
On The Extension of ECGA for Different Variable Types:
Integers and Real Numbers

Ping-Chu Hung

NCLab Report No. NCL-TR-2007010
June 2007

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

擴充 ECGA 於不同的資料型別：
整數與實數

On The Extension of ECGA for Different Variable Types:

Integers and Real Numbers

研 究 生：洪秉竹

指導教授：陳穎平 教授

中 華 民 國 九 十 六 年 六 月

擴充 ECGA 於不同的資料型別：整數與實數

On The Extension of ECGA for Different Variable Types:
Integers and Real Numbers

研 究 生：洪秉竹 Student：Ping-Chu Hung

指導教授：陳穎平 Advisor：Ying-Ping Chen

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

摘要

延伸式精簡基因演算法(ECGA)是一種能解決二進位難題的演算法。因

為具有偵測建構區塊(building blocks)的能力，ECGA 可靠而且精

確。但當我們直接應用 ECGA 於整數問題時，仍會遇到某些困難。在

本研究中，我們提出一種伸延 ECGA 的新演算法，稱為整數型延伸式

精簡基因演算法(iECGA)。iECGA 使用修改過的機率模型並繼承了偵

測建構區塊的能力。iECGA 特別設計來處理整數問題，並能避免 ECGA

遇到的困難。

為了解決固態元件中的特性量定(characteristic determination)

問題，我們也發展了一種新的最佳化架構，包含了 ECGA 及一種離散

化技巧稱為隨選分割(SoD)。因為特性量定問題中的變數因為物理性

質，所以幾乎都是實數，ECGA 只能處理離散型式的問題，因此需要

一種機制轉換資料型態。所以在本研究中，我們將提出的架構應用在

三個研究個案上，並展示這個演化計算領域中的方法，不止提供了高

品質的最佳化結果，也有處理不同問題的彈性。

關鍵字：基因演算法、延伸式精簡基因演算法、隨選分割、建構區塊、

特性量定

Abstract

Extended compact genetic algorithm (ECGA) is an algorithm that can solve hard prob-

lems in the binary domain. ECGA is reliable and accurate because of the capability of

detecting building blocks, but certain difficulties are encountered when we directly apply

ECGA to problems in the integer domain. In this paper, we propose a new algorithm

that extends ECGA, called integer extended compact genetic algorithm (iECGA). iECGA

uses a modified probability model and inherits the capability of detecting building blocks

from ECGA. iECGA is specifically designed for problems in the integer domain and can

avoid the difficulties that ECGA encounters.

We also develop a new optimization framework that consists of the extended com-

pact genetic algorithm (ECGA) and split-on-demand (SoD), an adaptive discretization

technique, to tackle the characteristic determination problem for solid state devices. As

most decision variables of characteristic determination problems are real numbers due to

the modeling of physical phenomena, and ECGA is designed for handling discrete-type

problems, a specific mechanism to transform the variable types of the two ends is in or-

der. Therefore, in this study, we employ the proposed framework on three study cases to

demonstrate that the technique proposed in the domain of evolutionary computation can

provide not only the high quality optimization results but also the flexibility to handle

problems of different formulations.

keywords:

Genetic algorithms, extended compact genetic algorithms, iECGA, split-on-demand, build-

ing blocks, characteristic determination

i

Contents

Abstract i

Table of Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivation and Objective . 2

1.2 Road Map . 2

2 Brief Review of ECGA 4

2.1 Genetic Algorithms and Linkage Problem 4

2.2 Linkage Learning and Probability Model 5

2.3 Extended Compact Genetic Algorithm . 7

2.4 ECGA on Trap Problems . 8

2.5 Problems in Integer Domain . 9

3 Extend ECGA to Integer Domain 11

3.1 Marginal Product Model . 11

3.2 MDL Model . 12

4 Performances of iECGA 13

4.1 Test Functions . 13

4.2 Experiments and Parameters . 15

4.3 Experimental Results . 16

iii

4.4 Discussion . 17

5 Extend ECGA to Real-valued Domain 25

5.1 Split on Demand for Discretization . 25

5.2 ECGA with SoD . 27

6 Apply rECGA on Characteristic Determination Problem 28

6.1 Conventional TFT . 28

6.2 TFT under High Gate Bias . 32

6.3 Frequency Response . 34

7 Conclusions 42

7.1 Summary . 42

7.2 Future Work . 43

7.3 Main Conclusions . 43

iv

List of Figures

4.1 The suboptimum of f2(x1x2) is at (0,0), but the optimum of f2(x1x2) is at

(7, 7). 15

4.2 The average(a) and best(b) fitness of three algorithms in f1. X-axis is the

length of a chromosome in the number of integers. Y-axis is the proportion

to maximum fitness. 19

4.3 The average(a) and best(b) fitness of three algorithms in f2. X-axis is the

length of a chromosome in the number of integers. Y-axis is the proportion

to maximum fitness. 20

4.4 The average(a) and best(b) fitness of three algorithms in f3. X-axis is the

length of a chromosome in the number of integers. Y-axis is the proportion

to maximum fitness. 21

4.5 The average(a) and best(b) fitness of three algorithms in f4. X-axis is the

length of a chromosome in the number of integers. Y-axis is the proportion

to maximum fitness. 22

4.6 The convergence speed of f1 and f2 . 23

4.7 The convergence speed of f3 and f4 . 24

5.1 Populations and possible split positions (vertical lines). The numbers close

to the positions are the order in which the positions are decided. 26

6.1 The structure and the high-conducting channel formed for the conventional

poly-Si TFT. 29

6.2 Experimental data and the match results for study case I. 30

6.3 TFT under high gate bias. 33

v

6.4 Experimental data and the match results for study case II. ELA, SSL, FLA,

and SPC are four different kinds of TFTs. 37

6.5 Experimental data and the match results for study case II. ELA, SSL, FLA,

and SPC are four different kinds of TFTs. 38

6.6 Structure of gate/SiO2/poly-Si and its equivalent circuit. 39

6.7 Frequency response for TFTs. 40

6.8 Match results for the frequency response. 41

vi

List of Tables

2.1 An example MPM for four genes . 6

2.2 The output of ECGA . 8

3.1 An MPM example in ECGA . 12

3.2 An MPM example in iECGA . 12

4.1 The cardinalities (d) and the length of building blocks (BB) of f2, f3, and f4 17

6.1 Parameters adopted in the real-coded ECGA for handling the three study

cases. 31

vii

Chapter 1

Introduction

Genetic Algorithms (GAs), proposed by John Holland [1], are powerful search techniques

based on principles of evolution. The solutions to our problems are represented as binary

strings, which are called “chromosomes”. Different evolutionary operators, such as muta-

tion and crossover, are performed on the chromosomes to generate “offsprings”. In each

generation, the offsprings are evaluated and selected as new parents. During the process

of evolution, the fitness of solutions becomes higher, and the best solution are chosen as

the final answer. Based on the concept of GA, many variations of GA are proposed, and

the original GA is called simple GA.

The traditional genetic operators such as one-point crossover and bitwise mutation

cannot appropriately handle the problems that require the utilization of linkage informa-

tion [2, 3]. Many problems in practical cannot be solved completely without the ability of

linkage learning, thus the concepts of genetic linkage and building blocks are the essential

components of GAs [4, 5]. As a consequence, the processing of genetic linkage, such as

detection and utilization, has attracted much attention in the field of evolutionary and

genetic computation.

