
Linkage Identification by Perturbation and
Decision Tree Induction

Chung-Yao Chuang
Ying-ping Chen

NCLab Report No. NCL-TR-2007008
April 2007

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/

Linkage Identification by Perturbation and

Decision Tree Induction

Chung-Yao Chuang and Ying-ping Chen
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
{cychuang, ypchen}@nclab.tw

April 2, 2007

Abstract

The purpose of linkage identification in genetic and evolutionary algorithms is to detect
the tightly linked variables of the fitness function. If such linkage information is not known
a priori and can be obtained through computation, the crossover or recombination operator
can accordingly mix discovered sub-solutions effectively without disrupting them. In this
paper, we propose a linkage identification technique, called inductive linkage identification
(ILI), employing perturbation with decision making. With the proposed scheme, the linkage
information can obtained by constructing an ID3 decision tree to learn the mapping from
population of solutions to their corresponding fitness differences caused by perturbation and
inspecting the constructed decision tree for variables exhibiting strong interdependencies with
one another. The numerical results show that the proposed technique can accomplish the
identical linkage identification tasks with a lower number of function evaluations compared
to similar methods proposed in the literature. Moreover, the proposed technique is shown
able to handle both uniformly scaled and exponentially scaled problems.

1 Introduction

The encoding of solutions is of vital importance to the success of applying genetic and evo-
lutionary algorithms. If the variables bearing strong relationship are encoded loosely on the
representation, unless certain sophisticated mechanism is adopted for compensation, crossover
tends to cause disruptions of promising sub-solutions, which are often referred to as building
blocks (BBs), rather than properly mixing them. However, the knowledge of the problem to
solve is not always sufficient to avoid this pitfall. For the situations with insufficient linkage in-
formation, some specifically designed techniques are needed to detect the structure of the fitness
function and to identify the interdependent variables.

In order to overcome the building block disruption problem, a variety of techniques have
been proposed and developed, which can be roughly classified into three categories:

1. Evolving representations or operators;

2. Probabilistic modeling for promising solutions;

3. Perturbation methods.

The objective of the first class of techniques is to manipulate the representation of solutions
during the search process such that members of the promising sub-solutions are less likely to be
separated by crossover operators. Various reordering and mapping operators were proposed. In

1

this line of research, the messy GA (mGA) [1] and its more efficient descendant—the fast messy
GA (fmGA) [2]—identify linkage by exploiting building blocks. The problem of techniques in
this category is that reordering operators are often too slow and lose the race against selection,
resulting in the premature convergence to local optima. Another technique in this category, the
linkage learning GA (LLGA) [3], employs a two-point crossover over circular representation of
strings to maintain tight linkage. While LLGA works well on exponentially scaled problems, it
is inefficient to handle uniformly scaled problems.

The approaches in the second category are often referred to as estimation of distribution
algorithms (EDAs) [4]. These methods construct probabilistic models of promising solutions
and utilize the built models to generate new solutions. Early EDAs, such as the population-
based incremental learning (PBIL) [5] and the compact genetic algorithm (cGA) [6], assume no
interaction between variables, i.e. variables are independent. Subsequent studies start from cap-
turing pairwise interactions, such as mutual-information-maximizing input clustering (MIMIC)
[7], Baluja’s dependency tree approach [8], and the bivariate marginal distribution algorithm
(BMDA) [9], to modeling multivariate interactions, such as the extended compact genetic algo-
rithm (ECGA) [10], the Bayesian optimization algorithm (BOA) [11], the factorized distribution
algorithm (FDA) [12], and the learning version of FDA (LFDA) [13]. The model construction
processes in these algorithms require no additional function evaluations. Thus, they can perform
effectively especially for the situations in which the performance are bounded on fitness func-
tion evaluations. However, it is difficult for them to correctly model low salience (small fitness
contribution) building blocks.

