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Abstract

Evolution strategy (ES) and particle swarm optimization (PSO) are two of the most
popular research topics for tackling real-parameter optimization problems in evolutionary
computation. Both of them have strengths and weaknesses for their different search behaviors
and methodologies. In ES, mutation, as the main operator, tries to find good solutions around
each individual. While in PSO, particles are moving toward directions determined by certain
global information, such as the global best particle. In order to leverage the specialties offered
by both sides to our advantage, this paper combines the essential mechanism of ES and the
key concept of PSO to develop a new hybrid optimization methodology, called particle swarm
guided evolution strategy. We introduce swarm intelligence to the ES mutation framework to
create a new mutation operator, called guided mutation, and integrate the guided mutation
operator into ES. Numerical experiments are conducted on a set of benchmark functions,
and the experimental results indicate that PSGES is a promising optimization methodology
as well as an interesting research direction.

1 Introduction

Evolution strategy (ES) mimics natural mechanisms of evolution and has been proven as a
good solver for real-parameter optimization problem. ES was proposed in 1960s [1, 2], and
its most important concept is to search the solution space by adaptive mutation. Compared
with other optimization methods, ES is a very efficient approach to solve the non-linear model
problems in engineering. Furthermore, the idea of self-adaptation is also first introduced in
ES. Self-adaptation embeds the algorithmic parameters into the representation and evolves the
parameters together with the decision variables. Such a design makes ES to converge quickly and
to find solutions efficiently. In the recent year, there have been a host of attempts to improve the
mutation mechanism of ES [3, 4, 5, 6], and many of these studies successfully create advanced
versions of evolution strategy with excellent performance.

Particle swarm optimization (PSO) [7, 8], on the other hand, is a relatively new branch
of evolution computation. It was proposed according to the swarming behaviors of insects or
animals. Each individual or particle decides its own search direction to approach a better result
of entirety with the internal communication between one another. Since its introduction, PSO
has been widely adopted to solve problems in many disciplines for the simplicity of its key
concept as well as the implementation. PSO receives rapid recognitions [9] and therefore draws
lots of research attentions focusing on the practical improvement, methodological enhancement,
and theoretical understandings.

For the major mechanism, ES concentrates on how to generate new search points around the
current individuals, and thus, in a way, such an operation can be viewed as local search. While
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PSO focuses on how to determine the next move for each particle according to certain population-
wise information, such as the global best particle. Hence, this process can be considered as global
search. Based on the thought to integrate the local search and the global search capabilities
from the two paradigms, we try to merge PSO and ES in this study. Particularly, we employ the
key concept and mechanism of swarm intelligence to determine the search directions, guiding
the rotation of ES mutation ellipses, for global search, and use the regular ES operations to
conduct local search to find promising solutions.

This paper is organized as follows. Section 2 briefly introduces evolution strategy, particle
swarm optimization, and closely related studies. Section 3 describes the proposed method,
PSGES, in detail, including the adoption of swarm intelligence in mutation and the architecture
of the framework. Numerical experiments and the results are presented in section 4, and finally,
section 5 concludes this paper.

2 Brief Background

In this section, we give a brief background of evolution strategy (ES) and particle swarm op-
timization (PSO) related to the proposed method, including the method for ES to conduct
mutations and the mechanism for PSO to determine search directions.

2.1 Evolution Strategy

Similar to other evolutionary algorithms, ES has recombination, mutation, and selection, where
mutation is the main operator which aims to create new individuals based on the current pop-
ulation. In ES, individuals are usually encoded as vectors of which the components are real
numbers, and Equation (1) is a general representation of ES individuals.

~I = (~x;~σ; ~α) ∈ Rn × Rnσ
+ × [−π, π]nα , (1)

where ~x is the vector of the decision variables, ~σ is the vector of the step-sizes, and ~α is the
vector of rotation angles.

The different mutation schemes for ES include (1) uncorrelated mutation with one step-size;
(2) uncorrelated mutation with n step-sizes; (3) correlated mutation. These mutation mecha-
nisms use different numbers of strategy parameters, ~σ and ~α, to perform the search process. By
adjusting the strategy parameters, we can control the search process and behavior of ES. Strat-
egy parameters are composed of two parts. One is the mutation step-size, σ, which determines
the mutation strength of individuals, and the other is the rotation angle, α, that maintains the
angle between the ellipse space of mutation and the decision variable space of search to permit
the scope of mutation to be independent of the search space coordinates. Many studies have ver-
ified that self-adaptation of strategy parameters can effectively adjust step-sizes to appropriate
values and analyzed the convergence of uncorrelated mutation in theory.

