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Abstract

This paper proposes an adaptive discretization method, called Split-on-Demand (SoD),
to enable the probabilistic model building genetic algorithm (PMBGA) to solve optimization
problems in the continuous domain. The procedure, effect, and usage of SoD are described in
detail. As an example, the integration of SoD and the extended compact genetic algorithm
(ECGA), named real-coded ECGA (rECGA), is presented and numerically examined. The
experimental results indicate that rECGA works well and SoD is effective. The behavior of
SoD is analyzed and discussed, followed by the potential future work for SoD.

1 Introduction

Genetic algorithms (GAs) [I 2] are methodologies inspired by Darwinian evolution and de-
signed according to the biological genetic operations. As a flexible optimization tool, genetic
algorithms are nowadays widely applied to tackle a number of real-world optimization problems.
In principle, genetic algorithms select good, promising individuals from the current population
and generate new candidate of solutions by employing recombination and mutation.

According to the theory of design decomposition [3], the key components to the GA success
include identifying, reproducing, and exchanging the structure of the solutions. Recombination,
one of the main GA operator, mixes the promising sub-solutions, called building blocks (BBs),
and creates the solutions. Genetic algorithms therefore work very well for the problems which can
be somehow decomposed into sub-problems. However, the problem-independent recombination
operator with fixed chromosome representations often breaks building blocks and results in
ineffective mixing. It is the reason when traditional genetic algorithms meet complex solution
structures which consist of a group of related genes, they oftentimes fail to effectively identify
and efficiently exchange the building blocks to create good final solutions [].

In order to appropriately mix genes, the evolutionary algorithms based on utilizing proba-
bilistic models were proposed and developed [Bl [6]. In such schemes, the offspring population
is generated according to the estimated probabilistic model of the parent population instead of
using regular recombination and mutation operators. The probabilistic model is expected to
reflect the problem structure, and better performance can be achieved via exploring and ex-
ploiting the relationship between genes. These evolutionary algorithms are called probabilistic
model building genetic algorithms (PMBGAS) or estimation of distribution algorithms (EDAs).



In PMBGASs, decision variables are often coded with binary coding or gray coding. However,
it is reportedly difficult to find high accuracy solution in solving continuous problems. More-
over, many real-world engineering problems are real-parameter optimization problems, such as
structural optimization problems and the design of a transonic wing in aircraft. In the liter-
ature, several attempts to apply PMBGAs to problems in the continuous domain have been
made, including continuous PBIL with Gaussian distribution [7], real-coded variant of PBIL
with interval updating [§], BEA for continuous function optimization [9], and the real-coded
BOA [I0. In this paper, we propose a framework that can enable the PMBGAs designed for
handling bit-strings to tackle real-valued optimization problems. Particularly, we develop a new,
adaptive discretization encoding scheme that can be easily integrated into PMBGAs, and we
use the extended compact genetic algorithm (ECGA) [II] as an example in the present work.

In next section, we will first briefly introduce ECGA. In section [3] we will describe in de-
tail how our proposed Split-on-Demand (SoD) encode the solutions of real values into discrete
numbers. In section [4] we then use SoD to enable ECGA to handle real-valued decision vari-
ables and test the integrated framework with the benchmark proposed in the special session on
real-parameter optimization in CEC 2005 in section [f] Finally, section [6] concludes this work.

2 Brief Review of ECGA

As a study subject, we will first briefly review the extended compact genetic algorithm (ECGA)
in this section. ECGA, proposed by Harik [I1], is based on the idea that the choice of a good
probability distribution is equivalent to learning genetic linkage. The probabilistic models used
in ECGA are a class of probabilistic models known as the marginal product models (MPMs).
ECGA uses MPMs the model partitions of the decision variables. The measure of good dis-
tribution is quantified based on the minimum description length (MDL) principle [I2]. The
key concept of the MDL model is that all things being equal, simpler distributions are better
than more complex ones. The MDL restriction penalizes both inaccurate and complex models,
thereby leading to an optimal probability distribution.

