
A Survey of Linkage Learning Techniques in Genetic and
Evolutionary Algorithms

Ying-ping Chen
Tian-Li Yu

Kumara Sastry
David E. Goldberg

NCLab Report No. NCL-TR-2007009
April 2007

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/



A Survey of Linkage Learning Techniques in Genetic and

Evolutionary Algorithms

Ying-ping Chen1, Tian-Li Yu2, Kumara Sastry3, and David E. Goldberg3

1Department of Computer Science 2Department of Electrical Engineering
National Chiao Tung University National Taiwan University

HsinChu City 300, Taiwan Taipei 106, Taiwan
ypchen@nclab.tw tianliyu@cc.ee.ntu.edu.tw

3Department of Industrial and Enterprise Systems Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{ksastry, deg}@uiuc.edu

April 13, 2007

Abstract

This paper reviews and summarizes existing linkage learning techniques for genetic and
evolutionary algorithms in the literature. It first introduces the definition of linkage in both
biological systems and genetic algorithms. Then, it discusses the importance for genetic
and evolutionary algorithms to be capable of learning linkage, which is referred to as the
relationship between decision variables. Existing linkage learning methods proposed in the
literature are reviewed according to different facets of genetic and evolutionary algorithms,
including the means to distinguish between good linkage and bad linkage, the methods to
express or represent linkage, and the ways to store linkage information. Studies related to
these linkage learning methods and techniques are also investigated in this survey.

1 Introduction

Genetic and evolutionary algorithms have been broadly and successfully applied to solving prob-
lems in numerous domains since they were proposed by Holland [1, 2]. As the scale and com-
plexity of problems handled by genetic and evolutionary algorithms increase, researchers begin
to realize that for practical use, certain crucial mechanisms have to be integrated into the frame-
work of evolutionary computation. Among these crucial mechanisms suggested by practitioners
is the ability to learn linkage, referred to as the relationship between variables. In the past few
decades, there has been growing recognition that effective genetic and evolutionary computation
demands understanding of linkage in order to tackle complicated, large scale problems [2, 3].
Studies have shown that easy problems can be solved by any ordinary genetic and evolutionary
algorithms, but when harder problems are considered, scalability has been elusive. As indicated
by the results presented in the literature [4, 5], even separable problems could be exponentially
hard if the knowledge of the variable groups were not available.

In order to resolve the issue which is raised because the knowledge of the relationship be-
tween variables is unavailable, a variety of linkage learning techniques have been proposed and
developed to handle the linkage problem, which refers to the need of good building-block link-
age. These linkage learning techniques are so diverse, sophisticated, and highly integrated with
the genetic algorithms that it is a difficult task to review all of them from a simple, unified,

1



and straightforward point of view. Furthermore, given the importance of linkage learning in
genetic and evolutionary algorithms and the amount of the effort made in this area, an up-to-
date global overview of existing linkage learning techniques is needed not only for reviewing the
current status of this field but also for revealing the potential future direction of research. As
a consequence, a comprehensive survey is in order to serve as a milestone for the progress of
research on linkage learning.

The purpose of this survey is to provide different facetwise views of existing linkage learning
techniques as well as to gather the growing literature under a uniform classification. In particular,
the paper reviews existing linkage learning techniques according to following different facets of
genetic and evolutionary algorithms:

• the means to distinguish between good linkage and bad linkage;

• the methods to express or represent linkage;

• the ways to store linkage information.

Moreover, research which are precursors or closely related to these linkage learning techniques
are also investigated.

The next section gives the definition of linkage in both biological systems and genetic algo-
rithms. It also discusses the importance for genetic algorithms to learn linkage such that the
coding traps can be avoided. Sections 3, 4, and 5 review existing linkage learning techniques ac-
cording to the different viewpoints mentioned above. Related research are included in Section 6.
Finally, Section 7 summarizes and concludes this paper.

2 Linkage: Definition and Importance

This section first introduces the definition of linkage in both fields of biology and evolutionary
computation. Then, the need to employ the techniques for learning linkage when applying a
genetic algorithm to solve problems is presented.

2.1 What Is Linkage?

The genetic algorithm is a powerful search methodology inspired by natural evolution. It imitates
the procreation process and operates on the principle of the survival of the fittest. Therefore,
understanding the bond and resemblance between the (natural) biology system and the (arti-
ficial) genetic and evolutionary algorithm may be helpful to realize the role and importance of
learning linkage.

In biological systems, linkage refers to the level of association in inheritance of two or more
non-allelic genes that is higher than to be expected from independent assortment [6]. During
meiosis, crossover events might occur between strands of the chromosome that genetic materials
are recombined as shown in Figure 1. Therefore, if two genes are closer to each other on a
chromosome, there is a higher probability that they will be inherited by the offspring together.
Genes are said to be linked when they reside on the same chromosome, and the distance between
each other determines the level of their linkage. Figure 2 gives an illustrative example of different
genetic linkage between two genes. The closer together a set of genes is on a chromosome; the
more probable it will not be split by chromosomal crossover during meiosis.

When applying genetic algorithms, we usually use strings of characters drawn from a finite
alphabets as chromosomes and genetic operators to manipulate these artificial chromosomes.
Holland [2] suggested that genetic operators which can learn linkage information for recombin-
ing alleles might be necessary for genetic and evolutionary algorithms to succeed. Many well
known and widely employed crossover operators, including one-point crossover and two-point

2



����

������ ������

������������ ������������

����

������ ��

������������ ������������

b

bA

A b bA
egg

a

A b

egg

sperm
A

sperm one possible offspring

Fertilization
meiosis and
crossover

b

a B B

bA

A b

egg

meiosis

sperm
A B

sperm one possible offspring

Fertilization

BA

bA

a b

father
BA

a b

mother

mother
bA

A b bA
egg

father
BA

a

Figure 1: Meiosis and crossover. The upper part shows meiosis without crossover, and the lower
part shows a crossover event occurs during meiosis.

B

��������������

��������

��������

��������������

��������

��������

crossover

meiosis and

A

a

A

a

BA

a b

A B

a b

b

B b

Figure 2: The different genetic linkage between two genes. The upper part shows that if the
genes are closer, they are likely to maintain the allele configuration. The lower part shows that
if the genes are far away from each other, it is likely for a crossover event to separate them and
to change the configuration.

3



crossover, work under the similar situation subject to the linkage embedded in the chromosome
representation as their biological counterparts do. For example, if we have a 6-bit function
consisting of two independent 3-bit subfunctions, three possible coding schemes for the 6-bit
chromosome are

C1(A) = a00 a01 a02 a13 a14 a15;

C2(A) = a00 a11 a02 a13 a04 a15;

C3(A) = a00 a01 a12 a13 a14 a05,

where Cn(A) is the coding scheme n for an individual A, and aj
i is the ith gene of A and belongs

to the jth subfunction.
Taking one-point crossover as an example, it is easy to see that genes belonging to the same

subfunction of individuals encoded with C1 are unlikely to be separated by crossover events.
However, if the individuals are encoded with C2, genes of the same subfunction are split almost
in every crossover event. For C3, genes of subfunction 0 are easily to be disconnected, while
genes of subfunction 1 are likely to stay or to be transferred together.

From the viewpoint of genetic algorithms, linkage is used to describe and measure how close
those genes that belong to a building block are on a chromosome. In addition to pointing
out the linkage phenomenon, Holland [2] also suggested that the chromosome representation
should adapt during the evolutionary process to avoid the potential difficulty directly caused by
the coding scheme, which was identified as coding traps—the combination of loose linkage and
deception among lower order schemata [7].

2.2 Linkage Learning as an Ordering Problem

Because encoding the solutions as fixed strings of characters is common in genetic algorithm
practice, it is easy to see that linkage can be identified as the ordering of the loci of genes as
the examples given in the previous section. Furthermore, early genetic algorithm researchers
used to consider the linkage problem as an ordering problem of the chromosome representation
and addressed to the same issue of building-block identification or linkage learning. That is,
if a genetic algorithm is capable of rearranging the positions of genes on the fly during the
evolutionary process, the responsibility of the user to choose a good coding scheme can be
alleviated or even eliminated. To achieve this goal, Bagley [8] used the (gene number, allele)
coding scheme to study the inversion operator for linkage learning by reversing the order of a
chromosome segment but did not conclude in favor of the use of inversion. Frantz [9] further
investigated the utility of inversion and reported that inversion was too slow and not very
effective.

