
Enabling the Extended Compact Genetic Algorithm for
Real-Parameter Optimization by using Adaptive Discretization

Ying-ping Chen
Chao-Hong Chen

NCLab Report No. NCL-TR-2007006
March 2007

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/

Enabling the Extended Compact Genetic Algorithm for

Real-Parameter Optimization by using Adaptive Discretization

Ying-ping Chen and Chao-Hong Chen
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
{ypchen, chchen}@nclab.tw

March 24, 2007

Abstract

This paper proposes an adaptive discretization method, called Split-on-Demand (SoD),
to enable probabilistic model building genetic algorithms (PMBGAs) to solve optimization
problems in the continuous domain. The procedure, effect, and usage of SoD are described in
detail. As an example of using SoD with PMBGAs, the integration of SoD and the extended
compact genetic algorithm (ECGA), named real-coded ECGA (rECGA), is proposed and
numerically examined in the study. The numerical experiments include a set of benchmark
functions and a real-world application, the economic dispatch problem. The results on the
benchmark functions indicate that SoD is a better discretization method than two well-
known methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH).
Moreover, the experimental results on the economic dispatch problems demonstrate that
rECGA works quite well, and the solutions better than the best known results presented in
the literature are achieved.

1 Introduction

Genetic algorithms (GAs) [1, 2] are methodologies inspired by Darwinian evolution and de-
signed according to the biological genetic operations. As a flexible optimization tool, genetic
algorithms are nowadays widely applied to tackle a number of real-world optimization problems.
In principle, genetic algorithms select good, promising individuals from the current population
and generate new candidates of solutions by employing recombination and mutation.

According to the theory of design decomposition [3], the key components to the GA success
include identifying, reproducing, and exchanging the structure of the solutions. Recombination,
one of the main GA operator, mixes the promising sub-solutions, called building blocks (BBs),
and creates new solutions. Genetic algorithms therefore work very well for the problems which
can be somehow decomposed into sub-problems. However, the problem-independent recombina-
tion operator with fixed chromosome representations often breaks building blocks and results in
ineffective mixing. It is the reason when traditional genetic algorithms meet complex solution
structures which consist of a group of related genes, they oftentimes fail to effectively identify
and efficiently exchange the building blocks to create good final solutions [4].

In order to appropriately mix genes, the evolutionary algorithms based on utilizing proba-
bilistic models were proposed and developed [5, 6]. In such schemes, the offspring population
is generated according to the estimated probabilistic model of the parent population instead
of using regular recombination and mutation operators. The probabilistic model is expected to

1

reflect the problem structure, and better performance can be achieved via exploring and exploit-
ing the relationship between genes. These evolutionary algorithms are called probabilistic model
building genetic algorithms (PMBGAs) or estimation of distribution algorithms (EDAs) [5, 6].

In PMBGAs, decision variables are often coded with binary coding schemes. It is reportedly
difficult to find high accuracy solutions in solving continuous problems for PMBGAs. Moreover,
many real-world engineering problems are real-parameter optimization problems, such as struc-
tural optimization problems and the design of transonic wings of aircrafts. In the literature,
several attempts to apply PMBGAs to problems in the continuous domain have been made, in-
cluding continuous PBIL with Gaussian distribution [7], real-coded variant of PBIL with interval
updating [8], BEA for continuous function optimization [9], and the real-coded BOA [10].

However, these approaches require the knowledge of and are clearly specialized for the mod-
ified algorithms. In order to provide a good, general interface between problems of continuous
variables and algorithms for discrete variables, in this paper, we propose a framework that
enables the PMBGAs designed for handling bit-strings to tackle real-valued optimization prob-
lems. Particularly, we develop a new, adaptive discretization encoding scheme that can be easily
integrated into PMBGAs or other algorithms for discrete variables, and we use the extended
compact genetic algorithm (ECGA) [11] as an illustrative example in the present work.

In next section, we will first briefly introduce ECGA. In section 3, we will describe in detail
how the proposed Split-on-Demand (SoD) encodes the solutions of real values into discrete
numbers. In section 4, we use SoD to enable ECGA to handle real-valued decision variables,
and the numerical experiments on benchmark functions are presented in section 5, followed by
handling the economic dispatch problem in section 6. Finally, section 7 concludes this work.

2 Extended Compact Genetic Algorithm

The extended compact genetic algorithm (ECGA), which was proposed by Harik [11] based on
the idea that probability distributions can be used to model the population in genetic algorithms
and the choice of a good probability distribution can be viewed as equivalent to learning linkage
between decision variables. The probabilistic models adopted in ECGA are a class of models
known as the marginal product models (MPMs). ECGA utilizes MPMs to model partitions
of decision variables. The measurement of distribution quality is quantified according to the
minimum description length (MDL) principle [12], which can be considered as a realization of
Occam’s razor. The essential concept of MDL is that all things being equal, simpler distributions
are preferred to more complex ones. The MDL criterion penalizes both inaccuracy as well as
complexity and therefore, leads to providing high quality probability distributions.

ECGA can be algorithmically outlined as

1. Initialize a population of size N at random.

2. Apply tournament selection of size S.

3. Model the population by using a greedy MPM search.

4. Stop if the MPM model has converged.

5. Generate a new population with the MPM model.

6. Return to step 2.

The complexity measurement of the MPM model is the sum of Model Complexity, formulated

2

as Equation (1), and Compressed Population Complexity, formulated as Equation (2).

Model Complexity = log N
∑

I

2S[I] , (1)

where N is the population size, and S[I] is the length of the Ith subset of genes.

Compressed Population Complexity = N
∑

E(MI) , (2)

where E(MI) is the entropy of the marginal distribution for subset I. According to the MDL
principle, the goal for the MPM search is to find an MPM model with the minimal combined
complexity as

Combined Complexity = Model Complexity + Compressed Population Complexity .

Instead of applying traditional crossover and mutation, ECGA creates the new population
according to the MPM model obtained in step 3. By doing such an operation, offspring individ-
uals are created without destroying building blocks represented in the form of linkage groups of
decision variables. In the original framework, ECGA can handle only binary variables. In order
to make ECGA capable of tackling the real-parameter optimization problems, certain technique
is required to play as an interface between the method for optimization and the problem to
solve. In the present work, we adopt an adaptive discretization method, called split-on-demand,
described in the next section.