The ECGA can be algorithmically outlined as:

1. Generate a random population of size V.

2. Apply the tournament selection at a rate .S.
Model the population using a greedy MPM search.
If the model has converged, stop.

Generate a new population using the given model.

A

Return to step 2.

The complexity measure of MPM is the sum of Model Complexity and Compressed Pop-
ulation Complexity. By the MDL principle, we wish to minimize the Combined complexity.
Combined Complexity=Model Complexity+Compressed Population Complexity.

Model Complexity = logNZ 25U] ,
I

where N is the population size, and S[I] is the length of the Ith subset of genes.

Compressed Population Complexity = N Z E(My),



Dimension 1 Dimension 2

Interval Code Interval Code
-100 ~ -50 0 -100 ~ 0 0
-50 ~ 0O 1 0 ~ 50 1

0 ~ 50 2 50 ~ 100 2

50 ~ 100 3

Figure 1: An example code table constructed by Split-on-Demand for a real-parameter opti-
mization problem of two dimensions.

where E(My) is the entropy of the marginal distribution of subset I.

Instead of applying traditional crossover and mutation operators, ECGA generates the new
population from the MPM obtained in step 3. In this way, new individuals are generated without
breaking building blocks. In the original design of ECGA, the framework can only deal with
bit-strings. In next section, we will propose the encoding method and integrate it into ECGA
in section [

3 Split-on-Demand

In this section, we present an encoding method called Split-on-Demand (SoD), which can encode
real-coded decision variables into discrete numerical values. The main idea of Split-on-Demand
is to split the interval where we demand to know in more detail and to build a more accurate
probabilistic model with the information obtained during the search process. Because of the
behavior to split the interval which needs further investigation, we call the proposed encoding
scheme Split-on-Demand.

As described, SoD splits a dimension of real numbers into several intervals and gives each of
them an integer code. We can then translate a vector of real numbers to a vector of integers,
which can be represented by bits or binary codes more intuitively. As an example, given a
real-parameter optimization problem of two dimensions, one possible code table constructed by
SoD is shown in Figure|l} According to the code table, the solution [-72.3,24.8] is encoded as
[0, 1], and the solution [13.8, —5.3] as [2,0]. Figure [2[ shows the solution space split by the code
table given in Figure [1| as an illustration. Figure is the split configuration on dimension
1, Figure is the split configuration on dimension 2, and Figure is the combined split
configuration on [dimension 1, dimension 2], which is the whole solution space. The code table
splits the solution space into 12 regions.

After describing the usage of the SoD code table, we now discuss the way to construct it.
The principle of the proposed encoding scheme is to split the real number interval in which
there are a lot of search points. Because the tournament selection operator is applied to choose
the promising individuals at each generation, if there are a number of individuals in certain
region after selection, we consider that region important and believe the probability to find
good solutions in that region is higher. Therefore, we split the promising region to gain higher
resolution as well as achieve better accuracy in order to assist the back-end PMBGA to build
high quality probabilistic models.

In order to determine which real number interval to split, we employ a split rate v, where
0 < v < 1. Assume that the population size is N, if an interval contains more than N x «
individuals, the interval should be split. By adjusting the split rate, we can control the accuracy
of the probabilistic model which we want to build. If more accurate probabilistic models are
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(c) Combined split configuration on both dimensions.

Figure 2: Illustration of the solution space split according to the code table given in Figure

necessary, smaller split rates should be used such that the value range of the decision variables
is split to more intervals. Furthermore, for the same reason, the split rate can also be used to
control the code length. The higher the split rate, the shorter the code length, and vice versa.

The procedure of Split-on-Demand can be describe as follows, and the pseudo code of SoD
is shown in Figure |3} Subroutine Split-on-Demand first calls subroutine Split on the interval
[low_bound, high_bound], where the low_bound and high_bound are the bounds of this dimension.
Split generates a random number msid in the interval in question and counts the individuals
in the two intervals: [low_bound, mid] and [mid, high_bound]. If an interval contains more than
N x v individuals, Split will be recursively called to split that interval until no interval should
be further split.

