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Abstract

This paper reviews and summarizes existing linkage learning techniques for genetic and
evolutionary algorithms in the literature. It first introduces the definition of linkage in both
biological systems and genetic algorithms. Then, it discusses the importance for genetic
and evolutionary algorithms to be capable of learning linkage, which is referred to as the
relationship between decision variables. Existing linkage learning methods proposed in the
literature are reviewed according to different facets of genetic and evolutionary algorithms,
including the means to distinguish between good linkage and bad linkage, the methods to
express or represent linkage, and the ways to store linkage information. Studies related to
these linkage learning methods and techniques are also investigated in this survey.

1 Introduction

Genetic and evolutionary algorithms have been broadly and successfully applied to solving prob-
lems in numerous domains since they were proposed by Holland [1, 2]. As the scale and com-
plexity of problems handled by genetic and evolutionary algorithms increase, researchers begin
to realize that for practical use, certain crucial mechanisms have to be integrated into the frame-
work of evolutionary computation. Among these crucial mechanisms suggested by practitioners
is the ability to learn linkage, referred to as the relationship between variables. In the past few
decades, there has been growing recognition that effective genetic and evolutionary computation
demands understanding of linkage in order to tackle complicated, large scale problems [2, 3].
Studies have shown that easy problems can be solved by any ordinary genetic and evolutionary
algorithms, but when harder problems are considered, scalability has been elusive. As indicated
by the results presented in the literature [4, 5], even separable problems could be exponentially
hard if the knowledge of the variable groups were not available.

In order to resolve the issue which is raised because the knowledge of the relationship be-
tween variables is unavailable, a variety of linkage learning techniques have been proposed and
developed to handle the linkage problem, which refers to the need of good building-block link-
age. These linkage learning techniques are so diverse, sophisticated, and highly integrated with
the genetic algorithms that it is a difficult task to review all of them from a simple, unified,
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and straightforward point of view. Furthermore, given the importance of linkage learning in
genetic and evolutionary algorithms and the amount of the effort made in this area, an up-to-
date global overview of existing linkage learning techniques is needed not only for reviewing the
current status of this field but also for revealing the potential future direction of research. As
a consequence, a comprehensive survey is in order to serve as a milestone for the progress of
research on linkage learning.

The purpose of this survey is to provide different facetwise views of existing linkage learning
techniques as well as to gather the growing literature under a uniform classification. In particular,
the paper reviews existing linkage learning techniques according to following different facets of
genetic and evolutionary algorithms:

• the means to distinguish between good linkage and bad linkage;

• the methods to express or represent linkage;

• the ways to store linkage information.

Moreover, research which are precursors or closely related to these linkage learning techniques
are also investigated.

The next section gives the definition of linkage in both biological systems and genetic algo-
rithms. It also discusses the importance for genetic algorithms to learn linkage such that the
coding traps can be avoided. Sections 3, 4, and 5 review existing linkage learning techniques ac-
cording to the different viewpoints mentioned above. Related research are included in Section 6.
Finally, Section 7 summarizes and concludes this paper.

2 Linkage: Definition and Importance

This section first introduces the definition of linkage in both fields of biology and evolutionary
computation. Then, the need to employ the techniques for learning linkage when applying a
genetic algorithm to solve problems is presented.

2.1 What Is Linkage?

The genetic algorithm is a powerful search methodology inspired by natural evolution. It imitates
the procreation process and operates on the principle of the survival of the fittest. Therefore,
understanding the bond and resemblance between the (natural) biology system and the (arti-
ficial) genetic and evolutionary algorithm may be helpful to realize the role and importance of
learning linkage.

In biological systems, linkage refers to the level of association in inheritance of two or more
non-allelic genes that is higher than to be expected from independent assortment [6]. During
meiosis, crossover events might occur between strands of the chromosome that genetic materials
are recombined as shown in Figure 1. Therefore, if two genes are closer to each other on a
chromosome, there is a higher probability that they will be inherited by the offspring together.
Genes are said to be linked when they reside on the same chromosome, and the distance between
each other determines the level of their linkage. Figure 2 gives an illustrative example of different
genetic linkage between two genes. The closer together a set of genes is on a chromosome; the
more probable it will not be split by chromosomal crossover during meiosis.