The most popular way to gather linkage information from genes is to collect and

process the global, population-wise statistics. These variations of GAs based on statistics

are called estimation of distribution algorithms (EDAs) [6, 7]. Some EDAs assume all

genes or variables are independent, such as the population based incremental learning

(PBIL) [8], the univariate marginal distribution algorithm (UMDA) [9], and the compact

genetic algorithm (cGA) [10]. The others compute the dependencies and/or relations

1

between genes, such as the Bayesian optimization algorithm (BOA) [11], and the extended

compact genetic algorithm (ECGA) [12].

1.1 Motivation and Objective

The idea of ECGA is to solve hard problems by learning genetic linkage on the fly. ECGA

employs the marginal product model (MPM) to represent the joint probability distribution

of genes or variables and adopts the minimum description length (MDL) as the criterion

to determine how good the learned joint distribution is. Harik’s numerical experiments

indicate that ECGA has better performance than a simple GA does when solving hard

problems. When tackling binary optimization problems, ECGA is reported quick, reliable,

and accurate. However, if ECGA is applied on integer optimization problems, can it

perform as well as it can on binary ones? Moreover, if ECGA is applied on real-valued

problems, how to encode real numbers such that the advantages of ECGA can be keeped.

The easiest way to solve non-binary problems by ECGA is changing its representation–

encoding integers and real numbers as binary strings. When the cardinality of integers is

power of two, encoding does not complicate the problem. If the cardinality is not power

of two, encoding may cause perturbation of linkage information. In this paper, we reveals

the disadvantages when ECGA solves integer optimization problems. We also propose a

new algorithm called the integer extended compact genetic algorithm (iECGA) that can

efficiently solve hard integer problems.

When encountering real-valued problems, real extended compact genetic algorithm

(rECGA) [13], which employs a novel representation schema Split-on-Demand, is a suit-

able tool for solving probelms. In this paper, we will apply rECGA on a real-world

problem.

1.2 Road Map

The remainder of this book is structured in what follows. Chapter 2 presents an brief

introduction of extended compact genetic algorithms. The Chapter also presents the

probability models used by ECGA, which are called marginal product models (MPM).

2

Chapter 3 provides the discussion of problems in representing integers. We make the genes

be represented as integers and modify probability models to match up integers. Then,

Chapter 4 shows the experimental results of iECGA on “GA hard” problems of different

scales. All contents about integer ECGA are represented.

Chapter 5 describes the representation of real numbers in rECGA [13], which is called

Split-on-Demand. The Chapter also describes the procedure of rECGA. Chapter ?? de-

scribes the problems of characteristic determination in solid state devices. And the Chap-

ter provides the experimental result of rECGA on characteristic determination problems.

Finally, Chapter 7 concludes this paper by summarizing its contents, discussing important

results, showing possible future works, and offering out conclusions.

3

Chapter 2

Brief Review of ECGA

This chapter provides a brief review of genetic algorithms and introduces the term genetic

linkage problem. We also explain why linkage learning is one of the most important topics

in the field of genetic and evolutionary algorithm. After introducing GA and linkage

learning, we show the idea of compact genetic algorithm (cGA) [10] that the population

of GAs can be viewed as a probability model. Then We review extended compact genetic

algorithm (ECGA) [12, 14] that based on the concept of cGA.

2.1 Genetic Algorithms and Linkage Problem

For all creatures live in Nature, survival of the fittest happens everyday. The environment

gives all creatures a contest, and the penalty for losers is losing their lives. The contest

is so-called “selection”. During the process of natural selection, useless individuals are

eliminated, and strong or smart individuals can keep survive. Genetic algorithms are

proposed based on the concept of natural selection. In most genetic algorithms, the

life cycle contains three steps: selection, breeding, and evaluation. In selection step,

parents are selected from population. Then some operators like crossover and mutation

are used on parents to produce offsprings. The new offspring are evaluated and become

new population.

Since genetic algorithms are proposed, the importance of building blocks (BBs) and

their role in the working of GAs have long been recognized [1, 5]. Most problems are

composed of smaller sub-problems. That is, the solutions to problems can be decomposed

into several parts, which are called “building blocks”. During the process of simple GA,

4

BBs are often destructed by one-point or uniform crossover. If we can identify BBs

correctly and mixed them without destruction, good solutions will emerge more quickly.

The problem of identifying BBs are called “linkage problem”.

The most popular way to solve linkage problem is to collect and process the global,

population-wise statistics. These variations of GAs based on statistics are called estima-

tion of distribution algorithms (EDAs) [6, 7]. The extended compact genetic algorithm

(ECGA) [12], which is based on the compact genetic algorithm (cGA) [10], is a robust

and efficient GA that has linkage learning ability. In the next section, we will introduce

how ECGA learns linkage from probability models.

2.2 Linkage Learning and Probability Model

There are two important assertions behind the concept of ECGA. Firstly, learning a

“good” probability distribution is equivalent to learning genetic linkage. Secondly, the

“goodness” of a probability distribution is based on how much computational resource,

mainly the space, the computer system needs to store the population and the distribution.

The first assertion makes it rational to learning linkage from probability models, and the

second assertion shows one way to define the quality of a probability model.

Compact genetic algorithm (cGA) models a binary GA population as a vector of

probability distribution. Assume an individual is a n-bit binary string b1b2 . . . bn, and

P [i] is the probability that bi = 1. For example, if 70 percents of individuals have one

on the first bit, P [1] = 0.7. Since the population can be modeled as distribution, the

crossover operator can be modeled as operation on distribution. Thus, finding the optimal

solution in cGA is equivalent to finding the optimal probability distribution. Because the

probability of each gene is independent, cGA does not have the ability to maintain linkage

information.

ECGA extends the probability model in cGA from a probability vector to the marginal

product model (MPM). MPMs are similar to the models employed by cGA and PBIL,

except that they can represent the joint probability distribution over more than one gene

at a time. As an example, a simple MPM is shown in Table 2.1. MPM divides the genes or

5

group [0 3] group [1] group [2]
allele prob. allele prob. allele prob.
00 0.1 0 0.5 0 0.6
01 0.3 1 0.5 1 0.4
10 0.2
11 0.4

Table 2.1: An example MPM for four genes

variables into several groups. In Table 2.1, four genes are divided into three groups [gene

0, gene 3], [gene 2], and [gene 1]. For each group, we count the occurrence of different

patterns in the whole population and store it in the table. We choose the MPM for two

reasons: 1) they make the exposition simpler; and 2) the structure of the model can be

directly translated into a linkage map.

The object of ECGA is to find “good” distributions. How do we define the criterion to

judge the goodness of different probability distributions? The idea is to adopt the concept

of Occam’s Razor long recognized in the domain of machine learning [15]:

By reliance on Occam’s Razor, good distributions are those under which the

representation of the distribution using the current encoding, along with the

representation of the population compressed under that distribution, is mini-

mal.

Thus we know that good distribution has two criteria: small model representation and

small population representation. One way to realize this concept is the minimum descrip-

tion length (MDL) principle [16]. Following the definition, we can use the MDL model on

MPMs and define the model complexity and the compressed population complexity of a

probability distribution as

Model Complexity = log2 N

m∑
i=1

2si (2.1)

and

Compressed Population Complexity = N

m∑
i=1

∑
p

−p log2 p , (2.2)

where m is the number of groups, si is the size of ith group, p is the probability of an

allele pattern in ith group, and N is the population size. The combined complexity is the

summation of the model complexity and the compressed population complexity.

6

2.3 Extended Compact Genetic Algorithm

In the previous section, we know how to judge the goodness of a probability distribution.