3 Split-on-Demand

In this section, we present an adaptive discretization method, called Split-on-Demand (SoD),
which encodes real-number decision variables into discrete numerical codes. The main idea of
SoD is to encode with more integer codes those regions that we are more interested in and demand
to know more about. For this purpose, SoD splits the real-number intervals in which there are
equal to or more than a specified number of individuals. Thus, more accurate probabilistic
models regarding these regions may be built, while less computational resource may be spent on
modeling regions of fewer individuals. A split rate γ, where 0 < γ < 1, is employed to determine
whether or not a real-number interval should be split. If the population size is N , an interval
containing more than N × γ individuals should be split. By adjusting γ, we can control the
precision of the probabilistic model (of discrete variables) that we want to build to depict the
population as well as avoid having unnecessarily long bit-strings for discretization. Thanks to
the behavior of splitting the intervals, we call the proposed encoding scheme Split-on-Demand.

As described, SoD splits a dimension of real numbers into several intervals and gives each of
them an integer code. We can then translate a vector of real numbers to a vector of integers,
which can be represented by bits or binary codes more directly. As an example, given a real-
parameter optimization problem of two dimensions, one possible code table constructed by SoD
is shown in Figure 1. According to the code table, the solution [−72.3, 24.8] is encoded as
[0, 1], and the solution [13.8,−5.3] as [2, 0]. Figure 2 shows the solution space split by the code
table given in Figure 1 as an illustration. Figure 2(a) is the split configuration on dimension
1, Figure 2(b) is the split configuration on dimension 2, and Figure 2(c) is the combined split
configuration on [dimension 1, dimension 2], which is the whole solution space. The code table
splits the solution space into 12 regions.

After describing the usage of the SoD code table, we now discuss the way to construct it.
The principle of the proposed encoding scheme is to split the real number interval in which there
are a lot of search points. Because the tournament selection operator is applied to choose the

3

Dimension 1 Dimension 2
Interval Code Interval Code
-100 ∼ -50 0 -100 ∼ 0 0
-50 ∼ 0 1 0 ∼ 50 1
0 ∼ 50 2 50 ∼ 100 2
50 ∼ 100 3

Figure 1: An example code table constructed by Split-on-Demand for a real-parameter opti-
mization problem of two dimensions.

100−100 −50 0 50

(a) Split configuration on dimension 1.

100−100 0 50

(b) Split configuration on dimension 2.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(c) Combined split configuration on both dimensions.

Figure 2: An illustration of the solution space being split according to the code table given in
Figure 1.

promising individuals at each generation, if there are a host of individuals in certain region after
selection, we consider that region important and believe the probability to find good solutions
in that region is higher. Therefore, we split the promising region to gain higher resolution as
well as achieve better accuracy to assist the PMBGA to build high quality probabilistic models.

In order to determine which real number interval to split, as previously mentioned, we employ
a split rate γ, where 0 < γ < 1. Assume that the population size is N , if an interval contains
more than N × γ individuals, the interval should be split. By adjusting the split rate, we
can control the accuracy of the probabilistic model which we want to build. If more accurate
probabilistic models are necessary, smaller split rates should be used such that the value range
of the decision variable is split to more intervals. Furthermore, for the same reason, the split
rate can also be used to control the overall code length. The higher the split rate, the shorter
the code length, and vice versa.

The procedure of Split-on-Demand can be describe as follows, and the pseudo code of SoD
is shown in Figure 3. Subroutine Split-on-Demand first calls subroutine Split on the interval
[lower bound, upper bound], where the lower bound and upper bound are the bounds of this
dimension. Split generates a random number m in the interval in question and counts the
individuals in the two intervals: [lower bound, m] and [m,upper bound]. If an interval contains

4

1: procedure Split-on-Demand
2: Split(lower bound, upper bound)
3: γ ← γ × ε
4: end procedure

1: procedure Split(`, u)
2: m← random[`, u]
3: N` ← number of individuals in [`,m]
4: Nu ← number of individuals in [m,u]
5: if N` ≥ N × γ then
6: Split(`, m)
7: else
8: Add a code for the range [`,m]
9: end if

10: if Nu ≥ N × γ then
11: Split(m, u)
12: else
13: Add a code for the range [m,u]
14: end if
15: end procedure

Figure 3: Pseudo code for SoD.

more than N × γ individuals, Split will be recursively called to split that interval until no
interval should be further split.

When all split operations are done, we decrease the split rate by a factor ε, where 0 < ε < 1.
The reason to decrease the split rate is to have higher split rates at the early search stage to
keep the diversity and to implement a coarse-grained, global search. As the search process goes
by, we obtain more and more information about the solution space and know where to put more
search points to find good solutions. Hence, at the late stage, a lower split rate is needed to
build accurate probabilistic models for conducting a fine-grained, local search. The factor ε can
be set to control the speed of convergence. An appropriate ε can help the search algorithm to
avoid wasting time on useless regions as well as being trapped at local optima and therefore is
key to an efficient search process.

We now give a typical example of how SoD runs on populations for demonstration. Assume
that the population size is 10, and the initial split rate γ = 0.5. Figure 4 depicts how the
individuals distributed at different generations. Initially, Figure 4(a) shows that the first position
to split, marked by 1, is randomly generated. We then discover that the number of individuals
in the left interval is larger than 10× γ = 5. Under this condition, SoD calls Split to perform
a random split on the left interval and gets the second split position, marked by 2. After the
second split, the numbers of individuals in the two intervals, the left interval and the right
interval to the second split position, are both less than 10×γ = 5. As a consequence, SoD stops
the split operation and decreases the split rate.

Figure 4(b) shows the population distribution and the split positions at generation 10. The
split rate γ is now 0.4. Similar to the procedure described in the previous paragraph, SoD
performs a random split to cut the whole interval into two intervals. It can be observed that
both the left and the right intervals contain more than 10× γ = 4 individuals, and as a result,
SoD calls Split on both the left and the right intervals. For the left interval, SoD randomly splits
it into two intervals and finds out that its right interval still contains more than 4 individuals.
SoD recursively calls Split to split that interval. By conducting the recursive split operation

5

1

−100 100

2

(a) Population distribution and 2 split positions at genera-
tion 1. γ = 0.5. 10× γ = 5.