When applying genetic algorithms, we usually use strings of characters drawn from a finite
alphabets as chromosomes and genetic operators to manipulate these artificial chromosomes.
Holland [2] suggested that genetic operators which can learn linkage information for recombin-
ing alleles might be necessary for genetic and evolutionary algorithms to succeed. Many well
known and widely employed crossover operators, including one-point crossover and two-point
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Figure 1: Meiosis and crossover. The upper part shows meiosis without crossover, and the lower
part shows a crossover event occurs during meiosis.
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if the genes are far away from each other, it is likely for a crossover event to separate them and
to change the configuration.
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crossover, work under the similar situation subject to the linkage embedded in the chromosome
representation as their biological counterparts do. For example, if we have a 6-bit function
consisting of two independent 3-bit subfunctions, three possible coding schemes for the 6-bit
chromosome are

C1(A) = a00 a01 a02 a13 a14 a15;

C2(A) = a00 a11 a02 a13 a04 a15;

C3(A) = a00 a01 a12 a13 a14 a05,

where Cn(A) is the coding scheme n for an individual A, and aj
i is the ith gene of A and belongs

to the jth subfunction.
Taking one-point crossover as an example, it is easy to see that genes belonging to the same

subfunction of individuals encoded with C1 are unlikely to be separated by crossover events.
However, if the individuals are encoded with C2, genes of the same subfunction are split almost
in every crossover event. For C3, genes of subfunction 0 are easily to be disconnected, while
genes of subfunction 1 are likely to stay or to be transferred together.

From the viewpoint of genetic algorithms, linkage is used to describe and measure how close
those genes that belong to a building block are on a chromosome. In addition to pointing
out the linkage phenomenon, Holland [2] also suggested that the chromosome representation
should adapt during the evolutionary process to avoid the potential difficulty directly caused by
the coding scheme, which was identified as coding traps—the combination of loose linkage and
deception among lower order schemata [7].

2.2 Linkage Learning as an Ordering Problem

Because encoding the solutions as fixed strings of characters is common in genetic algorithm
practice, it is easy to see that linkage can be identified as the ordering of the loci of genes as
the examples given in the previous section. Furthermore, early genetic algorithm researchers
used to consider the linkage problem as an ordering problem of the chromosome representation
and addressed to the same issue of building-block identification or linkage learning. That is,
if a genetic algorithm is capable of rearranging the positions of genes on the fly during the
evolutionary process, the responsibility of the user to choose a good coding scheme can be
alleviated or even eliminated. To achieve this goal, Bagley [8] used the (gene number, allele)
coding scheme to study the inversion operator for linkage learning by reversing the order of a
chromosome segment but did not conclude in favor of the use of inversion. Frantz [9] further
investigated the utility of inversion and reported that inversion was too slow and not very
effective.

Goldberg and Bridges [10] analyzed the performance of a genetic algorithm with an idealized
reordering operator. They showed that with an idealized reordering operator, the coding traps—
the combination of loose linkage and deception among lower order schemata [7]—of a fixed
chromosome representation can be overcome, and therefore, linkage learning can be achieved by
an idealized reordering operator. This analysis was later extended to the tournament selection
family, including pairwise tournament selection, S-ary tournament selection, and probabilistic
tournament selection [11]. The upper bound of the probability to apply an idealized reordering
operator found in the previous analysis on proportional selection did not exist when a tournament
selection operator was used.
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2.3 Why Is Learning Linkage Important?

These genetic algorithms either explicitly or implicitly act on an assumption of a good cod-
ing scheme which can provide tight linkage for genes of a building block on the chromosome.
Goldberg, Korb, and Deb [4] conducted an experiment to demonstrate how linkage dictated
the success of a simple genetic algorithm. They used an objective function composed of 10
uniformly scaled copies of an order-3 fully deceptive function [12, 13, 14, 15, 16, 17]. Three
types of codings schemes were tested: tightly ordering, loosely ordering, and randomly ordering.
The tightly ordering coding scheme is similar to C1 described in the previous section. Genes
of the same subfunction are arranged adjacent to one another on the chromosome. The loosely
ordering coding scheme is like C2, all genes are distributed evenly so that an overall loosest
linkage can be achieved. The randomly ordering coding scheme arranges the genes according to
an arbitrary order. The obtained results showed that the success of a simple genetic algorithm
depends very much on the degree of linkage of building blocks. If the chromosome representation
provides tight linkage, a simple genetic algorithm can solve difficult problems. Otherwise, simple
genetic algorithms can easily fail. Therefore, for simple genetic algorithms, tight linkage or a
good coding scheme is indeed far more important than it is usually considered.