Goldberg and Bridges [10] analyzed the performance of a genetic algorithm with an idealized
reordering operator. They showed that with an idealized reordering operator, the coding traps—
the combination of loose linkage and deception among lower order schemata [7]—of a fixed
chromosome representation can be overcome, and therefore, linkage learning can be achieved by
an idealized reordering operator. This analysis was later extended to the tournament selection
family, including pairwise tournament selection, S-ary tournament selection, and probabilistic
tournament selection [11]. The upper bound of the probability to apply an idealized reordering
operator found in the previous analysis on proportional selection did not exist when a tournament
selection operator was used.

4



2.3 Why Is Learning Linkage Important?

These genetic algorithms either explicitly or implicitly act on an assumption of a good cod-
ing scheme which can provide tight linkage for genes of a building block on the chromosome.
Goldberg, Korb, and Deb [4] conducted an experiment to demonstrate how linkage dictated
the success of a simple genetic algorithm. They used an objective function composed of 10
uniformly scaled copies of an order-3 fully deceptive function [12, 13, 14, 15, 16, 17]. Three
types of codings schemes were tested: tightly ordering, loosely ordering, and randomly ordering.
The tightly ordering coding scheme is similar to C1 described in the previous section. Genes
of the same subfunction are arranged adjacent to one another on the chromosome. The loosely
ordering coding scheme is like C2, all genes are distributed evenly so that an overall loosest
linkage can be achieved. The randomly ordering coding scheme arranges the genes according to
an arbitrary order. The obtained results showed that the success of a simple genetic algorithm
depends very much on the degree of linkage of building blocks. If the chromosome representation
provides tight linkage, a simple genetic algorithm can solve difficult problems. Otherwise, simple
genetic algorithms can easily fail. Therefore, for simple genetic algorithms, tight linkage or a
good coding scheme is indeed far more important than it is usually considered.

In addition to the experiment done by Goldberg, Korb, and Deb [4], some other studies
[18, 5, 19] also showed that genetic algorithms work very well if the genes belonging to the same
building block are tightly linked together on the chromosome. Otherwise, if these genes spread
all over the chromosome, building blocks are very hard to be created and easy to be destroyed by
the recombination operator. Genetic algorithms cannot perform well under such circumstances.
In practice, without prior knowledge to the problem and linkage information, it is difficult to
guarantee that the coding scheme defined by the user always provides tight building blocks,
although it is a key to the success of genetic algorithms.

It is clear that for simple genetic algorithms with fixed genetic operators and chromosome
representations, one of the essential keys to success is a good coding scheme that puts genes
belonging to the same building blocks together on the chromosome to provide tight linkage of
building blocks. The linkage of building blocks dominates all kinds of building-block processing,
including creation, identification, separation, preservation, and mixing. However, in the real
world, it is usually difficult to know such information a priori. As a consequence, handling
linkage for genetic algorithms to succeed is very important.

3 Unimetric Approach vs. Multimetric Approach

In this section and the following two sections, we will review existing linkage learning techniques
according to different facets and aspects, including the means to distinguish between good
linkage and bad linkage, the methods to express or represent linkage, and the ways to store
linkage information. First, we start with classifying the linkage learning techniques based on the
means employed in the algorithm to distinguish between good linkage and bad linkage in this
section.

As a part of evolutionary computation, biologically inspired linkage learning techniques grow
out of “fitness only” measures and try to make use of only what is provided by the problem.
However, computer science and data mining approaches strive to best describe the population
statistics, and therefore, artificial criteria which are not directly related to the problem are
usually employed to judge the quality of the linkage configuration. The ways of thinking behind
these two kinds of approaches are fundamentally different, and it is the reason we propose this
classification criterion.

According to the means to distinguish between good linkage and bad linkage, we can roughly
classify existing genetic and evolutionary approaches into the following two categories:

5



• Unimetric approach. A unimetric approach acts solely on the fitness value given by
the fitness function. No extra criteria or measurements are involved for deciding whether
an individual or a model is better.

• Multimetric approach. In contrast to unimetric approaches, a multimetric approach
employs extra criteria or measurements other than the fitness function given by the prob-
lem for judging the quality of individuals or models.

Unimetric approaches, loosely modeled after natural environments, are believed to be more
biologically plausible, while multimetric approaches are of artificial design and employ certain
bias which does not come from the problem at hand to guide the search. Specifically, the
reasons and motivation to propose this classification to discriminate unimetric approaches and
multimetric approaches are two-fold:

1. Biological plausibility: One of the most important reasons to propose this classification
is that we believe nature appears unimetric. Because the “fitness” of an individual in nature
depends on whether or not it can adapt to its environment and survive in its environment,
there is obviously no other extra measurement or criterion to enforce or guide the evolution
of the species to go to certain direction, such as becoming as simple as it can be. However,
given the current research results in this field that most good evolutionary approaches
are multimetric ones, which utilize one or more user-defined measurements to determine
the solution quality, such as preference for simpler models, we would like to separate
unimetric approaches from multimetric ones and to know if there are limits to performance
of unimetric methods. The theoretical results obtained on unimetric approaches might be
of some significance or interests in biology, although the computational models are highly
simplified.

2. Technological motivations: In addition to the biological viewpoints, there are also
technological motivations to classify existing linkage learning techniques into unimetric
approaches and multimetric approaches. For most multimetric methods, the algorithmic
operations are serial in design, while unimetric methods are oftentimes easy to parallelize.
The multimetric algorithms usually require access to all or a large part of the individuals
in the population at the same time. This kind of requirement removes potential paral-
lel advantages because it either incurs a high communication cost due to the necessary
information exchange or demands a completely connected network topology to lower the
communication latency. Therefore, it may be a foreseeable bottleneck when handling prob-
lems of a large number of variables. On the other hand, although many unimetric methods,
such as the linkage learning genetic algorithm, do not perform as well as multimetric ones,
they oftentimes use pairwise operators or operators that operate on only a few individuals.
Hence, they are relatively easy to parallelize, and a wide range of parallelization methods
are applicable.

According to these motivations, the means to distinguish between good linkage and bad linkage
is adopted to classify existing linkage learning techniques.

For example, because all the simple genetic algorithms [2, 20, 19] and the linkage learning
genetic algorithm (LLGA) [21, 22, 23, 24, 25, 26, 27, 28, 29] use only fitness values to operate,
they are definitely considered as unimetric approaches. Moreover, the simple genetic algorithms
with inversion [8, 30, 31, 32, 33], punctuation marks [34], masked crossover (MX) [35], shuffle
crossover (SHX) [36], adaptive uniform crossover (AUX) [37], metabits [38], selective crossover
(SX) [39, 40, 41], or linkage evolving genetic operator (LEGO) [42, 43, 44], are also included
in unimetric approaches because no extra measurements are utilized in these algorithms for
comparing the solution or model quality. A more detailed introduction for the adaptive crossover

6



operators mentioned above can be found elsewhere [45]. Furthermore, introducing non-coding
segments, which was previously called introns, into the chromosome representation can also
achieve linkage learning [46, 47, 48, 49, 50, 51, 52, 53, 54, 55], and the approaches with non-
coding segments are usually unimetric. As a side note, adaptive crossover and non-segments are
also widely used in genetic programming [56, 57, 58, 59, 60, 61, 62].

On the other hand, most advanced genetic algorithms today, including the gene expression
genetic algorithm (gemGA) [63, 64, 65, 66, 67, 68, 69], the estimation of distribution algorithms
(EDAs) [70, 71, 72], the mutual-information-maximizing input clustering (MIMIC) algorithm
[73], the combining optimizers with mutual information trees (COMIT) method [74, 75, 76], the
bivariate marginal distribution algorithm (BMDA) [77], the Bayesian optimization algorithm
(BOA) [78, 79, 80, 81], the factorized distribution algorithm (FDA) [82, 72, 83, 84], the mixed
IDEA [85, 86, 87, 88, 89, 90], the extended compact genetic algorithm (ECGA) [91, 92, 93,
94], the extended compact genetic programming (ECGP) [95], edge histogram based sampling
algorithm (EHBSA) [96, 97], and the like, are classified as multimetric approaches because they
explicitly employ extra mechanisms or measurements for discriminating between good linkage
and bad linkage. In addition to the obvious classification, approaches such as the messy genetic
algorithm (mGA) [4, 98, 99, 100], the fast messy genetic algorithm (fmGA) [101, 102, 103],
the ordering messy genetic algorithm (OmeGA) [104, 105, 106, 107, 108], the structured messy
genetic algorithm [109], and the incremental commitment genetic algorithm [110] are in between
the two classes. The members of the messy genetic algorithm family compare individuals with
the fitness value, but the use of building-block filtering indeed builds an implicit extra mechanism
that prefers shorter building blocks into these genetic and evolutionary algorithms.