When all split operations are done, we decrease the split rate by a factor €, where 0 < € < 1.
The reason to decrease the split rate is to have a higher split rate to keep the diversity and
implement a coarse-grained, global search at the early stage of search. As the search process
goes by, we obtain more and more information about the solution space and know where to put
more search points to find good solutions. Hence, at the late stage of search, a lower split rate
is needed to build accurate probabilistic models for conducting a fine-grained, local search. The
factor e can be set to control the speed of convergence. An appropriate € can help the search
algorithm to avoid wasting time on useless regions as well as being trapped at local optima and
therefore is key to an efficient search process.



Split—on-Demand

Begin
Split(low hound,high bound)
¥ =-yre

end

Split (low, high)

Begin
mid <— random [low, high]
nwn_iow%—nwnber of dindividuals in [low,mid]
mun_high<-npumber of individuals in [mid high]
if pum low == N*y then Split (low,mid)
else add code(low mid)
if num high »= W'y then Split (mid, high)
else add code(mid, high)

end

Figure 3: The pseudo code of SoD.

We now give a typical example of how SoD run on the population for demonstration. Assume
that the population size is 10, and the initial split rate v = 0.5. Figure [ depicts how the
individuals distributed at different generations. Initially, Figureshows that the first position
to split, marked by 1, is randomly generated. We then discover that the number of individuals
in the left interval is larger than 10 x v = 5. Under this condition, SoD calls Split to perform
a random split on the left interval and gets the second split position, marked by 2. After the
second split, the numbers of individuals in the two intervals, the left interval and the right
interval to the second split position, are both less than 10 x v = 5. As a consequence, SoD stops
the split operation and decreases the split rate.

Figure is the population distribution and the split positions at generation 10. The split
rate 7 is now 0.4. Similar to the procedure described in the previous paragraph, SoD performs
a random split to cut the whole interval into two intervals. It can be observe that both the
left and the right intervals contain more than 10 x 0.4 = 4 individuals, and as a result, SoD
calls Split on both the left and the right intervals. For the left interval, SoD randomly splits
it into two intervals and finds out that its right interval still contains more than 4 individuals.
SoD recursively calls Split to split that interval. By conducting the recursive split operation
until no more interval has to be split, 4 splits make the value range 5 intervals. Moreover, in
Figure the population is at generation 20, and the split rate is decreased to 0.3. SoD runs
on the population, and the value rage is split into 6 regions by 5 split points.

One might wonder that the proposed encoding scheme seems similar to the marginal fixed-
height histogram (FHH) introduced in [I3]. In fact, there are two significant differences between
SoD and FHH. The first difference is the size of the code table. In FHH, the height of the
histogram is fixed, and for any population, the number of bins employed in the algorithm is
fixed. However, in SoD, even with the same split rate, for different populations, SoD may
generate the code table of different sizes. That is, the code table size in SoD may vary. For the
other difference, the MPM model built according to the individuals encoded by SoD is not of
the identical height. Such a flexibility might make the MPM model more accurate than that
built according to the individuals encoded by FHH.

For handling the adaptive discretization during an optimization process, Figure [5| shows an
example of how SoD cooperating with ECGA splits the solution space at different generations
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(a) Population distribution and 2 split positions at gener-
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(b) Population distribution and 4 split positions at gener-
ation 10. v =0.4. 10 x v = 4.

(c¢) Population distribution and 5 split positions at genera-
tion 20. v =0.3. 10 x v = 3.

Figure 4: Population distribution and the split positions at different generations.

when minimizing a two-dimensional objective function Fy = Y x?, where the bound of every
dimension is [—100, 100], and the global optimum is (0,0). Figure depicts the split configu-
ration on the solution space at generation 1. The split configuration seems random because the
whole population is highly diverse at generation 1. Later on, at generation 50, the population
begins to converge, and Figure shows that SoD splits the solution space around (0, 0) into
many regions and leaves other parts of the solution space unencoded. Finally, in Figure it
can be observed that SoD focuses on the solution space close to (0,0) at generation 100. With
the population converging to (0,0), ECGA is able to explore the promising solution space more
thoroughly and to find the solutions of the higher precision with the assistance of SoD.