In addition to the experiment done by Goldberg, Korb, and Deb [4], some other studies
[18, 5, 19] also showed that genetic algorithms work very well if the genes belonging to the same
building block are tightly linked together on the chromosome. Otherwise, if these genes spread
all over the chromosome, building blocks are very hard to be created and easy to be destroyed by
the recombination operator. Genetic algorithms cannot perform well under such circumstances.
In practice, without prior knowledge to the problem and linkage information, it is difficult to
guarantee that the coding scheme defined by the user always provides tight building blocks,
although it is a key to the success of genetic algorithms.

It is clear that for simple genetic algorithms with fixed genetic operators and chromosome
representations, one of the essential keys to success is a good coding scheme that puts genes
belonging to the same building blocks together on the chromosome to provide tight linkage of
building blocks. The linkage of building blocks dominates all kinds of building-block processing,
including creation, identification, separation, preservation, and mixing. However, in the real
world, it is usually difficult to know such information a priori. As a consequence, handling
linkage for genetic algorithms to succeed is very important.

3 Unimetric Approach vs. Multimetric Approach

In this section and the following two sections, we will review existing linkage learning techniques
according to different facets and aspects, including the means to distinguish between good
linkage and bad linkage, the methods to express or represent linkage, and the ways to store
linkage information. First, we start with classifying the linkage learning techniques based on the
means employed in the algorithm to distinguish between good linkage and bad linkage in this
section.

As a part of evolutionary computation, biologically inspired linkage learning techniques grow
out of “fitness only” measures and try to make use of only what is provided by the problem.
However, computer science and data mining approaches strive to best describe the population
statistics, and therefore, artificial criteria which are not directly related to the problem are
usually employed to judge the quality of the linkage configuration. The ways of thinking behind
these two kinds of approaches are fundamentally different, and it is the reason we propose this
classification criterion.

According to the means to distinguish between good linkage and bad linkage, we can roughly
classify existing genetic and evolutionary approaches into the following two categories:
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• Unimetric approach. A unimetric approach acts solely on the fitness value given by
the fitness function. No extra criteria or measurements are involved for deciding whether
an individual or a model is better.

• Multimetric approach. In contrast to unimetric approaches, a multimetric approach
employs extra criteria or measurements other than the fitness function given by the prob-
lem for judging the quality of individuals or models.

Unimetric approaches, loosely modeled after natural environments, are believed to be more
biologically plausible, while multimetric approaches are of artificial design and employ certain
bias which does not come from the problem at hand to guide the search. Specifically, the
reasons and motivation to propose this classification to discriminate unimetric approaches and
multimetric approaches are two-fold:

1. Biological plausibility: One of the most important reasons to propose this classification
is that we believe nature appears unimetric. Because the “fitness” of an individual in nature
depends on whether or not it can adapt to its environment and survive in its environment,
there is obviously no other extra measurement or criterion to enforce or guide the evolution
of the species to go to certain direction, such as becoming as simple as it can be. However,
given the current research results in this field that most good evolutionary approaches
are multimetric ones, which utilize one or more user-defined measurements to determine
the solution quality, such as preference for simpler models, we would like to separate
unimetric approaches from multimetric ones and to know if there are limits to performance
of unimetric methods. The theoretical results obtained on unimetric approaches might be
of some significance or interests in biology, although the computational models are highly
simplified.

2. Technological motivations: In addition to the biological viewpoints, there are also
technological motivations to classify existing linkage learning techniques into unimetric
approaches and multimetric approaches. For most multimetric methods, the algorithmic
operations are serial in design, while unimetric methods are oftentimes easy to parallelize.
The multimetric algorithms usually require access to all or a large part of the individuals
in the population at the same time. This kind of requirement removes potential paral-
lel advantages because it either incurs a high communication cost due to the necessary
information exchange or demands a completely connected network topology to lower the
communication latency. Therefore, it may be a foreseeable bottleneck when handling prob-
lems of a large number of variables. On the other hand, although many unimetric methods,
such as the linkage learning genetic algorithm, do not perform as well as multimetric ones,
they oftentimes use pairwise operators or operators that operate on only a few individuals.
Hence, they are relatively easy to parallelize, and a wide range of parallelization methods
are applicable.

According to these motivations, the means to distinguish between good linkage and bad linkage
is adopted to classify existing linkage learning techniques.