4 Physical Linkage vs. Virtual Linkage

After classifying the linkage learning techniques according to the facet of how they distinguish
between good linkage and bad linkage, in this section, we discuss the aspect of the methods
these algorithms use to express or represent linkage.

As the development of evolutionary computation progresses, early linkage learning schemes
that were biologically inspired usually represent linkage physically with the representation, such
as proximity of genes on a chromosome. When computer science and data mining techniques
start to get involved in the linkage learning mechanism, linkage are quite often expressed in a
virtual way, such as probabilistic models. We adopt this classification criterion because such
different designs indicate the trade-off between the biological inspiration and the quest for the
algorithmic improvement.

According to the methods to represent linkage, we can broadly classify existing genetic and
evolutionary approaches into the following two categories:

• Physical linkage. A genetic and evolutionary algorithm is said to use physical linkage
if in this algorithm, linkage emerges from physical locations of two or more genes on the
chromosome.

• Virtual linkage. On the other hand, if a genetic and evolutionary algorithm uses graphs,
groupings, matrices, pointers, or other data structures that control the subsequent pairing
or clustering organization of decision variables, it is said to use virtual linkage.

Physical linkage is closer to biological plausibility and inspired directly by it, while virtual linkage
is an engineering or computer science approach to achieve the desired effect most expeditely. In
particular, similar to the reasons that were discussed in the previous section, the motivations to
look into this classification are also two-fold:

7



1. Biological plausibility: Because genetic and evolutionary algorithms are search tech-
niques based on principles of evolution, it is one of our main interests to learn from nature
and to borrow useful insights, inspirations, or mechanisms from genetics or biology. Given
that the natural evolution apparently proceeds via genetic operations on the genotypic
structures of all creatures, genetic and evolutionary algorithms that employ the mecha-
nisms which are close to that in nature should be recognized and emphasized. By pointing
out this feature or characteristic of the genetic and evolutionary algorithms that use the
mechanisms existing in biological systems, we might be able to theorize certain genetic
operations in biological systems with those genetic algorithms using physical linkage, such
as the messy genetic algorithm and the linkage learning genetic algorithm.

2. Algorithmic improvement: From a standpoint of efficient or effective computation,
genetic and evolutionary algorithms using virtual linkage usually yield better performance
than those using physical linkage. Together with the biological point of view, this might
imply two possible situations:

(a) Using virtual linkage in genetic algorithms can achieve a better performance. This
kind of artificial systems can do better than their biological counterparts on conduct-
ing search and optimization;

(b) The power of natural systems has not been fully understood and utilized yet. More
critical and essential mechanisms existing in genetics and biology should be further
examined and integrated into the algorithms to improve the performance.

Hence, for the purpose of search and optimization, in the first situation, we should focus on
developing better algorithms that employ virtual linkage, such as the probabilistic model-
building genetic algorithms (PMBGAs) or EDAs [111, 112]. In the other situation, we
should appropriately choose useful genetic mechanisms and integrate these mechanisms
into the algorithms.

According to these motivations, the methods to express or represent linkage is used to classify
existing linkage learning techniques in this section.

For example, all the genetic algorithms use fixed chromosome representations without any
extra graph, grouping, matrix, pointer, or data structure to describe linkage in principle fall
into the category of physical linkage. These algorithms include the ones using binary strings,
integer strings, or real-variable strings as chromosomes as long as they use the chromosome
alone for operations and evolution. Another major set of algorithms belonging to the category
of physical linkage is the genetic algorithms that use the (gene number, allele) coding scheme
[8, 30]. This set of genetic algorithms includes inversion [8, 30, 31, 32, 33], the messy genetic
algorithm [4, 98, 99, 100], the fast messy genetic algorithm [101, 102, 103], and the linkage
learning genetic algorithm [21, 22, 23, 24, 25, 26, 27, 28, 29].

Furthermore, because probabilistic models are employed to represent linkage of variables in
PMBGAs and EDAs, the category of virtual linkage includes all PMBGAs and EDAs [70, 71,
72, 111, 112], such as the mutual-information-maximizing input clustering algorithm [73], the
combining optimizers with mutual information trees method [74, 75, 76], the bivariate marginal
distribution algorithm [77], the Bayesian optimization algorithm [78, 79, 80, 81], the factorized
distribution algorithm [82, 72, 83, 84], the mixed IDEA [85, 86, 87, 88, 89, 90], and the extended
compact genetic algorithm [91, 92, 93, 94]. It also contains the probabilistic inference framework
for modeling crossover operators [113, 114, 115], such as general linkage crossover (GLinX) and
adaptive linkage crossover (ALinX), and the linkless self-distancing GA [116].

8



5 Distributed Model vs. Centralized Model

The last facet of the genetic and evolutionary algorithm we explore in this work for classifying
the linkage learning techniques is the ways for these approaches to store linkage information.
For the biologically inspired linkage learning schemes, the evolved linkage models tend to be
distributed in each individual, which are similar to those observed in nature. However, in order
to facilitate the computational process, the linkage models generated by the methods utilizing
computer science and data mining approaches are usually centralized as global models. To gain
further insights into the nature and property of linkage, we propose this criterion to classify
existing linkage learning methods.

Based on the ways to store linkage information, we can divide existing genetic and evolu-
tionary approaches into the following two categories:

• Distributed Model. If a genetic and evolutionary algorithm has no centralized storage
of linkage information and maintains the genetic-linkage model in a distributed manner,
we call such a genetic algorithm a distributed-model approach.

• Centralized Model. In contrast to distributed-model approaches, a centralized-model
approach utilizes a centralized storage of linkage information, such as a global probabilistic
vector or dependency table, to handle and process linkage.

Similar to the unimetric approach, distributed-model approaches are also loosely modeled after
evolutionary conditions in nature and more biologically plausible, while centralized-model ap-
proaches are developed to achieve the maximum information exchange and to obtain the desired
results. The reasons to propose this classification to show the difference between distributed-
model approaches and centralized-mode approaches are presented as follows:

1. Biological plausibility: Once more, we propose this classification in order to put an
emphasis on the similarities as well as the dissimilarities between the genetic algorithms
and the biological systems. Apparently, there exists no centralized genetic-linkage model
in nature. Genotypes are distributed on all creatures or individuals. As described in
the previous sections, genetic algorithms fall in the category of distributed model might
serve as highly simplified computation models which can give insight of the way nature or
evolution works.

2. Computational motivations: On the other hand, based on the classification, centralized-
model approaches should be expected to have better performance when executing compu-
tation, such as search or optimization, because by centralizing the genetic-linkage model,
genetic-linkage information existing in the population gets well mixed and exchanged in
very little time compared to that in a distributed-model approach. Therefore, centralized-
model approaches have such an edge to outperform distributed-model. However, this ad-
vantage might also be a disadvantage for centralized-model approaches. Centralized-model
approaches are serial in nature, and they are very hard to parallelize. Distributed-model
approaches are parallel by design. Thus, distributed-model approaches might have better
scalability when handling large-scale problems.

According to these reasons, the ways to store linkage information is adopted to classify the
linkage learning techniques.

For example, simple genetic algorithms are distributed-model approaches because any in-
formation existing in the population is stored in a distributed manner over the individuals.
The linkage learning genetic algorithm [21, 22, 23, 24, 25, 26, 27, 28, 29], the messy genetic
algorithm [4, 98, 99, 100], the fast messy genetic algorithm [101, 102, 103], and the gene expres-
sion messy genetic algorithm (gemGA) [63, 64, 65, 66, 67, 68, 69] also belong to this category

9



for the same reason. Moreover, the linkage identification procedures proposed in the litera-
ture, including the linkage identification by nonlinearity check (LINC) [117, 118], the Identi-
fying composability using group perturbation (gLINC) [119], the linkage identification by non-
monotonicity detection (LIMD) [120, 121], the linkage identification based on epistasis measures
(LIEM) [122, 123, 124], the linkage identification with epistasis measure considering monotonic-
ity conditions (LIEM2) [125], the Linkage identification by nonlinearity check for real-coded
genetic algorithms (LINC-R) [126], and the Dependency detection for distribution derived from
df (DDDDD or D5) [127, 128, 129] as well as the collective learning genetic algorithm (CLGA)
[130, 131] are in this class.