In addition to controlling the lengths of the ellipse axes, correlated mutation adds the rota-
tion angle, α, to indicate the rotation of the ellipse. As a result, correlated mutation is a more
flexible mutation operator which may be able to handle more complicated landscapes. Never-
theless, correlated mutation has an uncertain characteristic due to the high complexity and the
interaction of so many strategy parameters. The number of rotation angles, nα, is at the order
of the square of the number of decision variables, which is the actual problem size:

nα =
(

n

2

)
=

n(n− 1)
2

= Θ
(
n2

)
, (2)

where n is the number of decision variables. Thus, in order to appropriately utilize correlated
mutation, according to the literature, the limitation of rotation angles are empirically suggested
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to be β ≈ 5◦ in general. It is possible to retain the power of correlated mutation while avoiding
the difficulty brought by correlated mutation. The main goal of this study is to provide a simple
way to rotate the mutation ellipses in ES by incorporating swarm intelligence.

2.2 Particle Swarm Optimization

PSO is a population-based stochastic optimization technique developed in 1995, inspired by the
social behavior of bird flocking or fish schooling. The system is initialized with a population of
random solutions and searches for optima by utilizing the particle movement. Each particle keeps
track of its own coordinates in the problem space, ~x, velocities corresponding each coordinate,
~v, and the best solution that it has achieved, ~xpbest. The overall best solution, ~xgbest, reached
by the entire population are also maintained for all the particles to decide the next move. The
movement of PSO individuals can be described by Equations (3) and (4).

~vt+1 = ~vt + c1 · r1 · (~xt
pbest − ~xt)

+ c2 · r2 · (~xt
gbest − ~xt) , (3)

~xt+1 = ~xt + ~vt+1 , (4)

At each iteration, PSO modifies the velocity of each particle toward the position which is
expected to be the optimal solution location. Furthermore, PSO adds some stochastic terms in
the system to avoid falling in the local optima. In this paper, we utilize the direction determi-
nation mechanism proposed in PSO to control the rotation of correlated mutation in ES such
that essential mechanisms of PSO and ES can cooperate with each other.

3 Particle Swarm Guided Evolution Strategy

For ES, mutation and selection are the most important components for the evolutionary search
process, and the mutation operator is responsible for conducting the effective search. Thus, in
order to integrate swarm intelligence into ES, we will first describe how the mutation ellipses
are rotated based on the concept and mechanism of swarm intelligence, and the new mutation
operator, called guided mutation, is proposed. Then, the modified ES framework with guided
mutation, called particle swarm guided evolution strategy (PSGES), is presented.

3.1 Guided Mutation

The flow of operations for the guided mutation operator is shown in Figure 1. We will describe
the operations step by step in the following paragraphs.

First of all, for two vectors on a two-dimensional plane, we can obtain the angle between
them with the following equation:

θ = cos−1

(
~x · ~y
|~x||~y|

)
, (5)

where ~x and ~y are two vectors on a two-dimensional plane, and θ ∈ [−π, π] is the angle between
~x and ~y. For an n-dimensional problem, the individuals are n-dimensional vectors. By using
Equation 5, we can calculate n(n− 1)/2 rotation angles for all possible pairs of axes. Hence, if
we denote the vector composed of the n(n− 1)/2 rotation angles ~α, we can calculate ~α for two
given vectors. We can calculate ~αg for each individual in the population and the current global
best position, ~pg. As a consequence, we can adjust the rotation of mutation ellipses for each
individual accordingly, and then, strategy parameters for rotation are no longer necessary.
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Figure 1: The flow of operations for guided mutation

• Step 1: Modify the mutation strength vector ~σ.

σt+1
i = σt

i · eτ ′·N(0,1)+τ ·Ni(0,1) , (6)

where i = 1, 2, . . . , n, τ ′ ∝ 1/
√

2n can be interpreted

as a global learning rate, and τ ∝ 1/
p

2
√

n a local
one [16]. In this step, we reserve the self-adaptation
mechanism for the mutation strength.

• Step 2: Compute the rotation angle vector ~αg between
the individual vector ~a and the current global best
solution ~pg by repeatedly applying Equation (5).

~αg = Angle(~pg,~a) , (7)

where ~αg = (α1g , α2g , . . . , αn(n−1)/2g
), αig ∈ [−π, π],

i = 1, 2, . . . , n(n− 1)/2.

• Step 3: Construct the guiding rotation matrix M .

M =

n−1Y
p=1

nY
q=p+1

Mpq(αjg ) , (8)

where j = 1
2
(2n−p)(p+1)−2n+q [15]. Rotation ma-

trix Mpq(αjg ) forms a n×n identity matrix except that
mpp = mqq = cos(αjg ) and mpq = −mpq = − sin(αjg ).
By multiplying all the rotation matrices, we can con-
struct the guiding matrix efficiently.

• Step 4: Construct the guiding vector.