4

−100 100

2 13

(b) Population distribution and 4 split positions at genera-
tion 10. γ = 0.4. 10× γ = 4.

2

−100 100

1453

(c) Population distribution and 5 split positions at genera-
tion 20. γ = 0.3. 10× γ = 3.

Figure 4: Population distribution and the split positions at different generations.

until no more interval has to be split, 4 splits make the value range 5 intervals. Moreover,
in Figure 4(c), the population is at generation 20, and the split rate is 0.3. SoD runs on the
population, and the interval is split into 6 regions by 5 splits.

One might wonder that the proposed encoding scheme seems similar to the marginal fixed-
height histogram (FHH) introduced in [13]. In fact, there are two significant differences between
SoD and FHH. The first difference is the size of the code table. In FHH, the height of the
histogram is fixed, and for any population, the number of bins employed in the algorithm is
fixed. However, in SoD, even with the same split rate, for different populations, SoD may
generate code tables of different sizes. That is, the code table size in SoD may vary. For the
other difference, the MPM model built according to the individuals encoded by SoD is not of
the identical height. Such a flexibility might make the MPM model more accurate than that
built according to the individuals encoded by FHH.

For handling the adaptive discretization during an optimization process, Figure 5 shows an
example of how SoD cooperating with ECGA splits the solution space at different generations
when minimizing a two-dimensional objective function F1 =

∑
x2

i , where the bound of every
dimension is [−100, 100], and the global optimum is (0, 0). Figure 5(a) depicts the split configu-
ration on the solution space at generation 1. The split configuration seems random because the
whole population is highly diverse at generation 1. Later on, at generation 50, the population
begins to converge, and Figure 5(b) shows that SoD splits the solution space around (0, 0) into
many regions and leaves other parts of the solution space unencoded. Finally, in Figure 5(c), it
can be observed that SoD focuses on the solution space close to (0, 0) at generation 100. With
the population converging to (0, 0), ECGA is able to explore the promising solution space more
thoroughly and to find the solutions of higher precision.

Another example is the two-dimensional objective function F2 =
∑

10−|xi|. Figure 6 depicts
how SoD splits the solution space, of which the bound of each dimension is [−10, 10], when
minimizing F2. There are four global minima located at (−10,−10), (−10, 10), (10,−10), and
(10, 10), respectively. Figure 6(a) is the split configuration on the solution space at generation 1.
Because the population is initially random, the split configuration seems random. In Figure 6(b),
we can observe that at generation 10, because the population begins to converge to the global
minima, the split points are close to the four corners where the global minima of F2 are located.
Finally, Figure 6(c) shows that almost all split points are around the region close to (10, 10)
because the population converge to one of the four global optima at generation 20.

These two examples demonstrate that the split configuration established by SoD appropri-
ately responds to the status of the population. The split configuration can encode the individuals
as precise as necessary for the cooperating PMBGA to build probabilistic models. Hence, SoD is
an effective encoding scheme to make PMBGAs able to tackle the real-parameter optimization

6

-100

-50

 0

 50

 100

-100 -50 0 50 100

(a) Generation 1.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(b) Generation 50.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(c) Generation 100.

Figure 5: Split configurations at different gen-
erations for F1 =

∑
x2

i .

-10

-5

 0

 5

 10

-10 -5 0 5 10

(a) Generation 1.

-10

-5

 0

 5

 10

-10 -5 0 5 10

(b) Generation 10.

-10

-5

 0

 5

 10

-10 -5 0 5 10

(c) Generation 20.

Figure 6: Split configurations at different gen-
erations for F2 =

∑
10− |xi|.

problem. In next section, ECGA, as an example of PMBGAs, will be employed to show the
feasibility of integrating SoD and PMBGAs.

7

4 Real-Coded ECGA

In the previous sections, we proposed the adaptive discretization method, Split-on-Demand
(SoD), described the behavior of SoD, and demonstrated the effect of SoD. In this section,
we will show the way to plug SoD into ECGA, as a showcase for the integration of SoD and
PMBGAs. The outcome is a new algorithm, called the real-coded ECGA (rECGA), for solving
real-parameter optimization problems with the search powered by ECGA. rECGA can be put
as:

1. Initialize a population of size N at random.

2. Apply tournament selection of size S.

3. Use SoD to encode each dimension of the variables.

4. Model the population composed of the encoded individuals by using a greedy MPM search.

5. Stop if the MPM model has converged.

6. Generate a new population using the MPM model.

7. (Optional local search) for every L generations, run the Nelder-Mead [14] method on the
best 10% individuals.

8. Return to step 2.

5 Comparisons with FHH & FWH

After proposing SoD and rECGA, firstly, we would like to know how SoD performs compared
to other well-known discretization methods, such as the fixed-height histogram (FHH) and the
fixed-width histogram (FWH) [13]. In this section, we use the identical search engine, ECGA, as
the platform and plug SoD, FHH, and FWH into ECGA to examine how well they can perform
under the same condition. When using FHH and FWH, the optimization procedure, similar to
rECGA, can be described as:

1. Initialize a population of size N at random.

2. Apply tournament selection of size S.

3. Use FHH or FWH to encode each dimension.

4. Model the population composed of the encoded individuals by using a greedy MPM search.

5. Stop if the MPM model has converged.

6. Generate a new population using the MPM model.

7. (Optional local search) for every L generations, run the Nelder-Mead [14] method on the
best 10% individuals.

8. Return to step 2.

The following eight test functions were used to serve as a testbed for observing the relative
performance of the three discretization methods:

8

1. Sphere function

F1(x) =
D∑

i=1

x2
i

2. Rosenbrock’s function

F2(x) =
D−1∑
i=1

(100(x2
i − xi+1)2 + (xi − 1)2)

3. Ackley’s function

F3(x) = −20 exp

−0.2

√√√√ 1
D

D∑
i=1

x2
i

− exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e

4. Griewanks’s function

F4(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos(
xi√

i
) + 1

5. Weierstrass function

F5(x) =
D∑

i=1

(
kmax∑
k=0

(ak cos(2πbk(xi + 0.5)))

)
−D

kmax∑
k=0

(ak cos(2πbk · 0.5)) ,

where a = 0.5, b = 3, kmax = 20

6. Rastrigin’s function

F6(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10)

7. Noncontinuous Rastrigin’s function

F7(x) =
D∑

i=1

(y2
i − 10 cos(2πyi) + 10) ,

where yi =
{

xi, if |xi| < 1
2

round(2xi)
2 , if |xi| >= 1

2

8. Schwefel’s function

F8(x) = 418.9829×D −
D∑

i=1

xi sin(|xi|
1
2)

The global optimum positions, x∗, the global optimum objective values, f(x∗), and the search
intervals, [xmin, xmax], of each test function are listed in Table 1. The number of dimension, D,
in all the experiments is 10.