Now the problem is how to find a most suitable distribution for a population. We use

greedy search to find the most suitable distribution.

Assume the length of binary string is L. First, we assume all genes are independent and

each gene forms a separate group, that is, the MPM [0][1] . . . [L− 2][L− 1] is the starting

model for the building process. Then, we try to merge each pair of groups into a new

distribution. As a result, [0, 1] . . . [L−1], [0][1, 2] . . . [L−1], . . . , and [0][1] . . . [L−2, L−1]

are produced. For every produced MPM, the combined complexity is calculated, and we

compare all complexities as well as original MPM. If a produced MPM [0, 1] . . . [L − 1]

has smallest complexity, group [0] and group [1] are combined as a new group [0,1]. The

combination process continues until it is impossible for any improvement on complexity.

After the process stops, we have a MPM representing the linkage between genes and can

use the configuration to perform crossover.

The procedure of ECGA is similar to that of a simple GA: initialization, evaluation,

parent selection, and crossover. The difference between ECGA and a simple GA is that

ECGA models the probability distribution of the parents. Then a greedy MPM search

as mentioned before is used to find the linkage information. After all, BB-wise crossover

is performed by utilizing the linkage information. Since the BBs will not be destroyed

by crossover operator, the speed of evolution will be faster than simple GA. Algorithm 1

shows the procedure of ECGA.

Algorithm 1 The procedure of ECGA

Generate individuals at random
Generation← 1
while Generation < maxGen do

Calculate fitness values of individuals
Perform tournament selection
Use MPM to build a joint probability distribution
Use the generated MPM to perform crossover
Generation← Generation + 1

end while
Report the result

7

Generation Marginal Product Model
[0 1 2 3][32 33 34 35][39][16 18 20 22]

1 [21 23][4 5 6 7][12 13 14 15][36 37 38]
[19 27][8 9 10 11][17 28 29 30 31][24 25 26]
[0 1 2 3][32 33 34 35][36 37 38 39][4 5 6 7]

2 [24 25 26 27][12 13 14 15][28 29 30 31]
[16 17 18 19][8 9 10 11][20 21 22 23]

[0 1 2 3][28 29 30 31][20 21 22 23][4 5 6 7]
3 [36 37 38 39][32 33 34 35][12 13 14 15]

[8 9 10 11][16 17 18 19][24 25 26 27]
[0 1 2 3][28 29 30 31][24 25 26 27][4 5 6 7]

4 [36 37 38 39][32 33 34 35][12 13 14 15]
[8 9 10 11][16 17 18 19][20 21 22 23]

Table 2.2: The output of ECGA

2.4 ECGA on Trap Problems

In this section, we will show the performance of ECGA to solve a trap function [17, 18]

as an example. Trap functions are considered as fundamental components of GA-hard

problems and are usually chosen to test the functionality of learning genetic linkage [12, 3].

A 4-bit trap function can be defined as g1 : Z4
2 → Z by

g1(x1x2x3x4) =

 5, if xi = 0 for all i ,

x1 + x2 + x3 + x4, otherwise.

This function is called “trap” function because such functions exhibit a local optimum

towards which the population converges. g1(1101) is greater than g1(0101), so we better

put a one in the first bit. g1(0101) is greater than g1(0001), so we better put a one in the

second bit. As a result, the population will converge at 1111, where g1(1111) = 4 is the

local optimum.

Several small trap functions can constitute a big function. Ten 4-bit trap function

constitute a 40-bit GA-hard function. From the literature, we know that a simple GA

without the capability of learning genetic linkage cannot find the optimal solution to g1

if the chromosome encoding is not appropriate [19]. Only competent GAs [4] that can

regard related four bits as one building block are able to find the optimal solution. That

is why we take trap functions to verify the ability of ECGA.

In this simple test, the population size is 1000, and tournament size is 32. The MPM

8

models searched in each generation is shown in Table 2.2. In the first generation, ECGA

does not detect all building blocks correctly, but it soon finds all building blocks in second

generation. The optimal solution “0000 . . . 0000” is found in 4th generation. Detailed

experiments and analysis are provided in [12, 14].

2.5 Problems in Integer Domain

When we directly apply an algorithm that solves problems in binary domain, such as

ECGA, to problems in integer domain, certain difficulties will be encountered. The first

difficulty is the gap between the genotype and the phenotype. That is, if the cardinality

of an integer is not power of two, we have to choose a nearest number of bits to represent

the integer. An integer ranging from 0 to 15 needs 4 bits to represent, but an integer

ranging from 0 to 10 still need 4 bits to represent. It is easy to convert an integer to

binary string, but truncation will happen in opposite converting.

Hence, to solve the representation gap, there are two general ways. One is to limit

the chromosome in a given range. All genes generated out of range will be discarded.

Another way is to map redundant binary strings onto the same slot. Both ways have

their disadvantages. Let take integers ranging from 0 to 10 as individuals and integer

value as the fitness. If f(1010) = 10 and f(0111) = 7 are chosen as parents, 6 kinds of

offsprings must be discarded, and the average fitness of the remainder is only 5.6. Because

most offsprings begin at 1 are discarded, the fitness of the remainder becomes lower. Let

try another way where all individuals greater than 10 are mapped to modular 10, then the

average fitness of offsprings of f(1010) = 10 and f(0111) = 7 is 4.75! In both ways, we

try to mix two superior individuals, but the results do not preserve the quality of parents.

The gap between integers and binaries cancels the advantage of GAs.

The second difficulty comes from the linkage learning ability of ECGA. In the case a

problem is composed of several integer problems, the bits that belong to the same integer

have linkage, and the integers that belong to the same building block also have linkage

at a higher level. In order to correctly find all building blocks, ECGA needs to discover

genetic linkage at two different levels. The extra computational cost may cause ECGA

9

inaccurate and unreliable. Moreover, the linkage ECGA finds at the bit level may not be

the actual linkage at the integer level at which we are solving the optimization problem.

One simple way to overcome these difficulties is to adopt the integer representation.

By using an integer vector to represent integers, there is no gap between the phenotype

and the genotype, and the linkage between the bits of the same integer, which is obvious

in integer optimization problems, is implicitly recognized. Therefore, an integer version

of ECGA is in order.

10

Chapter 3

Extend ECGA to Integer Domain

In this section, we propose a modified version of ECGA, integer extended compact genetic

algorithm (iECGA) [20]. All genes are represented as integers. The marginal product

models and MDL criterion are modified to fit new representation.

3.1 Marginal Product Model

We define an integer as ranging from lower bound l to upper bound u. The cardinality

is d = u − l + 1. An individual in iECGA is an integer vector, instead of a bit vector in

the original ECGA. In order to compare iECGA and ECGA in a pair point, we let the

cardinality be a power of two to avoid the gap between the phenotype and the genotype.

We choose l = 0 and u = 15 or u = 7, such that the cardinality will be 16 or 8, which

simplify the difficulties to represent an integer in ECGA and GA.

In ECGA, the implementation of MPM is a counting process. Let take an example

that s = [1, 3, 4] is a group of genes and |s| = 3 is the size of s. The example is shown in

Table 3.1. We count the occurrences of all possible patterns in the population (* means

“don’t care”), which is equivalent to the probability of the corresponding pattern. The

occurrence of 0*01* is two, so the probability is 2
n

where n is the population size.

In iECGA, we also have to count the occurrences of all possible patterns. Given the

upper bound u and the lower bound l, the cardinality of the domain is d = u − l + 1.