~Gs = M · ~z , (9)

where ~z = (z1, . . . , zn), zi ∼ σi ·N(0, 1) denotes a ran-
dom variable drawn from a Gaussian distribution of
which the mean is zero and the standard deviation
corresponds to the step-size of each dimension.

• Step 5: Compute the guided mutation vector ~Gm.

~Gm = ~Gs · ~N(0, 1) , (10)

where ~N(0, 1) is a n× 1 vector and each dimension in
the vector is a random variable drawn from a Gaussian
distribution of which the mean is zero and standard
deviation is 1.

• Step 6: Mutate the decision variable ~x by using the
guided mutation vector ~Gm.

~x′ = ~x + ~Gm . (11)

These steps will turn the mutation ellipse of each individual
toward the position of ~pg with controlled randomness. Given
the current global best ~pg, we can now determine how the
rotation of mutation ellipses is done without the assistance
of n(n − 1)/2 more strategy parameters. To illustrate the
guided mutation operator, Figure 2 shows the operations of
PSO and how the swarm intelligence mechanism influences
the ES mutation operator.

The essential advantage of correlated mutation that the
mutation ellipse is independent of the coordinates of search
space is preserved in guided mutation, while the n(n− 1)/2
strategy parameters, self-adaptative or not, are eliminated.

3.2 Guided Evolution Strategy
This paper puts emphasis on that we combine the guided

concept in PSO with ES and expects to improve efficiency
for solving problem. In order to achieve it, we design the
guided mutation operator to replace traditional mutation,
and some processes of evolution in PSGES are changed. A
population based model is necessary because PSGES’s main
idea is cooperation of individuals in population. Excluding
two evolution models (1+1)−ES and (1+λ)−ES, we choose
(µ + λ) − ES as the base framework of PSGES. Individual
representation divides into two parts, objective variable and
strategy parameter and rotation angle is reduced for com-
puting it in evolution iterations. Besides rotation angle is
the immediate information which we can obtain by popu-
lation distribution in evolution iterations, therefore we can
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Figure 1: Flow of operations for guided mutation.

The guided mutation operator of can be described as the following steps:

• Step 1: Modify the mutation strength vector ~σ.

σt+1
i = σt

i · eτ ′·N(0,1)+τ ·Ni(0,1) , (6)

where i = 1, 2, . . . , n, τ ′ ∝ 1/
√

2n can be interpreted as a global learning rate, and τ ∝
1/

√
2
√

n a local one [1]. In this step, we reserve the self-adaptation mechanism for the
mutation strength.

• Step 2: Compute the rotation angle vector ~αg between the individual vector ~a and the
current global best solution ~pg by repeatedly applying Equation (5).

~αg = Angle(~pg,~a) , (7)

where ~αg = (α1g , α2g , . . . , αn(n−1)/2g
), αig ∈ [−π, π], i = 1, 2, . . . , n(n− 1)/2.

• Step 3: Construct the guiding rotation matrix M .

M =
n−1∏
p=1

n∏
q=p+1

Mpq(αjg) , (8)

where j = 1
2(2n− p)(p+1)− 2n+ q [10]. Rotation matrix Mpq(αjg) forms a n×n identity

matrix except that mpp = mqq = cos(αjg) and mpq = −mpq = − sin(αjg). By multiplying
all the rotation matrices, we can construct the guiding matrix efficiently.

• Step 4: Construct the guiding vector.

~Gs = M · ~z , (9)

where ~z = (z1, . . . , zn), zi ∼ σi ·N(0, 1) denotes a random variable drawn from a Gaussian
distribution of which the mean is zero and the standard deviation corresponds to the
step-size of each dimension.
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(a) Next moves for PSO particles. (b) Mutation ellipses for ES individuals.

Figure 2: The swarm intelligence mechanism works for PSO and guided mutation.

• Step 5: Compute the guided mutation vector ~Gm.

~Gm = ~Gs · ~N(0, 1) , (10)

where ~N(0, 1) is a n × 1 vector and each dimension in the vector is a random variable
drawn from a Gaussian distribution of which the mean is zero and standard deviation is
one.

• Step 6: Mutate the decision variable ~x by using the guided mutation vector ~Gm.

~x′ = ~x + ~Gm . (11)

These steps will turn the mutation ellipse of each individual toward the position of ~pg with
controlled randomness. Given the current global best ~pg, we can now determine how the rotation
of mutation ellipses is done without the assistance of n(n− 1)/2 more strategy parameters. To
illustrate the guided mutation operator, Figure 2 shows the operations of PSO and how the
swarm intelligence mechanism influences the ES mutation operator.

The essential advantage of correlated mutation that the mutation ellipse is independent of
the coordinates of search space is preserved in guided mutation, while the n(n − 1)/2 strategy
parameters, self-adaptive or not, are eliminated.