The methods in the third category examine the fitness differences by conducting perturba-
tions on the variables to detect dependencies among them. For example, the gene expression
messy GA (GEMGA) [14] employs a perturbation method to detect the sets of tightly linked vari-
ables represented by weight values assigned to each solution. GEMGA records fitness changes
caused by perturbation of every variable for strings in the population and detects relations
among variables according to the possibilities that the variables may construct the local optima.
Linkage identification by nonlinearity check (LINC) [15] detects nonlinearity by using pairwise
perturbations in order to identify the linkage information. It assumes that nonlinearity exists
within variables to form a building block. If the fitness difference by simultaneous perturbations
at a pair of variables is equal to the sum of fitness differences by perturbation at each variable
in the pair, then these variables can be viewed as to reside within different and independent
subproblems, and therefore, these variables can be optimized separately. Linkage information
identified by LINC is represented as sets of variables. Each set contains tightly linked variables
forming a building block and such a set is called a linkage set. The descendant of LINC, linkage
identification by non-monotonicity detection (LIMD) [16], adopts non-monotonicity instead of
nonlinearity and detects linkage by checking violations of the monotonicity conditions. Although
perturbation methods require extra fitness function evaluations in addition to the running of
GA, they have the advantage of being able to identify low salience building blocks. Heckendorn
and Wright [17] generalized this category through a Walsh analysis.

An interesting algorithm combining an EDA and a perturbation method, called the depen-
dency detection for distribution derived from fitness differences (D5), was developed by Tsuji
et al. [18]. D5 detects the dependencies of variables by estimating the distributions of strings
clustered according to fitness differences. For each variable, D5 calculates fitness differences
by perturbations at that variable for the entire population, then cluster the strings into sub-
populations according to the obtained fitness differences. The sub-populations are examined to
find the k variables with the lowest entropies, where k is the pre-defined problem complexity
(the number of variables in a linkage set). These k variables are assumed to be tightly linked to
form a linkage set. D5 can detect dependencies of a class of functions that are difficult for EDAs
(i.e. functions contain low salience building blocks) and requires less computational cost than

2

other perturbation methods does. However, its major constraint is that it relies on an input
parameter k which may or may not be available due to the limited information to the problem
structure. As a side-effect to the parameter k, D5 might be fragile in the situation where the
problem is composed of subproblems of different sizes.

In this paper, we propose a new linkage identification technique based on perturbation, called
inductive linkage identification (ILI). Similar to D5, the population-wise perturbation approach
is adopted, but different from D5, instead of using clustering to obtain a biased sub-population,
we use a supervised learning method well-established in the field of machine learning, ID3 [19],
to construct a decision tree for the task of predicting the fitness difference after perturbation
based on some parts of the solution. By inspecting the learned tree, we can obtain a set of
variables exhibiting strong relationship with the perturbed variable. The contributions of the
proposed approach include no problem complexity parameter (that is, k in D5) is required,
problems composed of different-sized building blocks can be appropriately handled, and a lower
number of function evaluations for identifying linkage.

The rest of this paper is organized as follows. In section 2, the background of the linkage in
GA and the decomposability of problems is briefly introduced. Section 3 gives a review of the
ID3 decision tree learning algorithm. In section 4, we illustrate the proposed approach by using
an example. Section 5 describes our algorithm in detail. Section 6 shows the empirical results.
Finally, section 7 concludes this paper.

2 Linkage and Building Blocks

In this section, we briefly review some definitions and terminologies which will be used through
out this paper. As stated in [20], “two variables in a problem are interdependent if the fitness
contribution or optimal setting for one variable depends on the setting of the other variable,”
and such relationships between variables is often referred to as linkage in GA. In order to obtain
the full linkage information of a pair of variables, the fitness contribution or optimal setting of
these two variables shall be examined on all possible settings of the other variables.

Although obtaining the full linkage information is computationally expensive, linkage should
be estimated using a reasonable amount of efforts if the problem at hand is decomposable.
According to the Schema theorem [21], short, low-order and highly fit substrings increase their
share to be combined, and also stated in the building block hypothesis, GAs implicitly decompose
a problem into sub-problems by processing building blocks. It is considered that combining small
parts is important for GAs and consistent with human innovation [22]. These lead to a problem
model called the additively decomposable function (ADF), which can written as a sum of low-
order sub-functions.