There are d|s| patterns for a group of size |s|. If we want to build the MPM, we have to

count all d|s| patterns. For example, in Table 3.2, the upper bound is u = 7, the lower

bound is l = 0, and the cardinality is d = 8. If the group of genes is [1, 3], we have to

11

Current Population
00110
01010
01110
01100
00010
10001

Pattern Count
0*00* 0
0*01* 2
0*10* 1
0*11* 2
1*00* 1
1*01* 0
1*10* 0
1*11* 0

Table 3.1: An MPM example in ECGA

Current Population
3472
1624
0314
6715
4360
7164

Pattern Count
0*0* 0
0*1* 1
0*2* 0

...
...

7*6* 1
7*7* 0

Table 3.2: An MPM example in iECGA

count the occurrence of 82 patterns in the population.

3.2 MDL Model

Beside modification of MPMs, we also have to modify the formula of complexity. Good

distribution has two criteria: small model representation and small population represen-

tation. These criteria are still applied to integer vectors. The base number in the formula

of model complexity is changed from 2 to d.

Model Complexity = log2 N
m∑

i=1

dsi (3.1)

And the compressed population complexity is invariant.

Compressed Population Complexity = N
m∑

i=1

∑
p

−p log2 p , (3.2)

The procedure of iECGA is almost the same as ECGA, except the MPMs and the

formula of complexity. The linkage information obtained in greedy MPM search is used

to perform crossover. In the next section, we will show the difference between iECGA

and ECGA and why integer representation is a must.

12

Chapter 4

Performances of iECGA

The purpose of this section is to show the difference between iECGA and ECGA. We

first define some GA-hard functions as fitness functions. Then we use GA, iECGA, and

ECGA to solve these functions. Finally, we will discuss the performance and properties

of iECGA.

4.1 Test Functions

The test functions required in this study should have certain trap structure in the fitness

landscape, so an algorithm cannot find the optimal solution without learning genetic

linkage. A deceptive function is one of such a function in which the low-order schema

fitness averages favor a particular local optimum, but the global optimum is located at

the complement of that local optimum’s position [19, 21]. To solve a deceptive function,

GA must have the ability to learn linkage. Therefore, we choose deceptive functions as

the basic components of our test functions.

The purpose of the experiments is to show whether iECGA outperforms ECGA in the

integer domain. Here we define the following four test functions in the integer domain.

Each test function is composed of several smaller deceptive functions. For example, if the

input length of a deceptive function is two integers, a test function with input length 10

is composed of five deceptive functions. In the following function definitions, we assume

u is the upper bound of a integer and the lower bound is 0.

13

f1(x) =

5, if x = 0

1, if x = 1, 2, 4, 8

2, if x = 3, 5, 6, 9, 10, 12

3, if x = 7, 11, 13, 14

4, if x = 15

The idea of f1 is simple. It is just a deceptive one-max function. A one-max function

counts the number of 1’s in a binary string, and the fitness is equivalent to the number of

1’s. If the string contains k 1’s, the fitness is k. The deception happens when the string

contains all 0’s. 0000 has the highest fitness.

The input of f1 is an integer range from 0 to 15, and then the integer is decomposed

into bits to count the number of ones. In the integer level, there is no building block, so

f1 is easy for GA, in which genes are integer vectors, to solve. But if we see it at the bit

level, we will find that the fitness is the number of 1’s. Since the local optimum and the

global optimum are located in two different directions, f1 is a deceptive function at the

bit level.

f2(x1x2) =

 4u, if xi = u for i = 1, 2

2u− x1 − x2, otherwise

f2 is also a deceptive function. The inputs of f2 are two integers. In general, when x1

and x2 becomes larger, the fitness is smaller. But the deception happens at the largest

value of x1 and x2. Figure 4.1 shows the landscape of f2.

f3(x1x2x3) =

 6u, if xi = u for i = 1, 2, 3

3u− x1 − x2 − x3, otherwise

f4(x1x2x3x4) =

 8u, if xi = u for i = 1, 2, 3, 4

4u− x1 − x2 − x3 − x4, otherwise

f3 and f4 are both designed for the integer domain. The global optimum is located at

(u, u, . . . , u), and the local optimum is located at (0, 0, . . . , 0). To solve these functions,

14

0

2

4

6

8 0
2

4
6

8

0

5

10

15

20

25

30

Figure 4.1: The suboptimum of f2(x1x2) is at (0,0), but the optimum of f2(x1x2) is at
(7, 7).

general GAs are not enough. Regarding related integers as a building block is a necessity

to accomplish the task.

4.2 Experiments and Parameters

In our experiments, the genes of iECGA and simple GA are integers, and the genes of

ECGA are binary strings. We use these algorithms to solve functions f1, f2, f3, and f4.

Each experiment is conducted in 30 independent runs, and the average fitness is reported.

Because both ECGA and iECGA use tournament selection, we also use tournament

selection in the simple GA. The tournament size is 32 in all experiments. Reported in

many empirical studies, GA with uniform crossover has the best performance, so we use

uniform crossover in the simple GA. Because of the memory limitation, the cardinality is

16 for f1 and f2, 8 for f3, and 4 for f4.

The maximum detectable length of building blocks in ECGA is log2 µ, where µ is the

population size. The length in bit of building blocks in our test problems are 8 or 9. In

all the experiments, the population size is 70,000, so the maximum detectable length is 16

bits. Three algorithms are executed up to 15 generations equivalent to 1,050,000 function

evaluations.

15

4.3 Experimental Results

In all of the test functions, the second best solution has a fitness value half of that of the

best solution. If the fitness value of the optimal solution is 20, the fitness value of the

second best solution is 10. We present the results of experiments as the proportion to the

maximum fitness, that is, we normalize the fitness to the range from 0 to 1. The scaled

fitness value of the optimal solution is 1, and the scaled fitness value of the second best

solution is 0.5.

The result of experiment one was shown in Figure 4.2. For function f1, three algorithms

perform perfectly and all have fitness 1.0 for chromosomes of all lengths.

In Figure 4.3, we can see that ECGA has problems finding the optimal solution. For all

chromosome lengths, ECGA can only find the second best solutions. The best and average

fitness values are all 0.5. When the chromosome length is smaller than 60 integers (240

bits), iECGA and GA perform perfectly, but the performance of the simple GA decays

quickly when the chromosome gets longer. When the chromosome length comes to 100

integers (400 bits), iECGA can find the optimal solution for most of the runs, but GA

cannot.

The result of experiment four was shown in Figure 4.5. The result is almost the

same as that of experiment two, except the performance of GA decays earlier. When

the chromosome length is larger than 44 integers (88 bits), GA cannot find the optimal

solution. The performance of ECGA is still much worse than that of the other two

algorithms.

The result of experiment three was shown in Figure 4.4. The performance of iECGA

is not as good as in the other three experiments but still outperform the other two algo-

rithms.

The convergence analysis was shown in Figure 4.6 and Figure 4.7. The speed of con-

vergence of iECGA is much faster than that of GA. In f1, iECGA converges after 700,000

function evaluations, but GA cannot converge even after 1,050,000 function evaluations.

16

function d BB dBB

f2 16 2 256
f3 8 3 512
f4 4 4 256

Table 4.1: The cardinalities (d) and the length of building blocks (BB) of f2, f3, and f4

4.4 Discussion

iECGA and GA are both operate in that integer domain, but why iECGA performs better

than GA? The concepts of genetic linkage and building blocks are important components

for GAs to solve problems. The main difference between iECGA and GA is the capability

of detecting building blocks and genetic linkage. If the linkage configuration we find

is correct, we may expect “good” building blocks will be preserved and “bad” building

blocks will be weeded. Hence, iECGA performing better than GA is not unexpected.