Furthermore, similar to the category of virtual linkage, the centralized-model approaches
include most PMBGAs and EDAs [70, 71, 72, 111, 112], such as the mutual-information-
maximizing input clustering algorithm [73], the combining optimizers with mutual informa-
tion trees method [74, 75, 76], the bivariate marginal distribution algorithm [77], the Bayesian
optimization algorithm [78, 79, 80, 81], the factorized distribution algorithm [82, 72, 83, 84],
the mixed IDEA [85, 86, 87, 88, 89, 90], and the extended compact genetic algorithm [91, 92,
93, 94], and the like. The probabilistic inference framework for modeling crossover operators
[113, 114, 115], such as the general linkage crossover and the adaptive linkage crossover, the de-
pendency structure matrix driven genetic algorithm (DSMGA) [132, 133, 134], and the linkless
self-distancing genetic algorithm [116], are also considered as centralized-model approaches.

6 Related Research

In this section, research related to the linkage learning techniques classified in the previous
sections of this paper are presented. These mechanisms, operators, or theoretical frameworks
might be applied in genetic and evolutionary algorithms to learn linkage in the future or give a
better understanding of linkage learning in theory.

First of all, based on the idea of using the inversion operator with the (gene number, allele)
coding scheme, permutation-based operators or methods can potentially be utilized for learning
linkage. These operators and methods include partially mapped crossover (PMX) [135], order
crossover (OX) [136], cycle crossover (CX) [136], edge recombination (ER) [137], enhanced
edge recombination (EER) [138], uniform ordering crossover (UOX) [139], relative ordering
crossover (ROX) [140], and the random keys [141]. With the (gene number, allele)-style coding
or other appropriate permutation coding schemes, these genetic operators might help genetic
and evolutionary algorithms to achieve linkage learning.

Many linkage learning techniques presented in the previous sections employ certain kinds
of grouping or clustering methodologies in order to identify building blocks. For tackling the
clustering problem, Falkenauer [142, 143] proposed the grouping genetic algorithm (GGA) specif-
ically for solving clustering problems. GGA uses a specially designed chromosome representation
and the grouping crossover operator such that clustering problem can be naturally handled. Al-
though GGA has no linkage learning mechanism in the context of this survey, potentially, GGA
can be employed as a linkage group identifying method for learning linkage. Because of its na-
ture, GGA has been applied to grouping-oriented problems, including the bin packing problem
[144, 145, 146], the equal pile problem [147], and other real-world problems [148].

Other than methods and operators, theoretical research regarding linkage can be found in
the literature. Heckendorn and Alden proposed a series of theories on identifying linkage via
limited probing [149, 150]. Prügel-Bennett [151] presented a statistical framework to model
the linkage dynamics of a genetic algorithm with ranking selection, two-point crossover, and
mutation on the Onemax problem. Auto-correlation and cross-correlation among genes were
utilized to construct the linkage dynamics. Analyses of applying a reordering operator with
different selection schemes on a GA-hard problem were also provided elsewhere [10, 11]. An

10



idealized reordering operator and the genetic algorithm were modeled and analyzed with a set
of difference equations. For studying the inversion operator, [152] proposed the use of problem
generators to observe the probability for inversion. Finally, previous surveys related to linkage
and linkage learning are available in the literature [153, 154].

If the problem domain knowledge is available for creating appropriate chromosome repre-
sentations or designing suitable genetic operators, research can also be found in the literature
to incorporate the priori knowledge in the genetic and evolutionary algorithms. Bui and Moon
[155] proposed the Hyperplane Synthesis procedure, which employs the depth-first-search (DFS)
and the breadth-first-search (BFS) tree traversal algorithms on the graph representation of the
problem for defining good chromosome representations [156, 157, 158]. The proposed DFS/BFS
gene arrangement procedure has been successfully applied to a variety of problems, including
the traveling salesman problem (TSP) [159], graph partitioning [160], circuit ratio-cut parti-
tioning [161], and VLSI circuit partitioner [162, 163]. In additional to creating an appropriate
chromosome encoding scheme, natural crossover was proposed [164] for problems that have
strong geographical linkage. Natural crossover has been used to optimize the artificial neural
networks [165], the vehicle routing problem [166], the fixed channel assignment problem [167],
and TSP [168, 169] as well. Similar to natural crossover, Voronoi quantized crossover (VQX)
was proposed to solve TSP [170] and the sequential ordering problem [171]. Instead of using free
curves, VQX uses the concept of Voronoi diagrams to swap the geographical regions in order to
preserve the geographical linkage within the underlying problem. A more complete survey on
chromosomal structures that exploit topological linkage can be found elsewhere [172].

7 Conclusions

As pointed out by Holland and verified by a number of studies, learning linkage is essential to
the success of genetic and evolutionary algorithms if the prior knowledge to the problem is not
available for designing a chromosome representation that provides good building block linkage.
Recognizing the importance of solving the linkage problem, many linkage learning techniques
have been proposed in the literature to tackle the linkage problem. These methods adopt a
variety of mechanisms for linkage detecting, learning, and utilization. In this paper, we reviewed
these linkage learning techniques from three different aspects: (1) the means to distinguish
between good linkage and bad linkage; (2) the methods to express or represent linkage; (3) the
ways to store linkage information. Research closely related these linkage learning techniques
were also included.

In addition to the classification proposed in this paper, according to the time line on which
the techniques included in this paper were proposed, we can observe two directions: (1) using
the simple chromosome representation with the extra information about linkage groups; (2)
using the complex model builders to capture linkage in probabilistic models. On the one hand,
fixed representations are easier for genetic operators to manipulate. As long as the linkage
groups are flexible enough to express the interaction among genes of the problem, using a simple
representation with flexible linkage groups may be a good choice between cost and effectiveness.
On the other hand, if the problem is too complicated for a simple representation, those complex
model builders may be the only way to solve such difficult problems.

The research field of genetic and evolutionary computation is deeply inspired by nature, bi-
ology, and evolution. Every technique or methodology proposed in this field serves the following
purposes: achieving excellent computational performance and/or gaining better understandings
of nature. Integrating the concept of genetic linkage into evolutionary algorithms creates the
research branch of linkage learning methodologies as well as leads us to investigate the appli-
cability of observed phenomena in biology to computation. Overall, from nature, we may learn
to develop general computational frameworks which can handle a broad rage of problems, and

11



from the development of these frameworks, perhaps we can also further human knowledge to
nature, biology, and evolution.

Acknowledgments

This work was partially sponsored by the National Science Council of Taiwan under grants
NSC-95-2221-E-009-092 and NSC-95-2627-B-009-001 as well as by the MOE ATU Program.
The authors are grateful to the National Center for High-performance Computing for computer
time and facilities.

This work was also sponsored by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant FA9550-06-1-0096, and the National Science Foundation
under ITR grant DMR-03-25939 at Materials Computation Center. The U.S. Government is
authorized to reproduce and distribute reprints for government purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research, the National Science Foundation, or the
U.S. Government.

References

[1] J. H. Holland, “Genetic algorithms and the optimal allocation of trials,” SIAM Journal
on Computing, vol. 2, no. 2, 1973.

[2] ——, Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan
Press, 1975, ISBN: 0-262-58111-6.

[3] D. E. Goldberg, The Design of Innovation: Lessons from and for Competent Genetic
Algorithms, ser. Genetic Algorithms and Evoluationary Computation. Kluwer Academic
Publishers, June 2002, vol. 7, ISBN: 1-4020-7098-5.

[4] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation, analysis,
and first results,” Complex Systems, vol. 3, no. 5, pp. 493–530, 1989.

[5] D. E. Goldberg, K. Deb, and D. Thierens, “Toward a better understanding of mixing in
genetic algorithms,” Journal of the Society of Instrument and Control Engineers, vol. 32,
no. 1, pp. 10–16, 1993.

[6] D. L. Hartl and E. W. Jones, Genetics: principles and analysis, 4th ed. Sudbury, MA:
Jones and Bartlett Publishers, January 1998, ISBN: 0-7637-0489-X.

[7] D. E. Goldberg, “Simple genetic algorithms and the minimal, deceptive problem,” in Ge-
netic Algorithms and Simulated Annealing, D. L., Ed. Los Altos, CA: Morgan Kaufmann
Publishers, 1987, ch. 6, pp. 74–88, ISBN: 0-2730-8771-1.

[8] J. D. Bagley, “The behavior of adaptive systems which employ genetic and correlation
algorithms,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI, 1967, (University
Microfilms No. 68-7556).

[9] D. R. Frantz, “Nonlinearities in genetic adaptive search,” Ph.D. dissertation, University
of Michigan, Ann Arbor, MI, 1972, (University Microfilms No. 73-11116).

12



[10] D. E. Goldberg and C. L. Bridges, “An analysis of a reordering operator on a GA-hard
problem,” Biological Cybernetics, vol. 62, pp. 397–405, 1990.