Let a string s of length ` be described as a series of variables, s = s1s2 · · · s`. We assume
that s = s1s2 · · · s` is a permutation of the problem variables x = x1x2 · · ·x` to represent the
used encoding scheme. The fitness of string s is the defined as

f(s) =
m∑

i=1

fi(svi) ,

where m is the number of sub-functions, fi is the i-th sub-function, and svi is the substring to
fi. The vi is a vector specifying the substring svi . For example, if vi = (1, 2, 4, 8), svi = s1s2s4s8.
If fi is a simple sum of more elemental sub-functions, fi can be replaced by those sub-functions.
Each of the sub-function fi can be considered as a nonlinear function.

By eliminating the ordering property of vi , we can obtain a set Vi containing the elements
of vi. The variables from the same set of Vi should be interdependent because fi is nonlinear.
Thus, we refer to the set Vi as a linkage set. A related term, building blocks (BBs), is referred to

3

as the candidate solutions of some sub-function fi. In this paper, only a subclass of the ADFs
is considered. We concentrate on non-overlapping sub-functions. That is, Vi ∩ Vj = ∅ if i 6= j.
The strings is composed of binary variables.

3 Decision Tree Learning: ID3

Decision tree learning is one of the most widely used and practical methods for inductive infer-
ence. It has been successfully applied to a broad range of tasks from learning to diagnose medical
cases to learning to assess credit risks of loan applicants. Decision tree learning approximates
discrete-valued target functions, in which the learned function is represented by a decision tree.

In this paper, the ID3 decision tree learning algorithm [19] is used and we consider only its
ability in classification problems. In a classification problem, a training instance is composed
of a list of attribute values describing the instance and a target value that the decision tree is
supposed to predict after training. In our case, the list of attribute values is the population of
solution strings, and the target value is the fitness difference after perturbation.

In its most basic form, ID3 constructs the decision tree top-down without backtracking.
To construct a decision tree, each attribute is evaluated using a statistical property, called
the information gain, to measure how well it alone classifies the training instances. The best
attribute is selected and used as the test at the root node of the tree. A descendant of the
root is then created for each possible value of this attribute, and the training instances are split
into the appropriate descendant node. The entire process is then repeated using the training
instances associated with each descendant node to select the best attribute to test at that node.

The statistical property, information gain, of each attribute is simply the expected reduction
in the impurity of instances after classifying the instances using that attribute. The impurity
of an arbitrary collection of instances is often called entropy in information theory. Given a
collection S, containing instances of c different target values, the entropy of S relative to this
c-wise classification is defined as

Entropy(S) ≡
c∑

i=1

−pi log2 pi ,

where pi is the proportion of S belonging to class i. In all calculations involving entropy, we
define 0 log2 0 to be 0.

Then, in terms of entropy, the information gain can be defined as follows. The information
gain, Gain(S, A), of an attribute A relative to a collection of instances S, is

Gain(S, A) ≡ Entropy(S)−
∑

v∈V al(A)

|Sv|
|S|

Entropy(Sv) ,

where V al(A) is the set of all possible values for attribute A, and Sv is the subset of S for which
attribute A has value v.

4 Exemplary Illustration

Before describing the proposed linkage identification technique in detail, in this section, we first
illustrate the idea behind the algorithm by using the following example. Consider a trap function
of size k1:

ftrapk
(s1s2 · · · sk) = trapk(u) =

{
k, if u = k;
k − 1− u, otherwise.

,

1The proposed algorithm does not require this parameter of problem complexity, but for explanation, we use
the k-traps as sub-problems.