ECGA is reliable and efficient in the binary domain, but why ECGA fails in the integer

domain? If ECGA wants to find the linkage between integers, it has to consider several

bits as one integer, and then consider several integers as one building block. That is,

ECGA has to find building blocks of different hierarchies. It is the first difficulty.

The second difficulty is the selection of coding schemes. Most of GA users employ two’s

complement to represent an integer, but there are many other kinds of representation,

like the gray code. If the linkage between integers can be detected at the bit level, we

call that the linkage ”propagates” to the bit level. Different representations have different

linkage propagations. The linkage between integers may or may not be detected at the

bit level. Thus, how to choose an appropriate chromosome representation is an essential

issue for GA to succeed.

Because of these difficulties, using ECGA to solve integer problems oftentimes cannot

satisfy GA users. When we have to solve integer problems, we should use a specialized

algorithm. Merely encoding the solutions as binary strings might not be a good choice.

The convergence speed is an interesting property of ECGA and iECGA. Because

they exchange building blocks but not genes, they avoid exchanging genes blindly. They

converge more quickly than the simple GA does.

Another interesting observation is that ECGA and iECGA need sufficient individuals

17

to start the MPM step [14]. The population size has a direct ratio to dBB, where d is the

cardinality of an integer, and BB is the order of building blocks. In Table 4.1, we can

see that the required number of individuals of f3 is twice as large as that of f2 and f4.

Therefore, because the population size is not enough to start MPM, the performance of

iECGA in f3 suddenly goes down.

18

(a) The average fitness of iECGA, ECGA, and GA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

A
ve

ra
ge

 F
itn

es
s

iECGA
ECGA
simple GA

(b) The best fitness of iECGA, ECGA, and GA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

M
ax

im
um

 F
itn

es
s

iECGA
ECGA
simple GA

Figure 4.2: The average(a) and best(b) fitness of three algorithms in f1. X-axis is the
length of a chromosome in the number of integers. Y-axis is the proportion to maximum
fitness.

19

(a) The average fitness of iECGA, ECGA, and GA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

A
ve

ra
ge

 F
itn

es
s

iECGA
ECGA
simple GA

(b) The best fitness of iECGA, ECGA, and GA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

M
ax

im
um

 F
itn

es
s

iECGA
ECGA
simple GA

Figure 4.3: The average(a) and best(b) fitness of three algorithms in f2. X-axis is the
length of a chromosome in the number of integers. Y-axis is the proportion to maximum
fitness.

20

(a) The average fitness of iECGA, ECGA, and GA

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

A
ve

ra
ge

 F
itn

es
s

iECGA
ECGA
simple GA

(b) The best fitness of iECGA, ECGA, and GA

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

M
ax

im
um

 F
itn

es
s

iECGA
ECGA
simple GA

Figure 4.4: The average(a) and best(b) fitness of three algorithms in f3. X-axis is the
length of a chromosome in the number of integers. Y-axis is the proportion to maximum
fitness.

21

(a) The average fitness of iECGA, ECGA, and GA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

A
ve

ra
ge

 F
itn

es
s

iECGA
ECGA
simple GA

(b) The best fitness of iECGA, ECGA, and GA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Chromosome Length (in integers)

M
ax

im
um

 F
itn

es
s

iECGA
ECGA
simple GA

Figure 4.5: The average(a) and best(b) fitness of three algorithms in f4. X-axis is the
length of a chromosome in the number of integers. Y-axis is the proportion to maximum
fitness.

22

(a) Chromosome length 100 in f1

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

A
ve

ra
ge

 F
itn

es
s

iECGA
simple GA

(b) Chromosome length 100 in f2

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

A
ve

ra
ge

 F
itn

es
s

iECGA
simple GA

Figure 4.6: The convergence speed of f1 and f2

23

(a) Chromosome length 90 in f3

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

A
ve

ra
ge

 F
itn

es
s

iECGA
simple GA

(a) Chromosome length 100 in f4

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

A
ve

ra
ge

 F
itn

es
s

iECGA
simple GA

Figure 4.7: The convergence speed of f3 and f4

24

Chapter 5

Extend ECGA to Real-valued
Domain

The real-coded ECGA is a new optimization framework, composed of the extended com-

pact genetic algorithm [12] and split-on-demand (SoD) [13] method. In this section, we

will how SoD discretizes real numbers for ECGA and introduce the integration of ECGA

and SoD.

5.1 Split on Demand for Discretization

Algorithm 2 Pseudo code for SoD.

procedure Split-on-Demand
Split(lower bound, upper bound)
γ ← γ × ε

end procedure

procedure Split(`, u)
m← random[`, u]
N` ← number of individuals in [`, m]
Nu ← number of individuals in [m, u]
if N` ≥ N × γ then

Split(`, m)
else

Add a code for the range [`, m]
end if
if Nu ≥ N × γ then

Split(m, u)
else

Add a code for the range [m,u]
end if

end procedure

25

1

−100 100

2

(a) Population distribution and 2 split positions at generation 1. γ = 0.5. 10× γ = 5.

3

−100 100

2 1

(b) Population distribution and 4 split positions at generation 10. γ = 0.4. 10× γ = 4.

2

−100 100

1453

(c) Population distribution and 5 split positions at generation 20. γ = 0.3. 10× γ = 3.

Figure 5.1: Populations and possible split positions (vertical lines). The numbers close to
the positions are the order in which the positions are decided.

ECGA is designed for handling problems in the discrete domain. In order to employ

ECGA to tackle problems in the continuous domain, certain mechanism is needed to

transform the type of variables. In this work, we adopt an adaptive discretization tech-

nique, called split-on-demand (SoD) [13], to encode the individuals as real vectors into

the ones as binary strings such that ECGA can accomplish the optimization task without

significant modifications.

The main idea of SoD is to split the interval where we demand to obtain more infor-

mation in order to build a more accurate probabilistic model for the region. There are two

parameters for SoD: the split rate, γ, and the split rate decay, ε. γ is used to determine

whether or not an interval should be split. Assuming that the population size is N , if an

interval contains more than or equal to N × γ individuals, this interval should be split

into two small intervals at a random position. By adjusting the split rate, we can control

the accuracy of the probabilistic model and the size of code table. Figure 5.1 illustrates

a splitting process under different γ. In Figure 5.1a, γ = 0.5 and the search space is split

into three intervals. In Figure 5.1b, because γ gets smaller, the search space is split into

more intervals.

Most good optimization algorithms consist of two elements: exploitation and explo-

ration. In the proposed framework, we control the degree of exploitation vs. the degree of

exploration by adjusting the split rate γ. We use a decreasing factor: ε, where 0 < ε < 1

to manipulate γ. At the early stage of search, we need more exploration than exploita-

26

tion. γ is set to 0.5, which means that one dimension of the search space will be split

into only two or three intervals. As the search process goes, exploitation is more and

more important. We multiply γ with ε at each generation to make it gradually smaller

and smaller, and the MPM model is more and more accurate for the regions filled with

individuals. Finally, Algorithm 2 shows the pseudo code for SoD.

5.2 ECGA with SoD

With the help of SoD, the real-coded ECGA (rECGA) can now handle problems in the

continuous domain. The population in rECGA is represented in two forms: real vectors

and binary strings. In the evaluation and selection phases, the population is in the form of

real vectors. In the modeling and crossover phases, the population is in the binary-string

form. SoD transforms real vectors into binary strings, and binary strings are converted

back to real vectors by using random sampling. For example, if the code of an individual

is 11 in binary, and the interval for the code 11 is [−50, 0], the value is uniformly randomly

sampled in the interval [−50, 0]. Finally, the integration of ECGA and SoD, which is the

proposed framework in this paper, is shown in Algorithm 3.