The parameters for rECGA (i.e., ECGA+SoD) we used in this series of experiments are
given in the following: population size = 250, crossover probability = 1.0, tournament size =
8, L = 5, the maximum function evaluations = 30,000, and 50 independent runs for each test
function. Because the code length is a constant for FHH and FWH, while it varies for SoD, in
order to achieve fair comparisons, we conducted two sets of experiments to examine the effect of
different code lengths on the three discretization methods. In each experiment set, we executed

9

F x∗ f(x∗) Search Intervals
F1 [0, 0, ..., 0] 0 [-100,100]
F2 [0, 0, ..., 0] 0 [-2.048,2.048]
F3 [0, 0, ..., 0] 0 [-32.768,32.768]
F4 [0, 0, ..., 0] 0 [-600,600]
F5 [0, 0, ..., 0] 0 [-0.5,0.5]
F6 [0, 0, ..., 0] 0 [-5.12,5.12]
F7 [0, 0, ..., 0] 0 [-5.12,5.12]
F8 [0, 0, ..., 0] 0 [-500,500]

Table 1: Global optima and search intervals of the test functions

ECGA with FHH or FWH for one code length slightly shorter as well as for one slightly longer
than the mean SoD code length.

In the first set of experiments, for SoD, γ = 0.7, and ε = 0.99. Under this condition, the
mean SoD code length for each dimension is 13.23. As aforementioned, we compare the results
of rECGA to that of ECGA+FHH and ECGA+FWH with 10 and 15 bins. The mean objective
values, variances, and T-test results of each function are shown in Table 2. In the other set
of experiments, for SoD, γ = 0.45, and ε = 0.988. In this case, the mean SoD code length
for each dimension becomes 22.81. Accordingly, we compare the results of rECGA to that of
ECGA+FHH and ECGA+FWH with 20 and 25 bins. The results are given in Table 3.

According to the experimental results presented in Tables 2 and 3, we can first observe that
SoD outperforms FHH or FWH on the eight test functions by comparing the obtained mean
objective values. We can also see that SoD in general provides smaller variances of the solutions
than FHH and FWH can. The t-values listed in the tables further indicate that the experimental
results are statistically significant. Except for FHH-25 on F7 (marked by † in Table 3), all t-
values are greater than the critical value, 1.68, for one tail significance α = 0.05 and degree
of freedom around 50. As a consequence, we can conclude that SoD can better discretize the
continuous search intervals than FHH and FWH can, at least when cooperating with ECGA.

6 Real-World Applications

After verifying the discretization capability of SoD, we are interested in putting the proposed
framework, rECGA, into action. In this section, we employ rECGA to handle the economic
dispatch (ED) problem, which is an essential topic in the power system because several important
facets of power systems are involved. Thanks to the importance and significance of the ED
problem, researchers have been making numerous attempts to find better solutions. Among the
promising sets of evolutionary optimization methods for tackling the ED problem are genetic
algorithms [15, 16, 17, 18, 19], evolutionary programming [20, 21, 22, 23], and particle swarm
optimization [24, 25, 26, 27]. In order to obtain even better solutions, we will apply rECGA on
the ED problem in this section. First, we will briefly introduce the ED problem, and then the
high quality solutions offered by rECGA are presented.

6.1 The Problem: Economic Dispatch

With the development of modern power systems, the economic dispatch (ED) problem has been
receiving an increasing attention. The ED problem is essential for the real-time control of power
system operations. It consists of allocating the total generation required among the available
thermal generating units, assuming that a thermal unit commitment is previously determined.

10

F1 F2 F3 F4

SoD mean 2.84e-05 8.46e+00 1.23e-03 1.09e-02
var. 2.12e-09 5.79e+01 2.96e-07 2.44e-04

FHH mean 6.65e+01 3.05e+01 4.32e+00 1.59e+00
10 var. 1.30e+03 1.70e+02 5.41e-01 8.12e-02

t-value 1.30e+01 1.03e+01 4.15e+01 3.92e+01
FHH mean 6.44e+00 1.51e+01 1.84e+00 8.71e-01
15 var. 2.52e+01 1.35e+02 3.53e-01 4.88e-02

t-value 9.07e+00 3.40e+00 2.19e+01 2.74e+01
FWH mean 3.56e+02 1.67e+01 8.29e+00 4.51e+00

10 var. 1.18e+04 4.64e+00 4.99e-01 6.72e-01
t-value 2.32e+01 7.39e+00 8.30e+01 3.88e+01

FWH mean 5.81e+01 1.06e+01 4.53e+00 1.56e+00
15 var. 6.20e+02 9.26e+00 2.47e-01 6.27e-02

t-value 1.65e+01 1.88e+00 6.45e+01 4.37e+01
F5 F6 F7 F8

SoD mean 1.03e-01 1.24e+00 4.04e+00 1.55e-04
var. 1.13e-03 1.22e+00 2.11e+00 1.03e-09

FHH mean 1.12e+00 4.82e+00 5.88e+00 5.97e+01
10 var. 8.39e-02 4.82e+00 2.65e+00 3.59e+03

t-value 2.48e+01 1.03e+01 5.98e+00 7.05e+00
FHH mean 3.67e-01 3.29e+00 4.38e+00 1.12e+01
15 var. 2.90e-02 2.46e+00 1.82e+00 3.14e+02

t-value 1.07e+01 7.58e+00 1.22e+00 4.46e+00
FWH mean 4.86e+00 2.78e+01 2.24e+01 4.09e+02

10 var. 3.46e-01 2.91e+01 9.37e+01 1.32e+04
t-value 5.71e+01 3.42e+01 1.33e+01 2.51e+01