4

s1s2 · · · s8 f df1

01111 011 0 -5
00011 001 3 1
00100 000 5 1
01001 111 5 1
11111 000 7 5
01101 101 1 1
00110 011 2 1
01101 110 1 1
00001 011 3 1
10100 111 5 -1
11110 101 0 -1
11111 110 5 5
11011 010 1 -1
01000 010 4 1
00100 010 4 1
00001 000 5 1
01100 010 3 1
10000 101 3 -1
00000 100 5 1
11011 110 0 -1
00011 001 3 1
00111 010 2 1
00100 100 4 1
10110 000 3 -1
11100 000 3 -1
01111 111 3 -5
10100 010 3 -1
10100 001 3 -1
01000 001 4 1
01111 110 0 -5
(a) Original population.

s1s2 · · · s8 f df1

00000 100 5 1
00001 011 3 1
00001 000 5 1
00100 000 5 1
00100 010 4 1
00100 100 4 1
01000 010 4 1
01000 001 4 1
01001 111 5 1
01100 010 3 1
01101 101 1 1
01101 110 1 1
00011 001 3 1
00011 001 3 1
00110 011 2 1
00111 010 2 1
01111 011 0 -5
01111 111 3 -5
01111 110 0 -5
10000 101 3 -1
10100 111 5 -1
10100 010 3 -1
10100 001 3 -1
10110 000 3 -1
11100 000 3 -1
11110 101 0 -1
11111 000 7 5
11111 110 5 5
11011 010 1 -1
11011 110 0 -1

(b) Rearranged population.

Table 1: Population of Strings.

where u is the number of ones in the string s1s2 · · · sk. Suppose that we are dealing with an
eight-bit problem

f(s1s2 · · · s8) = ftrap5(s1s2s3s4s5) + ftrap3(s6s7s8) ,

where s1s2 · · · s8 is an individual. Our goal is to identify two linkage sets V1 = {1, 2, 3, 4, 5} and
V2 = {6, 7, 8}.

In the beginning, a population of strings is randomly generated as listed in Table 1(a). The
first column lists the solution strings, and the second column lists the fitness values of the
corresponding strings. After initializing the population, we perturb the first variable s1 (0 → 1
or 1→ 0) for all strings in the population in order to detect the linkage set in which the variables
are related to s1 (that is, V1). The third column of Table 1(a) records the fitness differences,
df1, after the perturbations at variable s1.

Then, we construct an ID3 decision tree by using the population of strings as the training
instances. Each variable in s1s2 · · · s8 is an attribute to the instances, and the target values are

5

S1

S4

0

S5

1

1

0

S2

1

-1

0

S3

1

1

0

-5

1

-1

0

5

1

Figure 1: An ID3 decision tree constructed according to Table 1(a).

the fitness differences df1. By having this setup, we can obtain an ID3 decision tree as shown in
Figure 1. By gathering all decision variables of the non-leaf nodes, we can identify as a group
s1, s2, s3, s4, and s5 which are the variables corresponding to linkage set V1. As a consequence,
the linkage set V1 is correctly identified.

Readers might think this result a little too sudden. We may consider the rearranged pop-
ulation listed in Table 1(b) for a clearer view. In Table 1(b), strings from different blocks are
bearing different patterns. For example, s1 and s4 of the strings from the first block are all 0’s.
In the fourth block, values of s1 are 1’s, and values of s5 are 0’s. Such an observation can be
extended to other blocks as well. In fact, these patterns are corresponding to the paths from
leaf nodes of the tree in Figure 1 to the root. To put it in another way, because during the con-
struction of the decision tree, the ID3 algorithm selects variables that show strong relationship
to the target values, i.e., the fitness differences after perturbation, the variables belonging to the
same sub-function as the perturbed variable, s1, tend to be selected under this mechanism.

A more accurate explanation can be given as follows. Consider the fitness difference df1 of
a certain string s = s1s2 · · · s8 perturbed at variable s1:

df1(s) = f(s1s2 · · · s8)− f(s1s2 · · · s8) (1)
= ftrap5(s1s2s3s4s5) + ftrap3(s6s7s8)− ftrap5(s1s2s3s4s5)− ftrap3(s6s7s8)
= ftrap5(s1s2s3s4s5)− ftrap5(s1s2s3s4s5) .

As shown in Equation (1), the fitness difference df1 is independent of the variables s6, s7, and
s8. df1 depends only on s1, s2, . . ., s5. Therefore, for a large enough population showing strong
statistical evidences, the independent variables will not be chosen as decision variables in the
decision tree. On the other hand, because ftrap5 is a function with nonlinearity, all five variables
tends to be identified given a large enough population which contains nonlinear points of ftrap5.