Algorithm 3 Pseudo code for the real-coded ECGA.

procedure rECGA
Gen← 1
Initialize N individuals of real-numbers at random
while Gen ≤ Genmax do

Evaluate the population of size N
Perform tournament selection of size S
Use SoD to produce the code table
Encode the population by using the code table
Model the encoded population with MPM search
Perform crossover with the given MPM model
Generate the offspring with the code table
Gen← Gen + 1

end while
end procedure

27

Chapter 6

Apply rECGA on Characteristic
Determination Problem

In the previous section, we proposed a new optimization framework in order to handle

the characteristic determination problem for solid state devices. In this section, we apply

the proposed framework to tackle three characteristic determination problems which we

encountered while conducting research on developing thin-film transistors (TFT). The

first one is to determine the quality parameters of the poly-Si thin-film under the normal

condition, and the second one deals with different materials and fabrication processes

under high gate bias. Finally, the third case is to determine the frequency response

property of the solid state device.

6.1 Conventional TFT

A conventional poly-Si thin-film transistor, as shown in Figure 6.1a, is composed of three

terminals: gate, source, and drain. When the transistor is turned on, electrons will

transport from source to drain through the poly-Si area (the dotted area in the figure),

and a high-conducting channel will be formed on the top of this poly-Si area, as shown

in Figure 6.1b. The poly-Si area can exhibit a wide range of thin-film qualities. For

a high quality poly-Si film, electrons can easily transport through it. As a result, the

transistor can provide a large conduction current. For a low quality poly-Si thin-film, on

the contrary, the electrical conductivity is low and the transistor output current is also

reduced. Therefore, controlling the quality of the poly-Si film is essential to the creation

and production of high-performance transistors. In addition to the output current, the

28

(a) Structure of poly-Si TFT.

(b) High-conducting channel for TFT.

Figure 6.1: The structure and the high-conducting channel formed for the conventional
poly-Si TFT.

29

Figure 6.2: Experimental data and the match results for study case I.

Algorithm 4 Pseudo code for the fitness function in study case I

procedure F1
Input: gene[0 . . . 4]={Nd, Sd, Etd, Nt, Ett}
Input: experimental data Ea[0 . . . 100], VG[0 . . . 100]
Output: f - the fitness of gene
Constants: q = 1.6× 10−19, Cox = 7× 10−8, Ec = 1.2
i← 0, f ← 0
while i < 101 do

Fix VG = VG[i], use binary approximation to obtain the value of Ea in Equation
(6.3)

f = f + |Ea − Ea[i]|
i = i + 1

end while
return f

end procedure

quality of the poly-Si thin-film in the device is also a key issue to design the fabrication

process and to develop the physical model as well as the SPICE model for poly-Si TFTs.

To characterize the poly-Si thin-film quality, the defect state distribution, N(E), as

30

follows is usually utilized.

N(E) =
Nd√
2πSd

exp

(
−(E − Etd)

2

2S2
d

)
+Nt exp

(
−Ec − E

Ett

)
,

(6.1)

where parameters Nd, Sd, Etd, Nt, and Ett represent the properties of TFT. However, in

practice, these parameters are not available and cannot be directly measured. Instead,

these parameters have to be determined by measuring the observable experimental data

and matching the equation

q

∫ Ec−Ea

Ec−Eamax

N(E)dE = Cox (VG − Vfb − φs) , (6.2)

where q = 1.6 × 10−19, Cox = 7 × 10−8, Ec = 1.2 are constants, and Ea, Eamax, VG,

Vfb, and φs are obtained from the experimental observation, to establish the relationship

between the quality measurements (Nd, Sd, Etd, Nt, Ett) and the observed outcomes (Ea,

Eamax, VG, Vfb, φs). After calculating the integral in Equation (6.2), we obtain

CoxVG

q
=

[
−NdSd

2
Erf

(
Etd − E√

2Sd

)

+NtEtt exp

(
E − Ec

Ett

)]∣∣∣∣∣
Ec−Ea

Ec−0.6

,

(6.3)

where Erf(·) is the error function.

The characteristic determination problem in this case is to find the values of Nd, Sd, Etd, Nt, Ett

according to the given set of measured values of Ea vs. VG such that Equation (6.3) can

be matched. We measured the value of Ea for VG = 0, . . . , 10.0 for every 0.1, and obtained

101 pairs of (Ea, VG). The objective value for matching Equation (6.3) is defined as the

Parameter Value

Population size (N) 250
Tournament size (S) 8

Number of generation (Genmax) 25
Crossover probability 0.975
Initial split rate (γ) 0.5
Split rate decay (ε) 0.995

Table 6.1: Parameters adopted in the real-coded ECGA for handling the three study
cases.

31

sum of the absolute value of the differences between the calculated results and the 101

pairs of experimental data. A more clear procedure is shown in Algorithm.

Moreover, the ranges of the parameter can be decided according to physical laws. In

this case, the ranges for the five parameters are

• Nd: 109–1015;

• Sd: 10−2–100;

• Etd: 0.5–0.7;

• Nt: 1011–1017;

• Ett: 0.05–1.0.

We ran rECGA with 250 individuals for 25 generations. Detailed parameters of

rECGA are shown in Table 6.1. In the 50 independent trials, the curve generated from

the best solutions is shown as the solid line in Figure 6.2. To simply verify that the

results we obtained are not merely “lucky shots”, we also conducted the pure random

search for 250× 25× 50 function evaluations. The result for the random search is shown

as a dashed line in the figure. As we can see in the figure, the curve generated the pure

random search goes very far from experimental data. As a side note, the curve of a similar

matching quality can also be manually obtained for about three to five person-days, while

the proposed framework takes only minutes to finish all the 50 trials.

6.2 TFT under High Gate Bias

When the transistors are operated under high gate bias, it is reported that the interface,

as shown in Figure 6.3, between the poly-Si and the gate insulator also has great influence

on the output current. As a consequence, to determine the property of TFTs under high

gate bias, an interface-state distribution is inserted into N(E) to appropriately model the

32

Figure 6.3: TFT under high gate bias.

overall defect quality:

N(E) =
Nd√
2πSd

exp

(
−(E − Etd)

2

2S2
d

)
+Nt exp

(
−Ec − E

Ett

)
+Ni exp

(
−Ec − E

Eit

)
,

(6.4)

where Ni and Eit are two more fitting parameters for the interface-state distribution. The

ranges of Ni and Eit are

• Ni: 1011–1020;

• Eit: 0.05–1.0.

In this study case, we determine the quality parameters for four kinds of TFTs:

ELA [22], FLA [23], SSL [24], and SPC [25]. There are several instances for each kind

of TFT, and for simplicity in the present work, we choose only one or two instances to

perform the computation. Similar to the previous study case, the values of the quality pa-

rameters can be obtained by fitting the experimental data to Equation (6.4). The fitness

function F2 is similar as in study case 1. The pseudo code of F2 is shown in Algorithm.