For example, because all the simple genetic algorithms [2, 20, 19] and the linkage learning
genetic algorithm (LLGA) [21, 22, 23, 24, 25, 26, 27, 28, 29] use only fitness values to operate,
they are definitely considered as unimetric approaches. Moreover, the simple genetic algorithms
with inversion [8, 30, 31, 32, 33], punctuation marks [34], masked crossover (MX) [35], shuffle
crossover (SHX) [36], adaptive uniform crossover (AUX) [37], metabits [38], selective crossover
(SX) [39, 40, 41], or linkage evolving genetic operator (LEGO) [42, 43, 44], are also included
in unimetric approaches because no extra measurements are utilized in these algorithms for
comparing the solution or model quality. A more detailed introduction for the adaptive crossover
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operators mentioned above can be found elsewhere [45]. Furthermore, introducing non-coding
segments, which was previously called introns, into the chromosome representation can also
achieve linkage learning [46, 47, 48, 49, 50, 51, 52, 53, 54, 55], and the approaches with non-
coding segments are usually unimetric. As a side note, adaptive crossover and non-segments are
also widely used in genetic programming [56, 57, 58, 59, 60, 61, 62].

On the other hand, most advanced genetic algorithms today, including the gene expression
genetic algorithm (gemGA) [63, 64, 65, 66, 67, 68, 69], the estimation of distribution algorithms
(EDAs) [70, 71, 72], the mutual-information-maximizing input clustering (MIMIC) algorithm
[73], the combining optimizers with mutual information trees (COMIT) method [74, 75, 76], the
bivariate marginal distribution algorithm (BMDA) [77], the Bayesian optimization algorithm
(BOA) [78, 79, 80, 81], the factorized distribution algorithm (FDA) [82, 72, 83, 84], the mixed
IDEA [85, 86, 87, 88, 89, 90], the extended compact genetic algorithm (ECGA) [91, 92, 93,
94], the extended compact genetic programming (ECGP) [95], edge histogram based sampling
algorithm (EHBSA) [96, 97], and the like, are classified as multimetric approaches because they
explicitly employ extra mechanisms or measurements for discriminating between good linkage
and bad linkage. In addition to the obvious classification, approaches such as the messy genetic
algorithm (mGA) [4, 98, 99, 100], the fast messy genetic algorithm (fmGA) [101, 102, 103],
the ordering messy genetic algorithm (OmeGA) [104, 105, 106, 107, 108], the structured messy
genetic algorithm [109], and the incremental commitment genetic algorithm [110] are in between
the two classes. The members of the messy genetic algorithm family compare individuals with
the fitness value, but the use of building-block filtering indeed builds an implicit extra mechanism
that prefers shorter building blocks into these genetic and evolutionary algorithms.

4 Physical Linkage vs. Virtual Linkage

After classifying the linkage learning techniques according to the facet of how they distinguish
between good linkage and bad linkage, in this section, we discuss the aspect of the methods
these algorithms use to express or represent linkage.

As the development of evolutionary computation progresses, early linkage learning schemes
that were biologically inspired usually represent linkage physically with the representation, such
as proximity of genes on a chromosome. When computer science and data mining techniques
start to get involved in the linkage learning mechanism, linkage are quite often expressed in a
virtual way, such as probabilistic models. We adopt this classification criterion because such
different designs indicate the trade-off between the biological inspiration and the quest for the
algorithmic improvement.

According to the methods to represent linkage, we can broadly classify existing genetic and
evolutionary approaches into the following two categories:

• Physical linkage. A genetic and evolutionary algorithm is said to use physical linkage
if in this algorithm, linkage emerges from physical locations of two or more genes on the
chromosome.

• Virtual linkage. On the other hand, if a genetic and evolutionary algorithm uses graphs,
groupings, matrices, pointers, or other data structures that control the subsequent pairing
or clustering organization of decision variables, it is said to use virtual linkage.

Physical linkage is closer to biological plausibility and inspired directly by it, while virtual linkage
is an engineering or computer science approach to achieve the desired effect most expeditely. In
particular, similar to the reasons that were discussed in the previous section, the motivations to
look into this classification are also two-fold:
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1. Biological plausibility: Because genetic and evolutionary algorithms are search tech-
niques based on principles of evolution, it is one of our main interests to learn from nature
and to borrow useful insights, inspirations, or mechanisms from genetics or biology. Given
that the natural evolution apparently proceeds via genetic operations on the genotypic
structures of all creatures, genetic and evolutionary algorithms that employ the mecha-
nisms which are close to that in nature should be recognized and emphasized. By pointing
out this feature or characteristic of the genetic and evolutionary algorithms that use the
mechanisms existing in biological systems, we might be able to theorize certain genetic
operations in biological systems with those genetic algorithms using physical linkage, such
as the messy genetic algorithm and the linkage learning genetic algorithm.