For the remainder of this example, since V1 is already correctly identified, we proceed at s6.
The fitness differences after perturbations at variable s6 is shown in Table 2. Employing the
identical procedure, an ID3 decision tree is constructed as presented in Figure 2. By inspecting
the tree, we obtain the related variables s6, s7, and s8 which form the size 3 linkage set V2. The

6

s1s2 · · · s8 f df6

01111 011 0 -3
00011 001 3 1
00100 000 5 1
01001 111 5 3
11111 000 7 1
01101 101 1 -1
00110 011 2 -3
01101 110 1 -1
00001 011 3 -3
10100 111 5 3
11110 101 0 -1
11111 110 5 -1
11011 010 1 1
01000 010 4 1
00100 010 4 1
00001 000 5 1
01100 010 3 1
10000 101 3 -1
00000 100 5 -1
11011 110 0 -1
00011 001 3 1
00111 010 2 1
00100 100 4 -1
10110 000 3 1
11100 000 3 1
01111 111 3 3
10100 010 3 1
10100 001 3 1
01000 001 4 1
01111 110 0 -1

Table 2: Population of strings.

example illustrates that the proposed algorithm can handle problems composed of different-sized
sub-problems.

5 Inductive Linkage Identification

In this section, the idea demonstrated in the previous section is formalized as an algorithm,
which is called inductive linkage identification (ILI) and presented in Algorithm 1. ILI consists
mainly the following three steps:

1. Calculate the fitness differences by perturbations;

2. Construct an ID3 decision tree;

3. Examine the decision tree to obtain a linkage set.

The three steps repeat until all the variables are classified into a linkage set.

7

S6

S8

0

S8

1

1

0

S7

1

1

0

-3

1

-1

0

S7

-1

0

3

1

Figure 2: An ID3 decision tree constructed according to Table 2.

ILI starts at initializing a population of strings. After initialization, ILI identifies one linkage
set at a time using the following procedure: (1) a variable is randomly selected to be perturbed;
(2) an ID3 decision tree is constructed according to the fitness differences after perturbations;
(3) by inspecting the tree, a linkage set of the variables used in the tree can be collected.

Algorithm 1 Inductive Linkage Identification
procedure IdentifyLinkage(f , `)

Initialize a population P with n string of length `.
Evaluate the fitness of strings in P using f .
V ← {1, . . . , `}
m← 0
while V 6= ∅ do

m← m + 1
Select v in V at random.
Vm ← {v}
V ← V − {v}
for each string si = si

1s
i
2 · · · si

` in P do
Perturb si

v.
df i ← fitness difference after perturbation.

end for
Construct an ID3 decision tree using (P, df).
for each decision variable sj in tree do

Vm ← Vm ∪ {j}
V ← V − {j}

end for
end while
return the linkage sets V1, V2, · · · , Vm

end procedure

8

As clearly shown in Algorithm 1, the number of fitness function evaluations required to
accomplish the task of linkage identification is proportional to the number of the linkage sets
of the problem. Suppose that we are dealing with an ADF f in which the length of solution
string is ` = k × m, where m is the number of subfunctions forming f , and k is the size of
each subfunction. In this case, LINC needs O(`2) = O(k2m2) function evaluations, D5 needs
O(`) = O(km) function evaluations, and ILI needsO(m) function evaluations. As a consequence,
both ILI and D5 need a number of evaluations growing linearly with the problem size, but ILI
needs fewer evaluations by a factor of the building-block size k. The numerical results presented
in the next section verify the theoretical computation.

6 Numerical Experiments

The empirical results are presented in this section. The experiments are designed to show the
behavior of the proposed technique, ILI, on binary ADFs with non-overlapping subfunctions.
For the considered problems, the scalability of the proposed algorithm is investigated and com-
pared to LINC and D5. Furthermore, the numerical results on uniformly scaled functions and
exponentially scaled functions are also presented to examine the flexibility of ILI.

