[lZ 1. 24c+(]32,[)5|;+01 5. 46e4+-00{1.47e++01 Median|s.50e+0 0le402]
Worst |3.41e+03{1.25e+03]2.06e+01]1. 13e+01)3.49+01 Worst l 14e+40: Se+-02|
Tean |8.00e+02] l 24C+U 2.05e401]5.65e++0011.82a4-01 Mean |7.72e40: 2e+-02]
1e5Best | 3.41e-13 312 00001 1. 14e-13 | 08100 TP [y A;[m“(] (et N2 4061 10)°
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