2. Algorithmic improvement: From a standpoint of efficient or effective computation,
genetic and evolutionary algorithms using virtual linkage usually yield better performance
than those using physical linkage. Together with the biological point of view, this might
imply two possible situations:

(a) Using virtual linkage in genetic algorithms can achieve a better performance. This
kind of artificial systems can do better than their biological counterparts on conduct-
ing search and optimization;

(b) The power of natural systems has not been fully understood and utilized yet. More
critical and essential mechanisms existing in genetics and biology should be further
examined and integrated into the algorithms to improve the performance.

Hence, for the purpose of search and optimization, in the first situation, we should focus on
developing better algorithms that employ virtual linkage, such as the probabilistic model-
building genetic algorithms (PMBGAs) or EDAs [111, 112]. In the other situation, we
should appropriately choose useful genetic mechanisms and integrate these mechanisms
into the algorithms.

According to these motivations, the methods to express or represent linkage is used to classify
existing linkage learning techniques in this section.

For example, all the genetic algorithms use fixed chromosome representations without any
extra graph, grouping, matrix, pointer, or data structure to describe linkage in principle fall
into the category of physical linkage. These algorithms include the ones using binary strings,
integer strings, or real-variable strings as chromosomes as long as they use the chromosome
alone for operations and evolution. Another major set of algorithms belonging to the category
of physical linkage is the genetic algorithms that use the (gene number, allele) coding scheme
[8, 30]. This set of genetic algorithms includes inversion [8, 30, 31, 32, 33], the messy genetic
algorithm [4, 98, 99, 100], the fast messy genetic algorithm [101, 102, 103], and the linkage
learning genetic algorithm [21, 22, 23, 24, 25, 26, 27, 28, 29].

Furthermore, because probabilistic models are employed to represent linkage of variables in
PMBGAs and EDAs, the category of virtual linkage includes all PMBGAs and EDAs [70, 71,
72, 111, 112], such as the mutual-information-maximizing input clustering algorithm [73], the
combining optimizers with mutual information trees method [74, 75, 76], the bivariate marginal
distribution algorithm [77], the Bayesian optimization algorithm [78, 79, 80, 81], the factorized
distribution algorithm [82, 72, 83, 84], the mixed IDEA [85, 86, 87, 88, 89, 90], and the extended
compact genetic algorithm [91, 92, 93, 94]. It also contains the probabilistic inference framework
for modeling crossover operators [113, 114, 115], such as general linkage crossover (GLinX) and
adaptive linkage crossover (ALinX), and the linkless self-distancing GA [116].
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5 Distributed Model vs. Centralized Model

The last facet of the genetic and evolutionary algorithm we explore in this work for classifying
the linkage learning techniques is the ways for these approaches to store linkage information.
For the biologically inspired linkage learning schemes, the evolved linkage models tend to be
distributed in each individual, which are similar to those observed in nature. However, in order
to facilitate the computational process, the linkage models generated by the methods utilizing
computer science and data mining approaches are usually centralized as global models. To gain
further insights into the nature and property of linkage, we propose this criterion to classify
existing linkage learning methods.

Based on the ways to store linkage information, we can divide existing genetic and evolu-
tionary approaches into the following two categories:

• Distributed Model. If a genetic and evolutionary algorithm has no centralized storage
of linkage information and maintains the genetic-linkage model in a distributed manner,
we call such a genetic algorithm a distributed-model approach.

• Centralized Model. In contrast to distributed-model approaches, a centralized-model
approach utilizes a centralized storage of linkage information, such as a global probabilistic
vector or dependency table, to handle and process linkage.