Another example is the two-dimensional objective function F» = 10 — |z;]. Figure [6]
depicts how SoD splits the solution space, of which the bound of each dimension is [—10, 10],
when minimizing F». There are four global minima located at (—10, —10), (—10, 10), (10, —10),
and (10, 10), respectively. Figure is the split configuration on solution space at generation 1.
Because the population is initially random, the split configuration seems random. In Figure
we can observe that at generation 10, because the population begins to converge to the global
minima, the split points are close to the four corners where the global minima of F5 are located.
Finally, Figure shows that almost all split points are around the region close to (10, 10)
because the population converge to only one of the four global optima at generation 20.

These two examples demonstrate that the split configuration established by SoD appropri-
ately responds to the status of the population. The split configuration can encode the individuals
as precise as necessary for the cooperating PMBGA to build probabilistic models. Hence, SoD
is an effective encoding scheme to make PMBGAs to tackle the real-parameter optimization
problem. In next section, ECGA, as an example of PMBGAs, will be employed to show the
feasibility of integrating SoD and PMBGAs.
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(a) Generation 1.

(b) Generation 50.

(c) Generation 100.

Figure 5: Split configurations at different generations for the objective function Fy = z7.



(a) Generation 1.

(b) Generation 10.

(c) Generation 20.

Figure 6: Split configurations at different generations for the objective function Fy = > 10— |z



4 rECGA

In the previous sections, we proposed Split-on-Demand, described the behavior of SoD, and
demonstrated the effect of SoD. In this section, we will show the way to plug SoD into ECGA,
as a showcase for the integration of SoD and PMBGAs. The outcome is a new algorithm,
called the real-coded ECGA (rECGA), for solving real-parameter optimization problems with
the search power provided by ECGA. rECGA can be put as:

1. Generate a random population of size V.

2. Apply the tournament selection at a rate S.

3. Use SoD to encode each dimension.

4. Model the population using a greedy MPM search.
5. If the model has converged, stop.

6. Generate a new population using the given model.
7. For every L generations,

(a) Sort the whole population.
(b) Run the Simplex algorithm on the best 10% individuals.

8. Return to step 2.

In rECGA, we use SoD to encode each dimension of the individuals in the current population
after tournament selection and do the MPM greedy search as in ECGA. We also use a local
search method in rECGA to improve the performance. For every L generations, the population
is sorted according to the objective values, and the Simplex algorithm proposed by Nelder and
Mead [I4] is conducted on the best 10% individuals.

5 Experiments

In this section, we will use rECGA to solve a set of test functions and show the experimental
results. The parameters of rECGA we use in the series of experiments are population size =
250, probability of crossover = 0.975, tournament size = 8, v = 0.5, ¢ = 0.998, and L = 5.

5.1 Test Functions

There are several optimization methodologies designed to solve real-parameter optimization
problems. The popular approaches include real-parameter EAs, evolution strategies (ES), dif-
ferential evolution (DE), particle swarm optimization (PSO), classic mathematical methods,
such as quasi-Newton method (QN), and hybridization of evolutionary algorithms and classic
methods. These methodologies are quite different from each other in their operators, concepts,
and working principles. In order to make fair comparisons between these optimization methods,
a set of benchmark functions for testing real-parameter optimization algorithms was proposed
in the CEC 2005 [I5] as an attempt to setup a standard set of benchmark functions of different
properties and characteristics.

In addition to the set of real-parameter optimization benchmark functions, the special ses-
sion on real-parameter optimization at CEC 2005 also established the evaluation criteria as well



as provided the performance results of many optimization methodologies, including those afore-
mentioned algorithms, for comparison. Therefore, the performance of rECGA will be compared
to that of the existing advanced algorithms included in the special session at CEC 2005.