6.1 Uniformly Scaled Functions

The section describes the experimental settings and results of the proposed algorithm on uni-
formly scaled functions. The experiment is performed on the functions composed of trap5

subfunctions:

f(s) =
m∑

i=1

ftrap5(s5·(i−1)+1 · · · s5·(i−1)+5)

where m ranges from 20 to 180. That is, the problem size ranges from 100 bits to 900 bits.
The population sizes are set empirically to obtain all linkage sets correctly in 10 consecutive

and independent runs. The results are shown in Figure 3. The results of ILI are compared to
that of LINC and D5 [18]. The number of function evaluations needed by ILI grows linearly with
the problem size and is much lower than that needed by LINC. It is also lower by a factor of
the building-block size than that needed by D5. The results verify the theoretical computation
presented in the previous section.

6.2 Exponentially Scaled Functions

In this section, the results for exponentially scaled functions are presented. As in the experiment
on uniformly scaled functions, the trap5 function is used as a subfunction to compose more
complicated functions:

f(s) =
m∑

i=1

2i−1 × ftrap5(s5·(i−1)+1 · · · s5·(i−1)+5) ,

where m ranges from 10 to 50. That is, the problem size ranges from 50 bits to 250 bits.
The population sizes are set empirically to obtain all linkage sets correctly in 10 consecutive

and independent runs. The results are shown in Figure 4. The results of ILI are compared
to that of ILI on uniformly scaled functions. It can be observed that ILI needs approximately
the same number of function evaluations for the same size of problems. It indicates that ILI is
independent of different building block scalings.

9

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14
x 10

5

Problem Sizes (Bits)

F
un

ct
io

n
E

va
lu

at
io

ns

LINC
D5
Inductive Linkage Identification

Figure 3: Numerical results of inductive linkage identification on uniformly scaled functions.
The results are compared to that of LINC and D5 [18]. The number of function evaluations
needed by ILI grows linearly with the problem size.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Problem Sizes (Bits)

F
un

ct
io

n
E

va
lu

at
io

ns

Uniformly−scaled
Exponentially−scaled

Figure 4: Numerical results of inductive linkage identification on exponentially scaled functions.
The results compared to that of ILI on uniformly scaled functions.

10

7 Summary and Conclusions

In this paper, we proposed an algorithm, called inductive linkage identification (ILI), to identify
linkage for a class of problems. The algorithm utilized a supervised learning model, ID3, as
the task-force to estimate linkage sets. After obtaining the fitness differences by conducting
perturbation, an ID3 decision tree was constructed according to the gained information, and
a linkage group was identified based on the created tree. The performance of the proposed
algorithm was discussed and compared to that of other techniques. The results demonstrated
that ILI was able to identifying linkage groups at a lower computational cost.

ILI improves the previous methods, including LINC and D5, in two aspects. First, the
number of function evaluations for identifying linkage sets is reduced. Second, the algorithm
requires no input parameter regarding the information of the problem structure or problem
complexity, such as the building block size k. Moreover, the function evaluations required by
the proposed algorithm is proportional to the number of linkage sets in the problem.

The proposed technique can be used in two possible areas. First, it can serve as a preprocess-
ing step of a running GA. By obtaining the information of linkage sets, the crossover operator
can be designed to perform effective mixing of sub-solutions. Second, it can be used as a tool
for understanding the structure of totally unknown or partially understood problems.

Acknowledgments

The work was partially sponsored by the National Science Council of Taiwan under grants NSC-
95-2221-E-009-092 and NSC-95-2627-B-009-001 as well as by the MOE ATU Program. The
authors are grateful to the National Center for High-performance Computing for computer time
and facilities.

References

[1] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation, analysis,
and first results,” Complex Systems, vol. 3, no. 5, pp. 493–530, 1989.

[2] H. Kargupta, “SEARCH, polynomial complexity, and the fast messy genetic algorithm,”
Ph.D. dissertation, University of Illinois, 1995.

[3] G. Harik, “Learning gene linkage to efficiently solve problems of bounded difficulty using
genetic algorithms,” Ph.D. dissertation, University of Illinois, 1997.