FWH mean 2.61e+00 1.76e+01 1.56e+01 4.10e+02
15 var. 5.33e-02 1.02e+01 1.35e+01 1.12e+04

t-value 7.59e+01 3.42e+01 2.07e+01 2.73e+01

Table 2: The mean SoD code length is 13.23

The problem aims to minimize the fuel cost subject to the physical and operational constraints.
As a result, the ED problem is to find the optimal combination of generations that minimizes
the total cost while satisfying the specified constraints. To model the ED problem, a simplified
cost function [28] of each generator, represented as a quadratic function, can be put as:

C =
∑
j∈J

Fj(Pj) ,

Fj(Pj) = ajP
2
j + bjPj + cj ,

where

• C: the total generation cost;

• J : the set for all generators;

• Pj : the electrical output of generator j;

• Fj : the cost function for generator j;

11

F1 F2 F3 F4

SoD mean 6.86e-08 6.99e+00 2.47e-04 1.24e-02
var. 4.86e-15 2.68e+00 1.27e-08 1.34e-04

FHH mean 2.31e+00 1.13e+01 1.16e+00 5.93e-01
20 var. 5.03e+00 1.30e+02 5.24e-01 6.67e-02

t-value 7.27e+00 2.65e+00 1.13e+01 1.59e+01
FHH mean 1.33e+00 8.30e+00 1.23e+00 5.55e-01
25 var. 1.46e+00 5.00e+00 4.25e-01 6.95e-02

t-value 7.81e+00 3.36e+00 1.34e+01 1.45e+01
FWH mean 1.02e+02 1.11e+01 5.46e+00 1.94e+00

20 var. 4.69e+02 1.57e+01 2.19e-01 2.82e-02
t-value 3.32e+01 6.74e+00 8.25e+01 8.07e+01

FWH mean 5.42e+01 1.11e+01 4.35e+00 1.46e+00
25 var. 1.14e+03 5.14e+01 6.16e-01 1.11e-01

t-value 1.14e+01 3.92e+00 3.92e+01 3.08e+01
F5 F6 F7 F8

SoD mean 9.35e-02 1.32e+00 2.49e+00 1.27e-04
var. 1.18e-03 1.23e+00 2.00e+00 1.22e-14

FHH mean 2.32e-01 2.19e+00 3.71e+00 3.94e+00
20 var. 2.00e-02 1.27e+00 1.34e+00 1.53e+01

t-value 6.74e+00 3.89e+00 4.70e+00 7.13e+00
FHH mean 1.99e-01 1.90e+00 2.71e+00 3.52e+00
25 var. 1.08e-02 1.14e+00 1.46e+00 1.41e+01

t-value 6.83e+00 2.66e+00 †8.21e-01 6.64e+00
FWH mean 3.34e+00 3.72e+01 1.32e+01 9.45e+01

20 var. 1.12e-01 6.27e+01 3.94e+01 1.18e+03
t-value 6.84e+01 3.18e+01 1.18e+01 1.94e+01

FWH mean 1.89e+00 7.97e+00 6.50e+00 1.83e+02
25 var. 4.78e-02 2.75e+00 3.98e+00 2.15e+03

t-value 5.75e+01 2.35e+01 1.16e+01 2.78e+01

Table 3: The mean SoD code length is 22.81

• aj , bj , cj : the cost coefficients for generator j.

In the real world, the total generation should be equal to the total system demand plus
the transmission network loss. However, in this study, the network loss is not considered for
simplicity as in many studies. Thus the constraints of the problem include two parts. The first
part is the equality constraint. The total system power demand must be equal to the summation
of the output of each generator:

D =
∑
j∈J

Pj , (3)

where D is the total system demand.
Moreover, the generation output of each unit should be within its minimum and maximum

limits. Such a condition introduces the inequality constraint for each generation unit, such as
for generator j:

Pjmin ≤ Pj ≤ Pjmax ,

where Pjmin and Pjmax are the minimum and maximum output of generator j, and Pj is the
desired output.

12

In reality, the objective function of economic dispatch problem is more complicated due to
the valve-point effects, the change of fuels, and other potential practical factors. Therefore,
nonsmooth cost functions should be taken into consideration instead of the simplest form as
Equation (3). The inclusion of the valve-point effects makes the modeling of the incremental
fuel cost function of the generation units more practical. Such a modification increases the non-
linearity as well as the number of local optima in the search space. Hence, the employed search
algorithm may be trapped in the local optimal more easily. The incremental fuel cost function
of the generator with the valve-point effects can be put as [15]:

Fj(Pj) = ajP
2
j + bjPj + cj + |ej sin(fj × (Pjmin − Pj))| , (4)

where ej and fj are the coefficients for generator j to reflect the valve-point loading effects.
In this study, we focus on solving the ED problem with the valve-point loading effects, which

is modeled as Equation (4). We applied the proposed method as an optimization tool. The
equality and inequality constraints are handled through repair. Detail descriptions are given in
the following section.

6.2 Our Solution: rECGA for Economic Dispatch

The integration of ECGA and SoD, rECGA, can generally handle global optimization problems.
However, certain extra efforts have to be made to employ rECGA to tackle the ED problem.
Among the most important topics for solving the ED problem may be the equality and inequality
constraints. These constraints divide the problem search space into complicated areas. This
condition renders the local search mechanism inefficient and ineffective. As a result, we did not
use the optional local search operator when handling the ED problem.

Furthermore, in order to deal with the constraints, based on the repair concept, we developed
a constraint handling technique specifically for the ED problem. Repairing solutions stands for
transforming infeasible solutions into feasible one through certain procedure. For the equality
constraint (Equation (3)) in the ED problem, we repair infeasible solutions in the following way:
First, we create a sequence from 1 to the number of generator in a random order. Each number
in the sequence represents one designated generator. The sequence indicates the order in which
we adjust the output of the generation for making the solution feasible. For example, if the
generated sequence is 4, 2, 1, 5, 3, we will firstly process generator 4, then generator 2, and so
on. To process a generator, we check the equality constraint, i.e., the sum of the output has to
be equal to the total power demand. If the equality constraint is not satisfied, the output of the
generator under processing is modified according to:

P ′
i = min(UBound(Pi),max((D −

n∑
j=1,j 6=i

Pj),LBound(Pi))) , (5)

where D is the system power demand, LBound(Pi) and UBound(Pi) are the lower bound and
upper bound of Pi, i.e., the inequality constraint of Pi.