5.2 Experimental Results

The error values, f(xz) — f(x*), described in [I5], are presented in Tables 1-5 for the 25 test
functions. Each column of the table corresponds to one test function, and the number of di-
mensions in each problem is 10. The error values are recorded after 1,000, 10,000, and 100, 000
function evaluations (FEs) for each one of the 25 runs. A run is considered a success if the final
solution reaches within the given fixed accuracy level. The predefined accuracy levels are 1le — 6
for functions 1-5, le — 2 for functions 6-14, and 1le — 1 for functions 15-25. The error values of
the 25 runs on one function are sorted and the tables present the following items: the 1st (Best),
the 13th (Median), the 25th (Worst), and the average (Mean). The tag tand iput after the
function number denote that the function is considered solved or rECGA obtains comparable
results against other advanced algorithms, respectively. If rECGA successfully reaches within
the given accuracy level for the particular function in at least one out of the 25 runs, the function
is considered solved by rECGA. Moreover, by comparable results, we mean that rECGA does
not reach the given accuracy as other advanced algorithms and the performance of rECGA is
equally good compared to that of other algorithms.

The experimental results indicate that rECGA can solve the functions 1, 2, 3, 4, 6, 7, 9, 12,
and 15, which are denoted with {. Functions 1 and 2 are simple problems and can be solved in
every run. Function 3 is the shifted rotated high conditioned elliptic function, which magnifies
the error of input. Even if the error of input is quite small, the error value will be huge due to
a huge multiplier. By utilizing the good local search operator, rECGA is able to solve function
3. Function 4 is the shifted Schwefel’s problem 1.2 with noise in fitness. rECGA can solve
this problem in that SoD can decrease the noise effect by randomly splitting the real number
interval initially. Function 5 is Schwefel’s problem 2.6 with global optimum on bounds. The
special property of function 5 is that function 5 can be solved if the individuals are at bounds.
Because of the property and behavior of SoD, rECGA fails to achieve the success criterion,
although rECGA is able to provide comparable results.

Functions 6-14 are basic multimodal problems and expanded multimodal problems. Al-
though rECGA cannot solve all these problems, most of the results are comparable to that of
other advanced algorithms. The optimum of function 8 is within a very narrow valley, and the
parameter setting used in this experiment does not allow rECGA to have a sufficient resolution
to accurately find the valley. Functions 15-25 are composition functions. They are composites
of the basic functions, and they are big challenges to search algorithms. rECGA successfully
solves only function 15. Some of the results of rECGA for functions 16—25 are comparable to
other algorithms. rECGA and many of other algorithms can only find the local optima.

Several difficulties remain to be overcome, and therefore, we will continue to work on SoD to
provide a versatile encoding scheme. The future work for SoD includes the following items. (1)
SoD can quickly focus on the intervals with many individuals. However, it might ignore some
intervals with fewer individuals. If we use the niching techniques to distribute the computation
power to more intervals, we may avoid such a problem caused by many local optima. (2) By using
the fixed coordinate system, it cannot model the solution space accurately when the problem
has the rotated properties. In this case, rotating the coordinate system with the problem might
be a possible way to improve the performance of SoD. (3) In our current framework, we use
the uniform distribution to spilt the solution space. We might try to use other probability

10



Function 17 of 3t 4F 5%

le3 | Best 1.299e+03 | 2.787e+03 | 1.074e+407 | 4.369e+03 | 3.703e+4-03
Median | 2.308e+03 | 5.758e+03 | 4.131e+07 | 8.142e+03 | 6.859¢+03
Worst 3.624e403 | 1.215e404 | 9.053e+07 | 1.447e+04 | 9.034e+03
Mean 2.335e+03 | 6.401e+03 | 4.331e+07 | 8.326e+03 | 6.768e+03

le4 | Best 3.709e-02 | 1.309e+01 | 9.147e+4-04 | 2.370e+01 | 5.426e+00
Median | 2.424e-01 | 5.807e+01 | 1.005e406 | 7.490e+01 | 4.224e+401
Worst 1.387e+00 | 1.522e+02 | 3.521e+06 | 3.077e+02 | 2.210e+02
Mean 3.362e-01 | 5.918e+01 | 1.224e+06 | 1.025e+02 | 6.241e+01

leb | Best 5.684e-14 | 1.137e-13 | 1.137e-13 | 6.061e-08 | 1.233e-04
Median | 5.684e-13 | 1.080e-12 | 2.160e-12 | 5.977e-05 | 7.441e-04
Worst 2.331e-12 | 2.257e-11 | 2.579e402 | 1.404e-02 | 5.476e+00
Mean 7.162e-13 | 2.369e-12 | 1.032e+01 | 1.249e-03 | 3.777e-01

T Considered solved according to the given accuracy.