[11] Y.-p. Chen and D. E. Goldberg, “An analysis of a reordering operator with tournament
selection on a GA-hard problem,” Proceedings of Genetic and Evolutionary Computation
Conference 2003 (GECCO-2003), pp. 825–836, 2003.

[12] D. H. Ackley, A connectionist machine for genetic hill climbing. Boston: Kluwer Aca-
demic, 1987.

[13] D. E. Goldberg, “Genetic algorithms and Walsh functions: Part I, a gentle introduction,”
Complex Systems, vol. 3, no. 2, pp. 129–152, 1989.

[14] ——, “Genetic algorithms and Walsh functions: Part II, deception and its analysis,”
Complex Systems, vol. 3, no. 2, pp. 153–171, 1989.

[15] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,” Foundations of
Genetic Algorithms 2, pp. 93–108, 1993.

[16] K. Deb, J. Horn, and D. E. Goldberg, “Multimodal deceptive functions,” Complex Systems,
vol. 7, no. 2, pp. 131–153, 1993.

[17] K. Deb and D. E. Goldberg, “Sufficient conditions for deceptive and easy binary functions,”
Annals of Mathematics and Artificial Intelligence, vol. 10, pp. 385–408, 1994.

[18] D. Thierens, “Analysis and design of genetic algorithms,” Ph.D. dissertation, Katholieke
Universiteit Leuven, Leuven, Belgium, 1995.

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley Publishing Co., January 1989, ISBN: 0-201-15767-5.

[20] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D.
dissertation, University of Michigan, Ann Arbor, MI, 1975, (University Microfilms No.
76-9381).

[21] G. R. Harik and D. E. Goldberg, “Learning linkage,” Foundations of Genetic Algorithms
4, pp. 247–262, 1996.

[22] G. R. Harik, “Learning gene linkage to efficiently solve problems of bounded difficulty
using genetic algorithms,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI,
1997.

[23] F. G. Lobo, K. Deb, D. E. Goldberg, G. R. Harik, and L. Wang, “Compressed introns in a
linkage learning genetic algorithm,” in Proceedings of the Third Annual Conference on Ge-
netic Programming (GP 98). University of Wisconsin, Madison, WI: Morgan Kaufmann,
August 1998, pp. 551–558.

[24] F. G. Lobo, G. R. Harik, and D. E. Goldberg, “Linkage learning genetic algorithm in
C++,” University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Labora-
tory, Urbana, IL, IlliGAL Report No. 98010, 1998.

[25] G. R. Harik and D. E. Goldberg, “Learning linkage through probabilistic expression,”
Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2–4, pp. 295–310,
June 2000.

13



[26] Y.-p. Chen and D. E. Goldberg, “Introducing start expression genes to the linkage learn-
ing genetic algorithm,” Proceedings of the Seventh International Conference on Parallel
Problem Solving from Nature (PPSN VII), pp. 351–360, 2002.

[27] ——, “Tightness time for the linkage learning genetic algorithm,” Proceedings of Genetic
and Evolutionary Computation Conference 2003 (GECCO-2003), pp. 837–849, 2003.

[28] ——, “Convergence time for the linkage learning genetic algorithm,” Proceedings of the
2004 Congress on Evolutionary Computation (CEC2004), 2004.

[29] Y.-p. Chen, “Extending the scalability of linkage learning genetic algorithms: Theory and
practice,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, IL,
2004.

[30] R. S. Rosenberg, “Simulation of genetic populations with biochemical properties,” Ph.D.
dissertation, University of Michigan, Ann Arbor, MI, 1967, (University Microfilms No.
67-17836).

[31] P. J. Kennedy and T. R. Osborn, “A double-stranded encoding scheme with inversion
operator for genetic algorithms,” Proceedings of Genetic and Evolutionary Computation
Conference 2001 (GECCO-2001), pp. 398–407, 2001.

[32] O. T. Sehitoglu and G. Üçoluk, “A building block favoring reordering method for gene
positions in genetic algorithms,” Proceedings of Genetic and Evolutionary Computation
Conference 2003 (GECCO-2003), pp. 571–575, 2003.

[33] A. B. Simōes and C. Erensto, “Transposition versus crossover: An empirical study,” Pro-
ceedings of Genetic and Evolutionary Computation Conference 1999 (GECCO-1999), pp.
612–619, 1999.

[34] J. D. Schaffer and A. Morishima, “An adaptive crossover distribution mechanism for ge-
netic algorithms,” Proceedings of the Second International Conference on Genetic Algo-
rithms (ICGA-87), pp. 36–40, 1987.

[35] S. J. Louis and G. J. E. Rawlins, “Designer genetic algorithms: Genetic algorithms in
structure design,” Proceedings of the Fourth International Conference on Genetic Algo-
rithms (ICGA-91), pp. 53–60, 1991.

[36] L. J. Eshelman and D. J. Schaffer, “Productive Recombination and Propagating and
Preserving Schemata,” Foundations of Genetic Algorithms 3, pp. 299–313, 1994.

[37] T. White and F. Oppacher, “Adaptive crossover using automata,” Proceedings of the Third
International Conference on Parallel Problem Solving from Nature (PPSN III), pp. 229–
238, 1994.

[38] J. R. Levenick, “Metabits: Generic endogenous crossover control,” Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA-95), pp. 88–95, 1995.

[39] K. Vekaria and C. Clack, “Selective crossover in genetic algorithms: An empirical study,”
Proceedings of the Fifth International Conference on Parallel Problem Solving from Nature
(PPSN V), pp. 438–447, 1998.

[40] ——, “Schema propagation in selective crossover,” Proceedings of Genetic and Evolution-
ary Computation Conference 1999 (GECCO-99), p. 268, 1999, (Late Breaking Paper).

14



[41] ——, “Royal road encodings and schema propagation in selective crossover,” in Proceed-
ings of Fourth Online World Conference on Soft Computing in Industrial Applications.
Springer-Verlag, September 1999, pp. 281–292.

[42] J. Smith and T. C. Fogarty, “An adaptive poly-parental recombination strategy,” Proceed-
ings of AISB-95 Workshop on Evolutionary computing, pp. 48–61, 1995.

[43] ——, “Recombination strategy adaptation via evolution of gene linkage,” Proceedings of
the 1996 IEEE International Conference on Evolutionary Computation, pp. 826–831, 1996.

[44] J. E. Smith, “Self adaptation in evolutionary algorithms,” Ph.D. dissertation, University
of the West of England, 1998.

[45] W. M. Spears, “Recombination parameters,” in The Handbook of Evolutionary Computa-
tion, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. New York, NY: Oxford University
Press, 1997, ch. E1.3, pp. E1.3:1–E1.3:13, ISBN: 0-7503-0895-8.

[46] J. R. Levenick, “Inserting introns improves genetic algorithm success rate: Taking a cue
from biology,” Proceedings of the Fourth International Conference on Genetic Algorithms
(ICGA-91), pp. 123–127, 1991.

[47] S. Forrest and M. Mitchell, “Relative building-block fitness and the building-block hy-
pothesis,” Foundations of Genetic Algorithms 2, pp. 109–126, 1993.

[48] A. S. Wu, R. K. Lindsay, and M. D. Smith, “Studies on the effect of non-coding segments on
the genetic algorithm,” Proceedings of the Sixth IEEE Conference on Tools with Artificial
Intelligence, 1994.

[49] A. S. Wu and R. K. Lindsay, “Empirical studies of the genetic algorithm with noncoding
segments,” Evolutionary Computation, vol. 3, no. 2, pp. 121–147, 1995.

[50] ——, “A survey of intron research in genetics,” Proceedings of the Fourth International
Conference on Parallel Problem Solving from Nature (PPSN IV), pp. 101–110, 1996.

[51] ——, “A comparison of the fixed and floating building block representation in the genetic
algorithm,” Evolutionary Computation, vol. 4, no. 2, pp. 169–193, 1997.

[52] H. A. Mayer, “ptGAs—Genetic algorithms evolving noncoding segments by means of pro-
moter/terminator sequences,” Evolutionary Computation, vol. 6, no. 4, pp. 361–386, 1999.

[53] D. S. Burke, K. A. De Jong, J. J. Grefenstette, C. L. Ramsey, and A. S. Wu, “Putting more
genetics into genetic algorithms,” Evolutionary Computation, vol. 6, no. 4, pp. 387–410,
1999.

[54] C.-Y. Lee and E. K. Antonsson, “Adaptive evolvability via non-coding segment in-
duced linkage,” Proceedings of Genetic and Evolutionary Computation Conference 2000
(GECCO-2000), pp. 448–453, 2000.