The proposed algorithm, rECGA, incorporating the constraint handling technique is capable
of tackling the ED problem effectively. With the adoption of the proposed repair mechanism,
rECGA for solving the ED problem can be outlined as:

1. Initialize a population of size N at random according to the constraints posed to the
generator output.

2. Apply tournament selection of size S.

3. Use SoD to encode each dimension of the variables.

13

Generator Pmin(MW) Pmax(MW) a b c e f

1 100 600 0.001562 7.92 561 300 0.0315
2 100 400 0.00482 7.97 78 150 0.063
3 50 200 0.00194 7.85 310 200 0.042

Table 4: Parameters for test case I (3-unit system) with the valve-point loading effect. a, b, c, e,
and f are the cost coefficients in the fuel cost function: Fj(Pj) = ajP

2
j + bjPj + cj + |ej sin(fj ×

(Pjmin − Pj))|.

4. Model the population composed of the encoded individuals by using a greedy MPM search.

5. Stop if the MPM model has converged.

6. Generate a new population with the MPM model.

7. Repair the infeasible individuals in the population.

8. Return to step 2.

In order to observe the effectiveness and to verify the performance of rECGA for ED, two ED
problem instances, one consisting of 3 generators and the other consisting of 40 generators, are
served as a testbed in the study. The experimental results on the two ED problems are presented
in the next section.

6.3 Verification: Numerical Experiments

In this paper, we focus on solving the ED problem with nonsmooth cost functions considering the
valve-point effects for verifying the utility of the proposed framework, rECGA. The nonsmooth
cost functions were described as Equation (4). In order to examine the performance, rECGA for
ED was applied to two ED problems which were adopted as test problems in the literature [15, 21]
for the comparison purpose. One consists of 3 generation units, and the other consists of 40
generation units. The input data for the 3-generator system are given by Walters and Sheble [15],
and those for the 40-generator system are given by Shinha et al. [21]. The detailed problem
parameters for the two test problems, including the lower bound and upper bound for the
output of each generator as well as the coefficients for computing the cost functions, are given
in Tables 4 and 5. The total system demand for the 3-unit system is 850MW, and that for the
40-unit system is 10500MW. It has been proven that for the 3-unit system, the global optimal
solution is 8234.07 [29]. As for the 40-unit system, the global optimal solution has not been
determined. To the best of our limited knowledge, the known best solution reported in the
literature is 122252.265 [26].

The parameter settings in rECGA for ED are that population size = 400, crossover proba-
bility = 0.975, tournament size = 8, γ = 0.5, ε = 0.999, and the maximum function evaluations
is 200000. 100 independent trails were conducted for each problem to collect statistically signif-
icant results. The obtained results for the 3-unit system are shown in Table 6 and are compared
to those obtained by IEP [30], EP [22], and MPSO [26]. The results for the small ED problem
indicate that rECGA was able to find the global optimal solution presented by Lin et al. [29].

In the case of the 40-unit system, the results are compared with those obtained by using
other methods given in [21] such as classical EP (CEP), fast EP (FEP), modified FEP (MEFP),
and improved FEP (IFEP) as well as those obtained by using MPSO in [26]. The minimum
costs, i.e., the best solutions, achieved by each method are presented in Table 7. We can see
that the best solution offered by rECGA is 121462.3591, which is better than the known best
solution, 122252.265, presented in [26]. For the purpose of access and verification, the generation

14

Generator Pmin(MW) Pmax(MW) a b c e f

1 36 114 0.0069 6.73 94.705 100 0.084
2 36 114 0.0069 6.73 94.705 100 0.084
3 60 120 0.2028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.6 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.2 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.4 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.1 801.32 300 0.035
26 254 550 0.00277 7.1 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.0114 5.35 148.89 120 0.077
31 60 190 0.0016 6.43 222.92 150 0.063
32 60 190 0.0016 6.43 222.92 150 0.063
33 60 190 0.0016 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

Table 5: Parameters for test case II (40-unit system) with the valve-point loading effect. a, b, c,
e, and f are the cost coefficients in the fuel cost function: Fj(Pj) = ajP

2
j +bjPj +cj + |ej sin(fj×

(Pjmin − Pj))|.

outputs (the values of the decision variables) and the corresponding cost (the objective values)
of the best solution offered by rECGA are given in Table 8.

15

Generator GA IEP EP MPSO rECGA
(pop=20) (par=20)

1 300 300.23 300.26 300.27 300.267
2 400 400 400 400 400
3 150 149.77 149.74 149.73 149.733

TP 850 850 850 850 850
TC 8237.6 8234.09 8234.07 8234.07 8234.07

Table 6: Comparison of the experimental results obtained by various methods on the nonsmooth
cost function considering the valve-point loading effect. For the 3-unit system, EP, MPSO, and
rECGA were able to find the global optimum [29].

CEP FEP MFEP IFEP MPSO rECGA
Minimum Cost 123488.3 122679.7 122647.6 122624.35 122252.265 121462.3591

Table 7: Comparison of the experimental results obtained by various methods on the nonsmooth
cost function considering the valve-point loading effect. For the 40-unit system, rECGA was
able to find the best solution.

Because of the stochastic nature of evolutionary computation methods, to avoid reporting
the results of a “lucky shot”, comparison of the experimental results in a statistical manner has
to be conducted. First of all, Table 9 shows the range of the results in the 100 trials obtained
by CEP, FEP, MFEP, IFEP, MPSO, and rECGA, where the listed results except for those of
rECGA are given in [21, 26]. As we can observe in Table 9, the distribution of the rECGA
results may be considered better than those for the other evolutionary algorithms.

Furthermore, to more carefully and accurately compare the performance of rECGA and
MPSO [26] on the 40-unit problem, the t-test was conducted for the statistical significance of
the obtained experimental results. Since the actual results of the 100 trials for MPSO is not
available, in order to get a fair performance comparison and capability assessment, we set up
two conditions under which the t-test was conducted. Based on the data given in Table 9, the
first condition is that the MPSO results contain forty-seven 122252.265, which is the optimum
reported for MPSO [26], and fifty-three 122750, which is the mean value of 122500 and 123000.
Table 10 demonstrates the t-test results for condition 1. Given the p-value: 2.26× 10−55, which
is smaller than the commonly used statistical significant levels, such as 0.05 (5%), 0.01 (1%), or
0.001 (0.1%), we can conclude that the performance of rECGA on the 40-unit ED problem is
statistically significantly better than that of MPSO on the same problem. For condition 2, the
MPSO results contain forty-seven 122252.265, which is the optimum reported for MPSO [26],
and fifty-three 122500, which is the best value in the range from 122500 to 123000. The t-
test results under condition 2 are presented in Table 11. Due to the change of the standard
deviation, the p-value becomes 9.09× 10−91. The small p-value prevents us from accepting the
null hypothesis, which is interpreted as that the performance of rECGA and MPSO on the
problem is equivalent.