¥ Comparable to the results obtained by other algorithms.

Table 1: Error values for functions 1-5.
Function 61 7t gt of 107

le3 | Best 3.582e+07 | 1.421e+03 | 2.051e+01 | 4.871e+01 | 5.945e+01
Median | 1.076e408 | 1.640e+03 | 2.077e+01 | 6.779e+01 | 8.518¢e+401
Worst 3.978e+08 | 1.830e+03 | 2.094e+01 | 8.117e+01 | 1.049e+402
Mean 1.191e+08 | 1.656e+03 | 2.076e+01 | 6.655e+01 | 8.525e+-01

led | Best 8.829e+01 | 1.230e+03 | 2.036e+01 | 3.749e-01 | 9.323e+00
Median | 4.056e+02 | 1.238e+03 | 2.052e+01 | 5.462e+00 | 1.466e+01
Worst 3.405e4-03 | 1.249e+03 | 2.061e+01 | 1.133e+01 | 3.487e+01
Mean 8.003e+02 | 1.238e+03 | 2.052e+01 | 5.649e+00 | 1.822e+01

leb | Best 3.411e-13 | 9.857e-03 | 2.000e+01 | 1.137e-13 | 4.975e+400
Median | 3.987e400 | 2.732e-01 | 2.000e+01 | 1.421e-12 | 1.293e+401
Worst 9.865e+01 | 5.074e+00 | 2.000e+01 | 2.865e-11 | 3.084e+01
Mean 1.030e+01 | 5.273e-01 | 2.000e+01 | 3.643e-12 | 1.313e+01

T Considered solved according to the given accuracy.
¥ Comparable to the results obtained by other algorithms.

Table 2: Error values for functions 6-10.
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Function 11 12 13 14% 157

le3 | Best 9.925e400 | 1.431e+04 | 4.255e+01 | 3.911e+00 | 5.797e+02
Median | 1.204e+01 | 3.260e+04 | 3.728e+02 | 4.288e+00 | 6.925e+02
Worst 1.346e+01 | 5.150e+04 | 3.305e+-03 | 4.533e+00 | 7.563e+02
Mean 1.191e+01 | 3.409e+04 | 6.216e+02 | 4.274e+00 | 6.900e+402

led | Best 2.927e+00 | 1.497e+02 | 3.535e-01 | 2.991e+00 | 8.056e+01
Median | 5.523e+00 | 7.708e+02 | 1.976e+00 | 3.526e+00 | 4.532e+02
Worst 9.158e4-00 | 4.399e+4-03 | 3.423e+00 | 4.066e+00 | 5.125e+02
Mean 5.212e4-00 | 1.100e+03 | 1.954e+00 | 3.485e+00 | 3.922e+02

leb | Best 1.205e+00 | 1.705e-13 4.943e-02 | 1.791e+00 | 1.847e-13
Median | 3.844e+00 | 1.194e-11 4.305e-01 | 3.069e+00 | 4.275e+02
Worst 7.816e4-00 | 1.694e+03 | 1.055e+00 | 4.015e+00 | 4.415e+02
Mean 3.853e+00 | 2.230e+02 | 4.555e-01 | 3.120e+00 | 3.084e-+02

t Considered solved according to the given accuracy.

¥ Comparable to the results obtained by other algorithms.