Similar to the unimetric approach, distributed-model approaches are also loosely modeled after
evolutionary conditions in nature and more biologically plausible, while centralized-model ap-
proaches are developed to achieve the maximum information exchange and to obtain the desired
results. The reasons to propose this classification to show the difference between distributed-
model approaches and centralized-mode approaches are presented as follows:

1. Biological plausibility: Once more, we propose this classification in order to put an
emphasis on the similarities as well as the dissimilarities between the genetic algorithms
and the biological systems. Apparently, there exists no centralized genetic-linkage model
in nature. Genotypes are distributed on all creatures or individuals. As described in
the previous sections, genetic algorithms fall in the category of distributed model might
serve as highly simplified computation models which can give insight of the way nature or
evolution works.

2. Computational motivations: On the other hand, based on the classification, centralized-
model approaches should be expected to have better performance when executing compu-
tation, such as search or optimization, because by centralizing the genetic-linkage model,
genetic-linkage information existing in the population gets well mixed and exchanged in
very little time compared to that in a distributed-model approach. Therefore, centralized-
model approaches have such an edge to outperform distributed-model. However, this ad-
vantage might also be a disadvantage for centralized-model approaches. Centralized-model
approaches are serial in nature, and they are very hard to parallelize. Distributed-model
approaches are parallel by design. Thus, distributed-model approaches might have better
scalability when handling large-scale problems.

According to these reasons, the ways to store linkage information is adopted to classify the
linkage learning techniques.

For example, simple genetic algorithms are distributed-model approaches because any in-
formation existing in the population is stored in a distributed manner over the individuals.
The linkage learning genetic algorithm [21, 22, 23, 24, 25, 26, 27, 28, 29], the messy genetic
algorithm [4, 98, 99, 100], the fast messy genetic algorithm [101, 102, 103], and the gene expres-
sion messy genetic algorithm (gemGA) [63, 64, 65, 66, 67, 68, 69] also belong to this category
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for the same reason. Moreover, the linkage identification procedures proposed in the litera-
ture, including the linkage identification by nonlinearity check (LINC) [117, 118], the Identi-
fying composability using group perturbation (gLINC) [119], the linkage identification by non-
monotonicity detection (LIMD) [120, 121], the linkage identification based on epistasis measures
(LIEM) [122, 123, 124], the linkage identification with epistasis measure considering monotonic-
ity conditions (LIEM2) [125], the Linkage identification by nonlinearity check for real-coded
genetic algorithms (LINC-R) [126], and the Dependency detection for distribution derived from
df (DDDDD or D5) [127, 128, 129] as well as the collective learning genetic algorithm (CLGA)
[130, 131] are in this class.

Furthermore, similar to the category of virtual linkage, the centralized-model approaches
include most PMBGAs and EDAs [70, 71, 72, 111, 112], such as the mutual-information-
maximizing input clustering algorithm [73], the combining optimizers with mutual informa-
tion trees method [74, 75, 76], the bivariate marginal distribution algorithm [77], the Bayesian
optimization algorithm [78, 79, 80, 81], the factorized distribution algorithm [82, 72, 83, 84],
the mixed IDEA [85, 86, 87, 88, 89, 90], and the extended compact genetic algorithm [91, 92,
93, 94], and the like. The probabilistic inference framework for modeling crossover operators
[113, 114, 115], such as the general linkage crossover and the adaptive linkage crossover, the de-
pendency structure matrix driven genetic algorithm (DSMGA) [132, 133, 134], and the linkless
self-distancing genetic algorithm [116], are also considered as centralized-model approaches.

6 Related Research

In this section, research related to the linkage learning techniques classified in the previous
sections of this paper are presented. These mechanisms, operators, or theoretical frameworks
might be applied in genetic and evolutionary algorithms to learn linkage in the future or give a
better understanding of linkage learning in theory.

First of all, based on the idea of using the inversion operator with the (gene number, allele)
coding scheme, permutation-based operators or methods can potentially be utilized for learning
linkage. These operators and methods include partially mapped crossover (PMX) [135], order
crossover (OX) [136], cycle crossover (CX) [136], edge recombination (ER) [137], enhanced
edge recombination (EER) [138], uniform ordering crossover (UOX) [139], relative ordering
crossover (ROX) [140], and the random keys [141]. With the (gene number, allele)-style coding
or other appropriate permutation coding schemes, these genetic operators might help genetic
and evolutionary algorithms to achieve linkage learning.