[4] H. Mühlenbein and G. Paaß, “From recombination of genes to the estimation of distributions
i. binary parameters,” in PPSN IV: Proceedings of the 4th International Conference on
Parallel Problem Solving from Nature. London, UK: Springer-Verlag, 1996, pp. 178–187.

[5] S. Baluja, “Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning,” Pittsburgh, PA, USA, Tech. Rep.,
1994.

[6] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,” IEEE-EC,
vol. 3, no. 4, p. 287, November 1999.

[7] J. de Bonet, C. Isbell, and P. Viola, “MIMIC: Finding optima by estimating probability
densities,” in Advances in Neural Information Processing Systems, M. C. Mozer, M. I.
Jordan, and T. Petsche, Eds., vol. 9. The MIT Press, 1997, p. 424.

11

[8] S. Baluja and S. Davies, “Using optimal dependency-trees for combinational optimization,”
in ICML ’97: Proceedings of the Fourteenth International Conference on Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 30–38.

[9] M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution algorithm,” in Ad-
vances in Soft Computing - Engineering Design and Manufacturing, R. Roy, T. Furuhashi,
and P. K. Chawdhry, Eds. London: Springer-Verlag, 1999, pp. 521–535.

[10] G. Harik, “Linkage learning via probabilistic modeling in the ecga,” Illinois Genetic Algo-
rithms Laboratory, University of Illinois at Urbana-Champaign., IlliGAL Report No. 99010,
1999.

[11] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian optimization algo-
rithm,” in Proceedings of the Genetic and Evolutionary Computation Conference GECCO-
99, W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, Eds., vol. I. Orlando, FL: Morgan Kaufmann Publishers, San Fransisco, CA, 13-17
1999, pp. 525–532.

[12] H. Mühlenbein and T. Mahnig, “FDA - A scalable evolutionary algorithm for the opti-
mization of additively decomposed functions,” Evolutionary Computation, vol. 7, no. 4, pp.
353–376, 1999.

[13] H. Mühlenbein and R. Höns, “The estimation of distributions and the minimum relative
entropy principle,” Evol. Comput., vol. 13, no. 1, pp. 1–27, 2005.

[14] H. Kargupta, “The gene expression messy genetic algorithm,” in International Conference
on Evolutionary Computation, 1996, pp. 814–819.

[15] M. Munetomo and D. Goldberg, “Identifying linkage by nonlinearity check,” Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign., IlliGAL Report No.
98012, 1998.

[16] M. Munetomo and D. E. Goldberg, “Identifying linkage groups by nonlinearity/non-
monotonicity detection,” in Proceedings of the Genetic and Evolutionary Computation Con-
ference, W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, Eds., vol. 1. Orlando, Florida, USA: Morgan Kaufmann, 13-17 1999, pp.
433–440.

[17] R. B. Heckendorn and A. H. Wright, “Efficient linkage discovery by limited probing,” Evol.
Comput., vol. 12, no. 4, pp. 517–545, 2004.

[18] M. Tsuji, M. Munetomo, and K. Akama, “Linkage identification by fitness difference clus-
tering,” Evol. Comput., vol. 14, no. 4, pp. 383–409, 2006.

[19] J. R. Quinlan, “Induction of decision trees,” in Readings in knowledge acquisition and
learning: automating the construction and improvement of expert systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993, pp. 349–361.

[20] E. D. de Jong, R. Watson, and D. Thierens, “On the complexity of hierarchical problem
solving,” in GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary
computation. New York, NY, USA: ACM Press, 2005, pp. 1201–1208.

[21] J. H. Holland, Adaptation in natural and artificial systems. Cambridge, MA, USA: MIT
Press, 1992.

12

[22] D. E. Goldberg, The Design of Innovation: Lessons from and for Competent Genetic Al-
gorithms. Norwell, MA, USA: Kluwer Academic Publishers, 2002.

13

	Introduction
	Linkage and Building Blocks
	Decision Tree Learning: ID3
	Exemplary Illustration
	Inductive Linkage Identification
	Numerical Experiments
	Uniformly Scaled Functions
	Exponentially Scaled Functions

	Summary and Conclusions