[55] T. Haynes, “Collective adaptation: The exchange of coded segments,” Evolutionary Com-
putation, vol. 6, no. 4, pp. 311–338, 1999.

[56] P. J. Angeline, “Two self-adaptive crossover operations for genetic programming,” in Ad-
vances in Genetic Programming, P. J. Angeline and K. E. Kinnear, Jr., Eds. MIT Press,
October 1996, vol. 2, ch. 5, pp. 89–109, ISBN: 0-262-01158-1.

15



[57] H. Iba and H. de Garis, “Extending genetic programming with recombinative guidance,”
in Advances in Genetic Programming, P. J. Angeline and K. E. Kinnear, Jr., Eds. MIT
Press, October 1996, vol. 2, ch. 4, pp. 69–88, ISBN: 0-262-01158-1.

[58] M. Wineberg and F. Oppacher, “The benefits of computing with introns,” in Proceedings
of the Third Annual Conference on Genetic Programming (GP 96), 1996, pp. 410–415.

[59] D. Andre and A. Teller, “A study in program response and the negative effects of introns
in genetic programming,” in Proceedings of the Third Annual Conference on Genetic Pro-
gramming (GP 96), 1996, pp. 12–20.

[60] P. Nordin, F. Francone, and W. Banzhaf, “Explicitly defined introns and destructive
crossover in genetic programming,” in Advances in Genetic Programming, P. J. Angeline
and K. E. Kinnear, Jr., Eds. MIT Press, October 1996, vol. 2, ch. 6, pp. 111–134, ISBN:
0-262-01158-1.

[61] J. R. Levenick, “Swappers: Introns promote flexibility, diversity and invention,” Pro-
ceedings of Genetic and Evolutionary Computation Conference 1999 (GECCO-99), pp.
361–368, 1999.

[62] H. Iba and M. Terao, “Controlling effective introns for multi-agent learning by genetic
programming,” Proceedings of Genetic and Evolutionary Computation Conference 2000
(GECCO-2000), pp. 419–426, 2000.

[63] H. Kargupta, “The gene expression messy genetic algorithm,” Proceedings of the 1996
IEEE International Conference on Evolutionary Computation, pp. 814–819, 1996.

[64] ——, “The performance of the gene expression messy genetic algorithm on real test func-
tions,” Proceedings of the 1996 IEEE International Conference on Evolutionary Compu-
tation, pp. 631–636, 1996.

[65] H. Kargupta and D. E. Goldberg, “SEARCH, Blackbox Optimization, and Sample Com-
plexity,” Foundations of Genetic Algorithms 4, pp. 291–324, 1996.

[66] H. Kargupta, “Search, computational processes in evolution, and preliminary development
of the gene expression messy genetic algorithm,” Complex Systems, vol. 11, no. 4, pp. 233–
287, 1997.

[67] H. Kargupta, D. E. Goldberg, and L. Wang, “Extending the class of order-k delineable
problems for the gene expression messy genetic algorithm,” in Proceedings of the Second
Annual Conference on Genetic Programming (GP 97). Stanford University, CA: Morgan
Kaufmann, August 1997, pp. 364–369.

[68] H. Kargupta and S. Bandyopadhyay, “Further experimentations on the scalability of the
gemGA,” Proceedings of the Fifth International Conference on Parallel Problem Solving
from Nature (PPSN V), pp. 315–324, 1998.

[69] S. Bandyopadhyay, H. Kargupta, and G. Wang, “Revisiting the gemGA: Scalable evolu-
tonary optimization through linkage learning.” Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation, pp. 603–608, 1998.

[70] H. Mühlenbein and G. Paaß, “From recombination of genes to the estimation of distri-
butions I. Binary parameters,” Proceedings of the Fourth International Conference on
Parallel Problem Solving from Nature (PPSN IV), pp. 178–187, 1996.

16



[71] H. Mühlenbein, “The equation for response to selection and its use for prediction,” Evo-
lutionary Computation, vol. 5, no. 3, pp. 303–346, 1997.

[72] H. Mühlenbein, T. Mahnig, and A. Ochoa, “Schemata, distributions and graphical models
in evolutionary optimization,” Journal of Heuristics, vol. 5, pp. 215–247, 1999.

[73] J. S. D. Bonet, C. Isbell, and P. Viola, “MIMIC: Finding optima by estimating probability
densities,” Advances in Neural Information Processing Systems, vol. 9, pp. 424–430, 1996.

[74] S. Baluja and S. Davies, “Using optimal dependency-trees for combinatorial optimization:
Learning the structure of the search space,” Proceedings of the Fourteenth International
Conference on Machine Learning, pp. 30–38, 1997.

[75] ——, “Fast probabilistic modeling for combinatorial optimization,” Proceedings of the
Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications
of Artificial Intelligence Conference, (AAAI/IAAI 98), pp. 469–476, 1998.

[76] S. Baluja, “Genetic algorithms and explicit search statistics,” Advances in Neural Infor-
mation Processing Systems, vol. 9, pp. 319–325, 1997.

[77] M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution algorithm,” Advances
in Soft Computing-Engineering Design and Manufacturing, pp. 521–535, 1999.

[78] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The bayesian optimization algo-
rithm,” Proceedings of Genetic and Evolutionary Computation Conference 1999 (GECCO-
99), pp. 525–532, 1999.

[79] ——, “Linkage problem, distribution estimation, and bayesian networks,” Evolutionary
Computation, vol. 8, no. 3, pp. 311–341, 2000.

[80] M. Pelikan and D. E. Goldberg, “Escaping hierarchical traps with competent genetic
algorithms,” Proceedings of Genetic and Evolutionary Computation Conference 2001
(GECCO-2001), pp. 511–518, 2001.

[81] M. Pelikan, “Bayesian optimization algorithm: From single level to hierarchy,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 2002.

[82] H. Mühlenbein and T. Mahnig, “FDA - a scalable evolutionary algorithm for the optimiza-
tion for the optimization of additively decomposed functions,” Evolutionary Computation,
vol. 7, no. 4, pp. 353–376, 1999.

[83] ——, “Convergence theory and applications of the factorized distribution algorithm,”
Journal of Computing and Information Technology, vol. 7, pp. 19–32, 1999.

[84] R. Santana, A. Ochoa-Rodriguez, and M. R. Soto, “The mixture of trees factorized dis-
tribution algorithm,” Proceedings of Genetic and Evolutionary Computation Conference
2001 (GECCO-2001), pp. 543–550, 2001.

[85] P. A. Bosman and D. Thierens, “Linkage information processing in distribution estima-
tion algorithms,” Proceedings of Genetic and Evolutionary Computation Conference 1999
(GECCO-99), pp. 60–67, 1999.

[86] ——, “Continuous iterated density estimation evolutionary algorithms within the IDEA
framework,” in Proceedings of the Optimization by Building and Using Probabilistic Models
OBUPM Workshop at the Genetic and Evolutionary Computation Conference (GECCO-
2000 OBUPM), 2000, pp. 197–200.

17



[87] ——, “Mixed IDEAs,” Utrecht University, Utrecht, The Netherlands, Tech. Report No.
UU-CS-2000-45, 2002.

[88] ——, “Advancing continuous IDEAs with mixture distributions and factorization selection
metrics,” in Proceedings of the Optimization by Building and Using Probabilistic Models
OBUPM Workshop at the Genetic and Evolutionary Computation Conference (GECCO-
2001 OBUPM), 2001, pp. 208–202.

[89] P. A. N. Bosman and D. Thierens, “Crossing the road to efficient idEas for permuta-
tion problems,” Proceedings of Genetic and Evolutionary Computation Conference 2001
(GECCO-2001), pp. 219–226, 2001.

[90] ——, “Permutation optimization by iterated estimation of random keys and marginal
product factorizations,” Proceedings of the Seventh International Conference on Parallel
Problem Solving from Nature (PPSN VII), pp. 331–340, 2002.

[91] G. R. Harik, “Linkage learning via probabilistic modeling in the ECGA,” University of Illi-
nois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL
Report No. 99010, 1999.

[92] F. G. Lobo and G. R. Harik, “Extended compact genetic algorithm in C++,” University
of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL,
IlliGAL Report No. 99016, 1999.

[93] K. Sastry and D. E. Goldberg, “On extended compact genetic algorithm,” Proceedings
of Genetic and Evolutionary Computation Conference 2000 (GECCO-2000), pp. 352–359,
2000, (Late breaking paper).