Many linkage learning techniques presented in the previous sections employ certain kinds
of grouping or clustering methodologies in order to identify building blocks. For tackling the
clustering problem, Falkenauer [142, 143] proposed the grouping genetic algorithm (GGA) specif-
ically for solving clustering problems. GGA uses a specially designed chromosome representation
and the grouping crossover operator such that clustering problem can be naturally handled. Al-
though GGA has no linkage learning mechanism in the context of this survey, potentially, GGA
can be employed as a linkage group identifying method for learning linkage. Because of its na-
ture, GGA has been applied to grouping-oriented problems, including the bin packing problem
[144, 145, 146], the equal pile problem [147], and other real-world problems [148].

Other than methods and operators, theoretical research regarding linkage can be found in
the literature. Heckendorn and Alden proposed a series of theories on identifying linkage via
limited probing [149, 150]. Prügel-Bennett [151] presented a statistical framework to model
the linkage dynamics of a genetic algorithm with ranking selection, two-point crossover, and
mutation on the Onemax problem. Auto-correlation and cross-correlation among genes were
utilized to construct the linkage dynamics. Analyses of applying a reordering operator with
different selection schemes on a GA-hard problem were also provided elsewhere [10, 11]. An
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idealized reordering operator and the genetic algorithm were modeled and analyzed with a set
of difference equations. For studying the inversion operator, [152] proposed the use of problem
generators to observe the probability for inversion. Finally, previous surveys related to linkage
and linkage learning are available in the literature [153, 154].

If the problem domain knowledge is available for creating appropriate chromosome repre-
sentations or designing suitable genetic operators, research can also be found in the literature
to incorporate the priori knowledge in the genetic and evolutionary algorithms. Bui and Moon
[155] proposed the Hyperplane Synthesis procedure, which employs the depth-first-search (DFS)
and the breadth-first-search (BFS) tree traversal algorithms on the graph representation of the
problem for defining good chromosome representations [156, 157, 158]. The proposed DFS/BFS
gene arrangement procedure has been successfully applied to a variety of problems, including
the traveling salesman problem (TSP) [159], graph partitioning [160], circuit ratio-cut parti-
tioning [161], and VLSI circuit partitioner [162, 163]. In additional to creating an appropriate
chromosome encoding scheme, natural crossover was proposed [164] for problems that have
strong geographical linkage. Natural crossover has been used to optimize the artificial neural
networks [165], the vehicle routing problem [166], the fixed channel assignment problem [167],
and TSP [168, 169] as well. Similar to natural crossover, Voronoi quantized crossover (VQX)
was proposed to solve TSP [170] and the sequential ordering problem [171]. Instead of using free
curves, VQX uses the concept of Voronoi diagrams to swap the geographical regions in order to
preserve the geographical linkage within the underlying problem. A more complete survey on
chromosomal structures that exploit topological linkage can be found elsewhere [172].

7 Conclusions

As pointed out by Holland and verified by a number of studies, learning linkage is essential to
the success of genetic and evolutionary algorithms if the prior knowledge to the problem is not
available for designing a chromosome representation that provides good building block linkage.
Recognizing the importance of solving the linkage problem, many linkage learning techniques
have been proposed in the literature to tackle the linkage problem. These methods adopt a
variety of mechanisms for linkage detecting, learning, and utilization. In this paper, we reviewed
these linkage learning techniques from three different aspects: (1) the means to distinguish
between good linkage and bad linkage; (2) the methods to express or represent linkage; (3) the
ways to store linkage information. Research closely related these linkage learning techniques
were also included.

In addition to the classification proposed in this paper, according to the time line on which
the techniques included in this paper were proposed, we can observe two directions: (1) using
the simple chromosome representation with the extra information about linkage groups; (2)
using the complex model builders to capture linkage in probabilistic models. On the one hand,
fixed representations are easier for genetic operators to manipulate. As long as the linkage
groups are flexible enough to express the interaction among genes of the problem, using a simple
representation with flexible linkage groups may be a good choice between cost and effectiveness.
On the other hand, if the problem is too complicated for a simple representation, those complex
model builders may be the only way to solve such difficult problems.

The research field of genetic and evolutionary computation is deeply inspired by nature, bi-
ology, and evolution. Every technique or methodology proposed in this field serves the following
purposes: achieving excellent computational performance and/or gaining better understandings
of nature. Integrating the concept of genetic linkage into evolutionary algorithms creates the
research branch of linkage learning methodologies as well as leads us to investigate the appli-
cability of observed phenomena in biology to computation. Overall, from nature, we may learn
to develop general computational frameworks which can handle a broad rage of problems, and
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from the development of these frameworks, perhaps we can also further human knowledge to
nature, biology, and evolution.
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