According to the experimental results, we can known that the proposed algorithm, rECGA
= ECGA with SoD, performs well on the two ED problems. Particularly, for the 40-unit ED
problem, we improved the known best solution from 122252.265 [26] to 121462.3591. Moreover,
from Tables 9, 10, and 11, we can observe that rECGA statistically significantly outperformed
MPSO on the 40-unit ED problem. Therefore, rECGA is able to solve ED problems effectively.

16

Generator Pmin(MW) Pmax(MW) Output Cost
1 36 114 110.80098 925.11565
2 36 114 110.88806 926.56631
3 60 120 97.40449 1190.63739
4 80 190 179.73300 2143.55011
5 47 97 96.15215 840.66343
6 68 140 140.00000 1596.46432
7 110 300 299.99898 3216.41474
8 135 300 284.62219 2780.24662
9 135 300 284.61234 2798.46198
10 130 300 130.00001 2502.06532
11 94 375 94.00003 1893.30606
12 94 375 94.00027 1908.17291
13 125 500 214.76169 3792.11715
14 125 500 394.27878 6414.85790
15 125 500 304.52026 5171.21428
16 125 500 394.28449 6436.71537
17 220 500 489.27966 5296.71703
18 220 500 489.27855 5288.76474
19 242 550 511.27996 5540.94200
20 242 550 511.28163 5540.95823
21 254 550 523.28030 5071.30855
22 254 550 523.28419 5071.38735
23 254 550 523.28495 5057.33548
24 254 550 523.28151 5057.26621
25 254 550 523.28214 5275.14526
26 254 550 523.27977 5275.09678
27 10 150 10.00013 1140.52698
28 10 150 10.00517 1140.64280
29 10 150 10.00018 1140.52812
30 47 97 87.84287 707.21302
31 60 190 189.99927 1643.98840
32 60 190 189.99996 1643.99109
33 60 190 189.99993 1643.99098
34 90 200 199.99994 2101.01644
35 90 200 199.99993 2043.72638
36 90 200 199.99972 2043.72436
37 25 110 110.00000 1220.16612
38 25 110 109.99978 1220.16484
39 25 110 109.99871 1220.15859
40 242 550 511.28401 5541.02984
Total Generation & Total Cost 10500 121462.3591

Table 8: The generator outputs and the corresponding costs of the best solution obtained by
rECGA.

17

Range of Cost
127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5

Method - - - - - - - - - - - -
126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5 121.0

CEP 10 4 - 16 22 42 4 2 - - - -
FEP 6 - 4 2 10 20 26 24 6 - - -

MFEP - - - - - 14 26 50 10 - - -
IFEP - - 2 - 4 4 18 50 22 - - -
MPSO - - - - - - - - 53 47 - -
rECGA - - - - - - - - - 2 97 1

Table 9: Comparison of methods on relative frequency of convergence in the ranges of cost.

rECGA MPSO
mean 121777.649963 122516.06455

t-value 27.8068829451749
p-value 2.2645299161711E-55

Table 10: The t-test for the experimental re-
sults obtained by rECGA and MPSO under
condition 1, where the rECGA data set con-
tains the actual results, and the MPSO data
set contains forty-seven 122252.265 and fifty-
three 122750.

rECGA MPSO
mean 121777.649963 122383.56455

t-value 39.4214198098397
p-value 9.0857670116394E-91

Table 11: The t-test for the experimental re-
sults obtained by rECGA and MPSO under
condition 2, where the rECGA data set con-
tains the actual results, and the MPSO data
set contains forty-seven 122252.265 and fifty-
three 122500.

7 Summary and Conclusions

In this study, we proposed an adaptive discretization method, called split-on-demand (SoD),
to enable the probabilistic model building genetic algorithms (PMBGAs) designed for handling
discrete variables for real-parameter optimization. SoD was described in detail with its proce-
dure, effect, and usage. For showing the utility of SoD, the extended compact genetic algorithm
(ECGA) was employed as an optimization engine, and SoD was used as a variable-type inter-
face. By combing ECGA and SoD, the real-coded ECGA (rECGA) were applied to a set of
benchmark functions and two economic dispatch (ED) problems. The results on benchmark
functions indicated that SoD was better than two well-known discretization methods: the fixed-
height histogram (FHH) and the fixed-width histogram (FWH). The results on the ED problems
demonstrated that rECGA successfully achieved the global optimal solution of the 3-unit ED
problem and was able to obtain the solutions better than the known best solution reported in
the literature for the 40-unit ED problem.

The outcome of this study indicates that it is not only possible but also practical to employ
an optimization method designed for handling discrete variables to tackle problems consisting of
continuous variables, as long as an appropriate interface is adopted. Although many researchers
in the EC field do not consider the variable-type transformation as an issue, in practice, except
for some limited cases, most algorithms designed for discrete variables do not perform well on
continuous problems and vice versa. By comparing the real-coded ECGA to the algorithms
specifically designed for handling continuous variables, such as particle swarm optimization
(MPSO) and evolutionary programming (IFEP, MFEP, FEP, CEP), this paper provides the
experimental results to serve as the proof of principle for transforming the variable type while
retaining the capability of the optimization algorithm.

18

Finally, the future work of this study includes applying rECGA to other important problems
as well as developing different integrations of optimization algorithms and variable-type trans-
forming techniques. Moreover, theoretical understandings for the quality of the transforming
techniques, such as SoD, FHH, and FWH, as well as for the interaction between the engine and
the interface should also be considered.

Acknowledgments

The work was partially sponsored by the National Science Council of Taiwan under grants NSC-
95-2221-E-009-092, NSC-95-2627-B-009-001, and NSC-95-2815-C-009-033-E as well as by the
MOE ATU Program. The authors are grateful to the National Center for High-performance
Computing for computer time and facilities.