The parameters for rECGA are identical to those used for case I, which is shown in

Table 6.1. The curves generated by the best solutions in the 50 independent trials are

33

Algorithm 5 Pseudo code for the fitness function in study case II

procedure F2
Input: gene[0 . . . 6]={Nd, Sd, Etd, Nt, Ett, Ni, Eit}
Input: experimental data Ea[0 . . . K], VG[0 . . . K]
Output: f - the fitness of gene
Constants: q = 1.6× 10−19, Cox = 7× 10−8, Ec = 1.2
i← 0, f ← 0
while i < K + 1 do

Fix VG = VG[i], use binary approximation to obtain the value of Ea in Equation
(6.4)

f = f + |Ea − Ea[i]|
i = i + 1

end while
return f

end procedure

shown as solid lines in Figure 6.5, and the best results obtained by the pure random

search are shown as dashed lines. As we can observe in the figures, the pure random

search can only match the first data point in all cases, while the proposed framework can

provide high quality matching curves. Furthermore, these problem instances cannot be

easily handled by human manipulation. We merely succeeded in manually matching a

few problem instances for several person-weeks.

6.3 Frequency Response

The previous-addressed poly-Si thin-film quality and the interface quality also influence

the frequency response of transistors. Since in circuitry, transistors may be operated under

various frequencies, the frequency response is a very important property to determine the

fabrication process, to determine the device model, and to determine the circuit design.

In poly-Si TFTs, the frequency response is characterized through the capacitance mea-

surement. As indicated in Figure 6.6a, the gate/SiO2/poly-Si structure can be expressed

by the equivalent circuit depicted in Figure 6.6b. That is, the total effective capacitance

is the series of the oxide capacitance Cox and the equivalent parasitic capacitance Ceq.

The equivalent parasitic capacitance Ceq is the shunt of the bulk capacitance Cb and the

interface capacitance Cit. Generally, Cox is a constant, which is independent of gate bias

or frequency, while Cb and Cit have a dependence on frequencies according to the following

34

equation

Ceq = Cit + Cb

= qDit
tan−1(ωτit)

ωτit

+ qDs
tan−1(ωτs)

ωτs

, (6.5)

where ω is 2πf , and f is the frequency. Dit and τit are independent of frequencies, but

depend on gate biases. Ds and τs are independent of both frequencies and gate biases,

since the frequency and gate bias should not strongly influence the bulk properties.

As the previous two study cases, the frequency response parameters (Dit, τit, Ds, τs)

cannot be directly measured, either. As a result, we measure Ceq under various gate

biases and frequencies and determine the frequency response parameters according to the

observed experimental data. The frequency response of Ceq under different gate biases

are shown in Figure 6.7. The values of gate biases and frequencies we used to obtained

the experimental data are

• Gate biases: −1.3, −1.4, −1.5, −1.6, −1.7, −1.8, −1.9, −2.0, −2.1, −2.2;

• Frequencies: 1× 104, 3× 104, 5× 104, 1× 105, 3× 105, 5× 105, 1× 106.

There are totally 70 values for Ceq under the combinations of gate biases and frequencies

measured. We used these experimental data to calculate Ceq according to Equation (6.5).

As shown in Figure 6.7, there are ten gate biases. Equation (6.5) indicates that there

is a single pair of Ds and τs for all Ceq values, and for each set of Ceq values obtained

under the same VG, one pair of Dit and τit should be determined. Thus, there are 22

frequency response parameters. The objective value in this study case is also the sum of

differences between the experimental data and the calculated results.

Without determining all the frequency response parameters simultaneously, we handle

these parameters in separate groups. Because the values of Ceq are smallest when the gate

bias is −1.3 or −1.4, higher accuracy is needed to determine the parameters for the two

sets of experimental data. Therefore, in the first group, we determine Ds, τs, Dit|VG=−1.3,

τit|VG=−1.3, Dit|VG=−1.4, τit|VG=−1.4. After obtaining Ds and τs, which are independent of

VG and f , we use the Ds and τs to determine Dit and τit for other gate biases. All the

35

parameters of rECGA are identical to those in previous study cases, shown in Table 6.1,

and the matching results are shown as the solid lines in Figure 6.8.

Figure 6.8 demonstrates that the matching results are remarkably satisfactory as the

experimental data and the physical model pose a very difficult challenge for human to

manually handle. Furthermore, based on the outcomes from the previous study cases,

the pure random search has been decided inappropriate to handle the characteristic de-

termination problem for solid state devices. As we can see in this work, the proposed

framework of the real-coded ECGA, composed of ECGA and SoD, can be employed to

tackle the characteristic determination problems of which the physical phenomena may

be quite different.

36

(a) ELA

(b) SSL

Figure 6.4: Experimental data and the match results for study case II. ELA, SSL, FLA,
and SPC are four different kinds of TFTs.

37

(a) FLA

(b) SPC

Figure 6.5: Experimental data and the match results for study case II. ELA, SSL, FLA,
and SPC are four different kinds of TFTs.

38

(a) Structure of gate/SiO2/poly-Si.

(b) Equivalent circuit for the structure.

Figure 6.6: Structure of gate/SiO2/poly-Si and its equivalent circuit.

39

(a) Frequency response for VG = −2.2, . . . ,−1.8.

(b) Frequency response for VG = −1.7, . . . ,−1.3.

Figure 6.7: Frequency response for TFTs.

40

(a) Match results for VG = −2.2, . . . ,−1.8.

(b) Match results for VG = −1.7, . . . ,−1.3.

Figure 6.8: Match results for the frequency response.

41

Chapter 7

Conclusions

This chapter concludes this thesis. First we summarize our experiments, results, and

conclusion. Then our long-term goals and objectives are proposed. Finally the main

conclusions from this study are discussed.

7.1 Summary

In the paper, we study different kind of representations of ECGA. Our work has two parts.

In the first part, we briefly reviewed the extended compact genetic algorithm (ECGA) and

proposed iECGA, the integer extension of ECGA. The main difference between iECGA

and ECGA is that they work in the different problem domains. iECGA can detect building

blocks at the integer level but cannot find linkage at the bit level. In contrast, ECGA

can successfully find linkage at the bit level, but fail to find hierarchical linkage in integer

problems. For different types of problems, the appropriate algorithm should be selected

to apply. That is, using right data type, GA and ECGA both work in the integer domain.

According to the experimental results, iECGA outperforms GA when the problems have

linkage of high order. But if the problem has no linkage between genes, GA and iECGA

have the similar performance.

In the second part, we proposed a new optimization framework by integrating the

extended compact genetic algorithm (ECGA) and split-on-demand (SoD), an adaptive

discretization method, to tackle the characteristic determination problem for solid state

devices. We employed rECGA to handle three characteristic determination problems of

which the physical phenomena and the mathematical models were different. The nu-

42

merical results demonstrated that the proposed framework performed well on the study

cases.

7.2 Future Work

Even the performance of iECGA achieves our expectation, there are several directions

we can pursue in the future. iECGA avoid the problem of hierarchical linkage by encod-

ing several bits as one integer but does not really solve the problem. How to find the

hierarchical linkage is still a good question waiting to be answered.

Kumara and Goldberg have integrated ECGA with a mutation operator [26], iECGA

can also be integrated with a similar mutation operator. Currently, iECGA can handle

only the building blocks without overlap. The ability to handle overlapping building

blocks can be developed in iECGA [27].

Representation is a fascinating topic in the field of evolutionary algorithms. The effect

that represents an integer as a binary string is not clear yet. How the representation effects

the linkage learning process is still a secret.

7.3 Main Conclusions

This study indicates the importance of using an appropriate data type to represent vari-

ables of different types, categories, or domains. Transferring or encoding the solutions

may just introduce extra, unexpected difficulties to reduce the applicability and capability

of existing good algorithms, instead of making the problem easier to solve. Therefore,

we need to understand and investigate the algorithmic components much further in the

future to design and develop better evolutionary algorithms.