[94] K. Sastry, “Efficient cluster optimization using extended compact genetic algorithm with
seeded population,” in Proceedings of the Optimization by Building and Using Probabilis-
tic Models OBUPM Workshop at the Genetic and Evolutionary Computation Conference
(GECCO-2001 OBUPM), 2001, pp. 222–225.

[95] K. Sastry and D. E. Goldberg, “Probabilistic model building and competent genetic pro-
gramming,” University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Lab-
oratory, Urbana, IL, IlliGAL Report No. 2003013, 2003.

[96] S. Tsutsui, M. Pelikan, and D. E. Goldberg, “Evolutionary algorithm using marginal his-
togram models in continuous domain,” in Proceedings of the Optimization by Building and
Using Probabilistic Models OBUPM Workshop at the Genetic and Evolutionary Compu-
tation Conference (GECCO-2001 OBUPM), 2001, pp. 230–233.

[97] S. Tsutsui, “Probabilistic Model-Building Genetic Algorithms in Permutation Representa-
tion Domain Using Edge Histogram,” Proceedings of the Seventh International Conference
on Parallel Problem Solving from Nature (PPSN VII), pp. 224–233, 2002.

[98] D. E. Goldberg, K. Deb, and B. Korb, “Messy genetic algorithms revisited: Studies in
mixed size and scale,” Complex Systems, vol. 4, no. 4, pp. 415–444, 1990.

[99] K. Deb, “Binary and floating-point function optimization using messy genetic algorithms,”
Ph.D. dissertation, University of Alabama, Tuscaloosa, AL, 1991.

[100] K. Deb and D. E. Goldberg, “mGA in C: A messy genetic algorithm in C,” University
of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL,
IlliGAL Report No. 91008, 1991.

18



[101] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik, “Rapid, accurate optimization of dif-
ficult problems using fast messy genetic algorithms,” Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA-93), pp. 56–64, 1993.

[102] H. Kargupta, “SEARCH, polynomial complexity, and the fast messy genetic algorithm,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1995.

[103] L. D. Merkle, “Analysis of linkage-friendly genetic algorithms,” Ph.D. dissertation, Air
Force Institute of Technology, Air University, Albuquerque, New Mexico, 1996.

[104] D. Knjazew, “Application of the fast messy genetic algorithm to permutation and schedul-
ing problems,” Master’s thesis, Universität Dortmund, Dortmund, Germany, 2000.

[105] ——, “Ordering messy genetic algorithm in C++,” University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No.
2000034, 2000.

[106] D. Knjazew and D. E. Goldberg, “Large-scale permutation optimization with the ordering
messy genetic algorithm,” Proceedings of the Sixth International Conference on Parallel
Problem Solving from Nature (PPSN VI), pp. 631–640, 2000.

[107] ——, “OMEGA – ordering messy GA: Solving permutation problems with the fast messy
genetic algorithm and random keys,” Proceedings of Genetic and Evolutionary Computa-
tion Conference 2000 (GECCO-2000), pp. 181–188, 2000.

[108] D. Knjazew, OmeGA: A Competent Genetic Algorithm for Solving Permutation and
Scheduling Problems, ser. Genetic Algorithms and Evoluationary Computation. Kluwer
Academic Publishers, January 2002, vol. 6, ISBN: 0-7923-7460-6.

[109] D. Halhal, G. A. Walters, D. A. Savic, and D. Ouazar, “Putting more genetics into genetic
algorithms,” Evolutionary Computation, vol. 7, no. 3, pp. 311–329, 1999.

[110] R. A. Watson and J. B. Pollack, “Incremental commitment in genetic algorithms,” Pro-
ceedings of Genetic and Evolutionary Computation Conference 1999 (GECCO-1999), pp.
710–717, 1999.

[111] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation, ser. Genetic algorithms and evolutionary computation.
Boston, MA: Kluwer Academic Publishers, October 2001, vol. 2, ISBN: 0-7923-7466-5.

[112] M. Pelikan, D. E. Goldberg, and F. G. Lobo, “A survey of optimization by building and
using probabilistic models,” Computational Optimization and Applications, vol. 21, no. 1,
pp. 5–20, 2002.

[113] A. A. Salman, K. Mehrotra, and C. K. Mohan, “Adaptive linkage crossover,” Proceedings
of ACM Symposium on Applied Computing (SAC’98), pp. 338–342, 1998.

[114] ——, “Linkage crossover for genetic algorithms,” Proceedings of Genetic and Evolutionary
Computation Conference 1999 (GECCO-99), pp. 564–571, 1999.

[115] ——, “Linkage crossover operator,” Evolutionary Computation, vol. 8, no. 3, pp. 341–370,
2000.

[116] W. A. Greene, “A genetic algorithm with self-distancing bits but no overt linkage,” Pro-
ceedings of Genetic and Evolutionary Computation Conference 2003 (GECCO-2003), pp.
367–374, 2003.

19



[117] M. Munetomo and D. E. Goldberg, “Identifying linkage by nonlinearity check,” University
of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL,
IlliGAL Report No. 98012, 1998.

[118] ——, “Designing a genetic algorithm using the linkage identification by nonlinearity
check,” University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Labo-
ratory, Urbana, IL, IlliGAL Report No. 98014, 1998.

[119] D. J. Coffin and C. D. Clack, “gLINC: Identifying composability using group perturba-
tion,” Proceedings of ACM SIGEVO Genetic and Evolutionary Computation Conference
2006 (GECCO-2006), pp. 1133–1140, 2006.

[120] M. Munetomo and D. E. Goldberg, “Identifying linkage groups by nonlinearity/non-
monotonicity detection,” Proceedings of Genetic and Evolutionary Computation Confer-
ence 1999 (GECCO-99), pp. 433–440, 1999.

[121] ——, “Linkage identification by non-monotonicity detection for overlapping functions,”
Evolutionary Computation, vol. 7, no. 4, pp. 377–398, 1999.

[122] M. Munetomo, “Linkage identification based on epistasis measures to realize efficient
genetic algorithms,” Proceedings of the 2002 Congress on Evolutionary Computation
(CEC2002), pp. 1332–1337, 2002.

[123] M. Munetomo, M. Tsuji, and K. Akama, “Metropolitan area network design using GA
based on linkage identification with epistasis measures,” Proceedings of the 4th Asia-Pacific
Conference on Simulated Evolution and Learning (SEAL2002), pp. 652–656, 2002.

[124] M. Munetomo, N. Murao, and K. Akama, “A parallel genetic algorithm based on linkage
identification,” Proceedings of Genetic and Evolutionary Computation Conference 2003
(GECCO-2003), pp. 1222–1233, 2003.

[125] M. Munetomo, “Linkage identification with epistasis measure considering monotonicity
conditions,” Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL2002), pp. 550–554, 2002.

[126] M. Tezuka, M. Munetomo, and K. Akama, “Linkage identification by nonlinearity check
for real-coded genetic algorithms,” Proceedings of Genetic and Evolutionary Computation
Conference 2004 (GECCO-2004), pp. 222–233, 2004.

[127] M. Tsuji, M. Munetomo, and K. Akama, “Modeling dependencies of loci with string
classification according to fitness differences,” Proceedings of Genetic and Evolutionary
Computation Conference 2004 (GECCO-2004), pp. 246–257, 2004.

[128] ——, “Population sizing of dependency detection by fitness difference classification,” Foun-
dations of Genetic Algorithms 2005 (FOGA-2005), pp. 282–299, 2005.

[129] ——, “Linkage identification by fitness difference clustering,” Evolutionary Computation,
vol. 14, no. 4, pp. 383–409, 2006.

[130] T. P. Riopka and P. Bock, “Intelligent recombination using individual learning in a Collec-
tive Learning Genetic Algorithm,” Proceedings of Genetic and Evolutionary Computation
Conference 2000 (GECCO-2000), pp. 104–111, 2000.

[131] T. P. Riopka, “Intelligent recombination using genotypic learning in a Collective Learning
Genetic Algorithm,” Ph.D. dissertation, The George Washington University, Washington,
DC, 2002.

20



[132] T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-p. Chen, “Genetic algorithm design in-
spired by organizational theory: Pilot study of a dependency structure matrix driven ge-
netic algorithm,” Proceedings of Genetic and Evolutionary Computation Conference 2003
(GECCO-2003), vol. 2, pp. 1620–1621, 2003, (Poster session).

[133] ——, “Genetic algorithm design inspired by organizational theory: Pilot study of a de-
pendency structure matrix driven genetic algorithm,” Proceedings of Artificial Neural Net-
works in Engineering 2003 (ANNIE 2003), pp. 327–332, 2003.