References

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University
of Michigan Press, 1975, ISBN: 0-262-58111-6.

[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. New
York: Addison-Wesley, 1989.

[3] ——, The Design of Innovation: Lessons from and for Competent Genetic Algorithms, ser.
Genetic Algorithms and Evoluationary Computation. Kluwer Academic Publishers, June
2002, vol. 7, ISBN: 1-4020-7098-5.

[4] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation, analysis,
and first results,” Complex Systems, vol. 3, no. 5, pp. 493–530, 1989.

[5] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation, ser. Genetic algorithms and evolutionary computation. Boston,
MA: Kluwer Academic Publishers, October 2001, vol. 2, ISBN: 0-7923-7466-5.

[6] M. Pelikan, D. E. Goldberg, and F. G. Lobo, “A survey of optimization by building and
using probabilistic models,” Computational Optimization and Applications, vol. 21, no. 1,
pp. 5–20, 2002.

[7] M. Sebag and A. Ducoulombier, “Extending population-based incremental learning to con-
tinuous search spaces,” in Proceedings of the Fifth International Conference on Parallel
Problem Solving from Nature (PPSN V), 1998, pp. 418–427.

[8] I. L. Servet, L. Trave-Massuyes, and D. Stern, “Telephone network traffic overloading di-
agnosis and evolutionary computation techniques,” in Proceeings of the Third European
Conference on Artificial Evolution (AE 97), 1997, pp. 137–144.

[9] S.-Y. Shin and B.-T. Zhang, “Bayesian evolutionary algorithms for continuous function op-
timization,” in Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001),
2001, pp. 508–515.

[10] C. W. Ahn, R. S. Ramakrishna, and D. E. Goldberg, “Real-coded Bayesian optimization
algorithm, bringing the strength of BOA into the continuous world,” in Proceedings of
Genetic and Evolutionary Computation Conference 2004 (GECCO-2004), 2004, pp. 840–
851.

19

[11] G. R. Harik, “Linkage learning via probabilistic modeling in the ECGA,” University of
Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL
Report No. 99010, 1999.

[12] J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Scientific, November 1989,
ISBN: 9971508591.

[13] S. Tsutsui, M. Pelikan, and D. E. Goldberg, “Evolutionary algorithm using marginal his-
togram models in continuous domain,” University of Illinois at Urbana-Champaign, Illinois
Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 2001019, 2001.

[14] J. A. Nelder and R. Mead, “A simplex method for function minimization,” Computer
Journal, vol. 7, pp. 308–315, 1965.

[15] D. C. Walters and G. B. Sheble, “Genetic algorithm solution of economic dispatch with
valve point loading,” IEEE Transaction on Power Systems, vol. 8, no. 3, pp. 1325–1332,
August 1993.

[16] G. B. Sheble and K. Brittig, “Refined genetic algorithm - economic-dispatch example,”
IEEE Transactions on Power System, vol. 10, no. 1, pp. 117–124, 1995.

[17] P. H. Chen and H. C. Chang, “Large-scale economic-dispatch by genetic algorithm,” IEEE
Transactions on Power System, vol. 10, no. 4, pp. 1919–1926, 1995.

[18] S. Baskar, P. Subbaraj, and M. V. C. Rao, “Hybrid real coded genetic algorithm solution
to economic dispatch problem,” Computers and Electrical Engineering, vol. 29, no. 3, pp.
407–419, 2003.

[19] T. Yalcinoz, H. Altun, and M. Uzam, “Economic dispatch solution using a genetic algorithm
based on arithmetic crossover,” in IEEE Power Tech Conference, 2001.

[20] T. Jayabarathia, K. Jayaprakasha, D. N. Jeyakumarb, and T. Raghunathan, “Evolutionary
programming techniques for different kinds of economic dispatch problems,” Electric Power
Systems Research, vol. 73, no. 2, pp. 169–176, 2005.

[21] N. Shinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary programming tech-
nique for economic load dispatch,” IEEE Transactions on Evolutionary Computation, vol. 7,
no. 1, pp. 83–94, 2003.

[22] H. T. Yang, P. C. Yang, and C. L. Huang, “Evolutionary programming based economic
dispatch for units with non-smooth fuel cost functions,” IEEE Transactions on Power
System, vol. 11, no. 1, pp. 112–117, 1996.

[23] K. P. Wong and J. Yuryevich, “Evolutionary-programming-based algorithm for
environmentally-constrained economic dispatch,” IEEE Transactions on Power System,
vol. 13, no. 2, pp. 301–306, 1998.

[24] Z. L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the
generator constraints,” IEEE Transactions on Power System, vol. 18, no. 3, pp. 1187–1195,
2003.

[25] T. A. A. Victoire and A. E. Jeyakumar, “Hybrid pso-sqp for economic dispatch with valve-
point effect,” Electric Power Systems Research, vol. 71, no. 1, pp. 51–59, 2004.

20

[26] J. B. Park, K. S. Lee, J. R. Shin, and K. Y. Lee, “A particle swarm optimization for
economic dispatch with nonsmooth cost functions,” IEEE Transactions on Power System,
vol. 20, no. 1, pp. 34–42, 2005.

[27] T. A. A. Victoire and A. E. Jeyakumar, “Particle swarm optimization to solving the eco-
nomic dispatch considering the generator constraints,” IEEE Transactions on Power Sys-
tem, vol. 19, no. 4, pp. 2121–2122, 2004.

[28] J. W. Allen and F. W. Bruce, Power Generation, Operation, and Control. New York:
Wiley, 1984.

[29] W. M. Lin, F. S. Cheng, and M. T. Tsay, “An improved tabu search for economic dispatch
with multiple minima,” IEEE Transactions on Power System, vol. 17, no. 1, pp. 108–112,
2002.

[30] Y.-M. Park, J. R. Won, and J. B. Park, “New approach to economic load dispatch based
on improved evolutionary programming,” Eng. Intell. Syst. Elect. Eng. Commun, vol. 6,
no. 2, pp. 103–110, June 1998.

21

	Introduction
	Extended Compact Genetic Algorithm
	Split-on-Demand
	Real-Coded ECGA
	Comparisons with FHH & FWH
	Real-World Applications
	The Problem: Economic Dispatch
	Our Solution: rECGA for Economic Dispatch
	Verification: Numerical Experiments

	Summary and Conclusions