When using ECGA to solve real-numbered problems, Split-on-Demand is a robust en-

coding method. The combined rECGA is a efficient and robust algorithm which we used

to solve the characteristic determination problem. The characteristic determination prob-

lem is very important not only because the development of modern electronic computing

equipment relies on solid state devices but also because more and more unknown physical

phenomena are observed while the scale of the device gets smaller and smaller. In order

43

to gain understandings of all these unknown phenomena, getting access to the parame-

ters that cannot be directly measured or observed is of great assistance. With the help

of methodologies in evolutionary computation, this paper offers a good approach for re-

searchers and developers to deal with encountered characteristic determination problems

effectively and efficiently.

In the field of building-block research, more and more researchers pay attention on

hierarchical BB problems. Several bits may compose of a small BB, but several small BBs

may compose of a big BB. Traditional linkage learning schemes may fail when encoun-

tering hierarchical building-block problems. When the concept of linkage learning was

proposed, representation is the focus of attention. When there is a bottleneck on study

of representation, probability modeling becomes popular. This paper shows limitation of

probability modeling and the possibility of right representation. Now it is time to con-

centrate our attention on representation. We wish our work can put some inspiration on

the field of evolutionary computation.

44

Bibliography

[1] J. H. Holland, Adaptation in natural and artificial systems. University of Michigan

Press, 1975, ISBN: 0-262-58111-6.

[2] G. R. Harik, “Learning gene linkage to efficiently solve problems of bounded difficulty

using genetic algorithms,” Ph.D. dissertation, University of Michigan, 1997, also

IlliGAL Report No. 97005.

[3] Y. P. Chen, Extending the Scalability of Linkage Learning Genetic Algorithm.

Springer, 2005.

[4] D. E. Goldberg, The Design of Innovation: Lessons from and for Competent Ge-

netic Algorithms, ser. Genetic Algorithms and Evoluationary Computation. Kluwer

Academic Publishers, 2002, vol. 7, ISBN: 1-402-07098-5.

[5] ——, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley Publishing Co., 1989.

[6] P. Larranaga and J. A. Lozano, Estimation of Distribution Algorithms: A New Tool

for Evolutionary Computation, ser. Genetic algorithms and evolutionary computa-

tion. Kluwer Academic Publishers, 2001, vol. 2.

[7] M. Pelikan, D. E. Goldberg, and F. G. Lobo, “A survey of optimization by build-

ing and using probabilistic models,” Computational Optimization and Applications,

vol. 21, no. 1, pp. 5–20, 2002.

[8] S. ”Baluja, “”population-based incremental learning: A method for integrating

genetic search based function optimization and competitive learning,”,” ”Pittsburgh,

45

PA”, Tech. Rep. ”CMU-CS-94-163”, ”1994”. [Online]. Available: ”citeseer.ist.psu.

edu/baluja94population.html”

[9] M. Pelikan and H. Müehlenbein, “Marginal distribution in evolutionary algorithms,”

in Proceedings of the International Conference on Genetic Algorithms Mendel ’98.

Czech Republic, 1998, pp. 90–95.

[10] G. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,” UIUC,

Illinois Genetic Algorithms Laboratory, Urbana, IL 61801, USA, Tech. Rep. 97006,

1997.

[11] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian optimization

algorithm,” in Proceedings of Genetic and Evolutionary Computation Conference

1999 (GECCO-99), 1999, pp. 525–532, also IlliGAL Report No. 99003.

[12] G. Harik, “Linkage learning via probabilistic modeling in the ECGA,” UIUC, Illinois

Genetic Algorithms Laboratory, Urbana, IL 61801, USA, Tech. Rep. 99010, 1999.

[13] C. H. Chen, W. N. Liu, and Y. P. Chen, “Adaptive discretization for probabilistic

model building genetic algorithms,” in Proceedings of the 8th annual conference on

Genetic and evolutionary computation (GECCO), 2006, pp. 1103–1110.

[14] K. Sastry and D. E. Goldberg, “On extended compact genetic algorithm,” UIUC,

Illinois Genetic Algorithms Laboratory, Urbana, IL 61801, USA, Tech. Rep. 2000026,

2000.

[15] T. Mitchell, Machine Learning. McGraw Hill Text, 1997.

[16] J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.

[17] D. H. Ackley, A connectionist machine for genetic hillclimbing, ser. Kluwer Interna-

tional Series In Engineering And Computer Science. Norwell, MA, USA: Kluwer

Academic Publishers, 1987, vol. 28.

[18] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions.” in FOGA,

1992, pp. 93–108.

46

"citeseer.ist.psu.edu/baluja94population.html"
"citeseer.ist.psu.edu/baluja94population.html"

[19] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithm: Motivation, anal-

ysis, and first results,” Complex Systems, vol. 3, pp. 493–530, 1989.

[20] P. C. Hung and Y. P. Chen, “iECGA: integer extended compact genetic algorithm,”

in Proceedings of the 8th annual conference on Genetic and evolutionary computation,

2006, pp. 1415–1416.

[21] D. E. Goldberg, K. Deb, and B. Korb, “Messy genetic algorithm revisited: Studies

in mixed size and scale,” Complex Systems, vol. 4, pp. 415–444, 1990.

[22] J. S. Im and H. J. Kim, “On the super lateral growth phenomenon observed in excimer

laser-induced crystallization of thin Si films,” Applied Physics Letters, vol. 64, no. 17,

pp. 2303–2305, April 1994.

[23] J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-

infrared femtosecond laser-induced crystallization of amorphous silicon,” Applied

Physics Letters, vol. 85, no. 7, pp. 1232–1234, August 2004.

[24] H. W. Zan, C. Y. Huang, K. Saito, K. Tamagawa, J. Chen, and T. J. Wu, “The

crystallization mechanism of poly-Si thin film using high-power Nd: YAG laser with

Gaussian beam profile,” in Proceedings of MRS Symposium: Amorphous and Poly-

crystalline Thin Film Silicon Science and Technology—2006, vol. 910, 2006, p. N/A,

(In press).

[25] A. T. Voutsas and M. K. Hatalis, “Structure of AS-deposited LPCVD silicon films at

low deposition temperatures and pressures,” Journal of the Electrochemical Society,

vol. 139, no. 9, pp. 2659–2665, September 1992.

[26] K. Sastry and D. E. Goldberg, “Designing competent mutation operators via proba-

bilistic model building of neighborhoods,” in GECCO 2004, June 2004, pp. 114–125.

[27] T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-P. Chen, “Genetic algorithm design

inspired by organizational theory: Pilot study of a dependency structure matrix

driven genetic algorithm,” in GECCO 2003, July 2003, pp. 1620–1621.

47

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Objective
	Road Map

	Brief Review of ECGA
	Genetic Algorithms and Linkage Problem
	Linkage Learning and Probability Model
	Extended Compact Genetic Algorithm
	ECGA on Trap Problems
	Problems in Integer Domain

	Extend ECGA to Integer Domain
	Marginal Product Model
	MDL Model

	Performances of iECGA
	Test Functions
	Experiments and Parameters
	Experimental Results
	Discussion

	Extend ECGA to Real-valued Domain
	Split on Demand for Discretization
	ECGA with SoD

	Apply rECGA on Characteristic Determination Problem
	Conventional TFT
	TFT under High Gate Bias
	Frequency Response

	Conclusions
	Summary
	Future Work
	Main Conclusions