Table 3: Error values for functions 11-15.
| Function [ 16 17 18 19 20

le3 | Best 2.167e+02 | 2.883e+02 | 1.072e+03 | 1.012e+03 | 1.081e+03
Median | 3.296e+02 | 3.611e+02 | 1.120e+03 | 1.104e4+-03 | 1.124e4-03
Worst | 4.127e+02 | 4.686e+02 | 1.164e+03 | 1.162e+03 | 1.163e+03
Mean 3.223e+402 | 3.616e+02 | 1.122e+03 | 1.104e+03 | 1.119e+03

led | Best 1.009e+02 | 1.167e+02 | 4.148e+02 | 3.834e+02 | 4.480e+02
Median | 1.285¢+02 | 1.584e+02 | 9.167e+02 | 8.013e+02 | 8.928¢+02
Worst 1.900e+02 | 2.210e+02 | 1.009e+03 | 9.685e+02 | 1.019e+03
Mean 1.296e+02 | 1.597e+02 | 8.343e+02 | 8.137e+02 | 8.363e+02

le5 | Best | 9.873e+01 | 1.084e+02 | 3.000e-+02 | 3.000e+02 | 3.000e+02
Median | 1.227e+02 | 1.293e+02 | 9.081e+02 | 8.000e+02 | 8.876e+02
Worst 1.553e+02 | 1.506e+02 | 1.004e+03 | 9.643e+02 | 1.005e+03
Mean 1.224e+02 | 1.299e+02 | 7.794e+02 | 7.945e+02 | 7.731e+02

¥ Comparable to the results obtained by other algorithms.

Table 4: Error values for functions 16-20.
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Function 21 221 23% 24% 25
le3 | Best 1.135e+403 | 9.637e+02 | 1.020e+03 | 9.340e+02 | 1.820e+03
Median | 1.301e403 | 1.006e+03 | 1.313e+03 | 1.190e+03 | 1.864e+03
Worst 1.350e+03 | 1.084e+03 | 1.350e+-03 | 1.341e+03 | 1.886e+03
Mean 1.283e+03 | 1.015e+03 | 1.287e+03 | 1.172e+03 | 1.858e+03
le4 | Best 5.002e+02 | 7.746e+02 | 5.595e+02 | 2.002e+02 | 1.691e+03
Median | 8.502e+402 | 7.870e+02 | 5.595e+02 | 2.012e+02 | 1.754e+03
Worst 1.140e+03 | 9.050e+02 | 1.250e+03 | 2.050e+02 | 1.775e+03
Mean 7.719e+02 | 7.955e+02 | 8.476e+02 | 2.015e+02 | 1.747e+03
le5 | Best 3.000e+02 | 7.324e+02 | 5.595e+02 | 2.000e+02 | 1.491e+03
Median | 5.000e+02 | 7.591e+02 | 5.595e+02 | 2.000e+02 | 1.729e+03
Worst 1.127e+03 | 8.752e+02 | 1.245e+4-03 | 2.000e+02 | 1.754e+403
Mean 7.247e4+02 | 7.687e+02 | 8.209e+02 | 2.000e+02 | 1.713e+03

¥ Comparable to the results obtained by other algorithms.

Table 5: Error values for functions 21-25.

distributions such that the split configuration of the solution space might provide further search
power for SoD. (4) Finally, the integration of SoD and ECGA works well on the standard test
functions. Application of SoD to other PMBGASs should be further investigated.

6 Conclusions

In the present work, we proposed an adaptive discretization method, called Split-on-Demand
(SoD), to enable the PMBGAs or EDAs designed for handling bit-strings to tackle real-parameter
optimization problems. The procedure of SoD was presented in detail, and the effect of SoD was
displayed. As an example, we also demonstrated the way to integrate SoD into ECGA, named
real-coded ECGA (rECGA), and examined rECGA with a recently defined set of benchmark
functions. The experimental results were compared to that of other advanced methodologies and
indicated that rECGA work well on the set of test functions. After discussing the performance
of rECGA on different test functions, the future work to enhance SoD was presented.

SoD is designed and developed for adaptively discretizing real number intervals to assist
PMBGAs, EDAs, and other algorithms to work on real numbers. SoD reflects the distribution
of the current population and encodes the real numbers in discrete codes as necessary. The usage
of SoD makes it easy to be applied to the existing algorithms designed for the bit or integer
representations. This paper shows that SoD is simple and flexible, and the numerical results of
the example rECGA indicate that developing SoD is a promising research direction. More work
along this line needs to be done. We will continue to work on SoD to enhance and improve its
capability and applicability.
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