[134] T.-L. Yu and D. E. Goldberg, “Dependency structure matrix analysis: Off-line utility of the
dependency structure matrix genetic algorithm,” Proceedings of Genetic and Evolutionary
Computation Conference 2004 (GECCO-2004), vol. 2, pp. 367–378, 2004.

[135] D. E. Goldberg and R. Lingle, Jr., “Alleles, loci, and the traveling salesman problem,” Pro-
ceedings of the International Conference on Genetic Algorithms and Their Applications,
pp. 154–159, 1985.

[136] L. Davis, “Applying adaptive algorithms to epistatic domains,” Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, vol. 1, pp. 162–164, 1985.

[137] D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems and traveling sales-
men: The genetic edge recombination operator,” Proceedings of the Third International
Conference on Genetic Algorithms (ICGA-89), pp. 133–140, 1989.

[138] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley, “A comparsion
of genetic sequencing operators,” Proceedings of the Fourth International Conference on
Genetic Algorithms (ICGA-91), pp. 69–76, 1991.

[139] L. Davis, “A genetic algorithms tutorial,” in Handbook of Genetic Algorithms. Van
Nostrand Reinhold, January 1991, pp. 1–101, ISBN: 0-442-00173-8.

[140] H. Kargupta, K. Deb, and D. E. Goldberg, “Ordering genetic algorithms and deception,”
Proceedings of the Second International Conference on Parallel Problem Solving from Na-
ture (PPSN II), pp. 47–56, 1992.

[141] J. C. Bean, “Genetic algorithms and random keys for sequencing and optimization,” ORSA
Journal on Computing, vol. 6, no. 4, pp. 154–160, 1994.

[142] E. Falkenauer, “A genetic algorithm for grouping,” Proceedings of the Fifth International
Symposium on Applied Stochastic Models and Data Analysis (ASMDA V), pp. 198–206,
1991.

[143] ——, “Setting new limits in bin packing with a grouping GA using reduction,” CRIF
Industrial Automation, Brussels, Belgium, Technical Report RO108, 1994.

[144] E. Falkenauer and A. Delchambre, “A genetic algorithm for bin packing and line balanc-
ing,” Proceedings of the 1992 IEEE International Conference on Robotics and Automation
(RA92), pp. 1186–1192, 1992.

[145] E. Falkenauer, “A new representation and operators for genetic algorithms applied to
grouping problems,” Evolutionary Computation, vol. 2, no. 2, pp. 123–144, 1994.

[146] ——, “A hybrid grouping genetic algorithm for bin packing,” Journal of Heuristics, vol. 2,
no. 1, pp. 5–30, 1996.

21



[147] ——, “Solving equal piles with the grouping genetic algorithm,” Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA-95), pp. 492–497, 1995.

[148] ——, “Applying genetic algorithms to real-world problems,” in Evolutionary Algorithms,
L. D. Davis, K. De Jong, M. D. Vose, and L. D. Whitley, Eds. New York: Springer, 1999,
pp. 65–88, ISBN: 0-387-98826-2.

[149] R. B. Heckendorn and A. H. Wright, “Efficient linkage discovery by limited probing,”
Proceedings of Genetic and Evolutionary Computation Conference 2003 (GECCO-2003),
pp. 1003–1014, 2003.

[150] ——, “Efficient linkage discovery by limited probing,” Evolutionary Computation, vol. 12,
no. 4, pp. 517–545, 2004.

[151] A. Prügel-Bennett, “Modelling crossover-induced linkage in genetic algorithms,” IEEE
Transcations on Evolutionary Computation, vol. 5, no. 4, pp. 376–387, 2001.

[152] S. Hill and C. O’Riordan, “Inversion revisited – analysing an inversion operator using
problem generators,” in Proceedings of the Analysis and Design of Representations and
Operators (ADoRo) Workshop at the Genetic and Evolutionary Computation Conference
(GECCO-2003 ADoRo), 2003, pp. 34–40.

[153] H. Kargupta and S. Bandyopadhyay, “A perspective on the foundation and evolution of
the linkage learning genetic algorithms,” Computer Methods in Applied Mechanics and
Engineering, vol. 186, no. 2-4, pp. 269–294, 2000.

[154] J. Smith, “On appropriate adaptation levels for the learning of gene linkage,” Genetic
Programming and Evolvable Machines, vol. 3, no. 2, pp. 129–155, 2002.

[155] T. N. Bui and B. R. Moon, “Hyperplane synthesis for genetic algorithms,” Proceedings of
the Fifth International Conference on Genetic Algorithms (ICGA-93), pp. 102–109, 1993.

[156] T. N. Bui and B.-R. Moon, “Analyzing hyperplane synthesis in genetic algorithms us-
ing clustered schemata,” Proceedings of the Third International Conference on Parallel
Problem Solving from Nature (PPSN III), pp. 108–118, 1994.

[157] T. N. Bui and B. R. Moon, “On multi-dimensional encoding/crossover,” Proceedings of
the Sixth International Conference on Genetic Algorithms (ICGA-95), pp. 49–56, 1995.

[158] B.-R. Moon and C.-K. Kim, “A two-dimensional embedding of graphs for genetic al-
gorithms,” Proceedings of the Seventh International Conference on Genetic Algorithms
(ICGA-97), pp. 204–211, 1997.

[159] T. N. Bui and B. R. Moon, “A new genetic approach for the traveling salesman problem,”
Proceedings of the 1994 IEEE World Congress on Computational Intelligence, vol. 1, pp.
7–12, 1994.

[160] ——, “Genetic algorithm and graph partitioning,” IEEE Transactions on Computers,
vol. 45, no. 7, pp. 841–855, 1996.

[161] T. N. Bui and B.-R. Moon, “GRCA: A hybrid genetic algorithm for circuit ratio-cut
partitioning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, no. 3, pp. 193–204, 1998.

[162] B.-R. Moon and C.-K. Kim, “Dynamic embedding for genetic VLSI circuit partitioning,”
Engineering Applications of Artificial Intelligence, vol. 11, pp. 67–76, 1998.

22



[163] B.-R. Moon, Y.-s. Lee, and C.-K. Kim, “GEORG: VLSI circuit partitioner with a new
genetic algorithm framework,” Journal of Intelligent Manufacturing, vol. 9, pp. 401–412,
1998.

[164] A. B. Kahng and B. R. Moon, “Toward more powerful recombinations,” Proceedings of
the Sixth International Conference on Genetic Algorithms (ICGA-95), pp. 96–103, 1995.

[165] J.-H. Kim and B.-R. Moon, “Neuron reordering for better neuro-genetic hybrids,” Pro-
ceedings of Genetic and Evolutionary Computation Conference 2002 (GECCO-2002), pp.
407–414, 2002.

[166] S. Jung and B.-R. Moon, “A hybrid genetic algorithm for the vehicle routing problem with
time windows,” Proceedings of Genetic and Evolutionary Computation Conference 2002
(GECCO-2002), pp. 1309–1316, 2002.

[167] E.-J. Park, Y.-H. Kim, and B.-R. Moon, “Genetic search for fixed channel assignment
problem with limited bandwidth,” Proceedings of Genetic and Evolutionary Computation
Conference 2002 (GECCO-2002), pp. 1172–1179, 2002.

[168] S. Jung and B.-R. Moon, “The natural crossover for the 2D Euclidean TSP,” Proceedings of
Genetic and Evolutionary Computation Conference 2000 (GECCO-2000), pp. 1003–1010,
2000.

[169] ——, “Toward minimal restriction of genetic encoding and crossovers for the two-
dimensional Euclidean TSP,” IEEE Transactions on Evolutionary Computation, vol. 6,
no. 6, pp. 557–565, 2002.

[170] D.-I. Seo and B.-R. Moon, “Voronoi quantized crossover for traveling salesman problem,”
Proceedings of Genetic and Evolutionary Computation Conference 2002 (GECCO-2002),
pp. 544–552, 2002.

[171] ——, “A hybrid genetic algorithm based on complete graph representation for the sequen-
tial ordering problem,” Proceedings of Genetic and Evolutionary Computation Conference
2003 (GECCO-2003), pp. 669–680, 2003.

[172] ——, “A survey on chromosomal structures and operators for exploiting topological link-
age of genes,” Proceedings of Genetic and Evolutionary Computation Conference 2003
(GECCO-2003), pp. 1357–1368, 2003.

23


	Introduction
	Linkage: Definition and Importance
	What Is Linkage?
	Linkage Learning as an Ordering Problem
	Why Is Learning Linkage Important?

	Unimetric Approach vs. Multimetric Approach
	Physical Linkage vs. Virtual Linkage
	Distributed Model vs. Centralized Model
	Related Research
	Conclusions