3.2 Guided Evolution Strategy

In order to integrate the concept and mechanism of swarm intelligence into ES for deciding the
mutation ellipse rotation, designing the guided mutation operator is one part of the work. The
other part is to modified the flow of ES such that the necessary information for the operations,
such as ~pg, can be prepared and updated at each iteration. Since a population of size more than
one is needed for determine the search direction in swarm intelligence, we employ (µ + λ)-ES as
the base framework for PSGES. ES with a population of size one, such as (1, λ)-ES and (1+λ)-
ES, is not applicable for being modified to accommodate the new mechanism. Moreover, the
representation now consists of only two parts: the decision variables and the mutation strengths:

~I = (~x;~σ) = (x1, . . . , xn;σ1, . . . , σnσ) , (12)
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Algorithm 1 Pseudo code for PSGES.
1: procedure PSGES
2: t← 0;
3: Initialize P (0) = {~a1(0), ...,~aµ(0)} ∈ Iµ;
4: for i = 1 to µ do
5: Evaluate individual ~ai(0);
6: end for
7: Find the global best solution ~pg;
8: repeat
9: Do recombination to generate λ offspring;

10: Do guided mutation on the λ offspring;
11: for i = 1 to λ do
12: Evaluate offspring ~ai(t + 1);
13: end for
14: Find the best solution ~p among the offspring;
15: if (~p is better than ~pg) then
16: Update ~pg with ~pg = ~p;
17: end if
18: Do (µ + λ)-selection to form P (t + 1);
19: t← t + 1;
20: until the stop condition is satisfied
21: end procedure

where ~x is the decision variable vector and ~σ is the mutation strength vector. In PSGES, we
always have an independent mutation strength for each dimension, i.e., nσ = n. Rotation angles
are not necessary because the direction determination is handed over to swarm intelligence.

For PSGES, we initialize the population as in ES. If there is no prior knowledge for the
objective function, we can uniformly distribute the individuals in the search space at random.
Otherwise, we can have more individuals in certain regions according to the given information.

P (0) = ~a1(0),~a2(0), . . . ,~aµ(0) . (13)

After the population is initialized, we compute the fitness values for all individuals and record
the individual which has the best fitness for guiding information. Then, we repeat the following
steps until some stop condition is satisfied.

• Step 1: Generate λ offspring with recombination.

• Step 2: Apply the guided mutation operator to each offspring according to ~pg.

• Step 3: Evaluate the offspring and find the individual, ~p, which has the best fitness among
the offspring.

• Step 4: If ~p is better than ~pg, let ~pg = ~p.

• Step 5: Choose µ individuals out of the λ offspring according to the fitness.

• Step 6: Repeat step 1 to step 5 until the stop condition is satisfied.

For an algorithmic description, Algorithm 1 presents the pseudo code for PSGES.
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4 Experiments and Results

In order to understand the behavior and to verify the utilization of PSGES, we employ two
numerical experiments to observe how PSGES work in action. The first experiment is designed
for demonstrating how the guided mutation operator works, and the second experiment is to
apply PSGES on a set of benchmark functions such that the results given by PSGES can be
compared to that obtained by other evolutionary algorithms.

4.1 Visual Verification

First, we design a simple visual experiment to observe the difference between guided mutation
and the traditional ES mutation. In order to observe and focus on the mutation behavior, we
exclude the recombination operator in the experiment. At each generation, one individual gen-
erates 80 offspring with the mutation operator to visualize the mutation ellipse which indicates
the distribution of “possible next moves.” Then, we use the offspring individual with the best
objective value as the one that is “actually generated” for continuing the evolutionary process.
The objective function in this experiment is a two-dimensional sphere function of which the
global optimal solution is at (0, 0).

Figure 3 shows the evolutionary process for uncorrelated mutation with n step-sizes. The
mutation ellipses are dependent on the coordinate system of problem space. This mutation
scheme can adjust only the step-sizes to find good solutions. In Figure 4, the mutation ellipses
for correlated mutation are independent of the coordinate system thanks to the capability of
rotation. Hence, ES with correlated mutation can approach the promising region faster than ES
with uncorrelated mutation can. As suggested in the literature, the limitation of rotation angles
is set to β = 5◦ in the experiment. However, because there is no limitation on the rotation angle
in PSGES, in order to have a meaningful comparison, we relax the limitation of rotation angles
and demonstrate the results for correlated mutation with β = 360◦ in Figure 5. As we can see
in Figure 5, the behavior is similar to that of correlated mutation with β = 5◦.

It is worth noting that the Figures 4 and 5 show only one typical run of the evolutionary
process for comparison and observation. By repeating the same experiment, one may find that
the performance variance for β = 360◦ is higher than that of β = 5◦. The further investigation
of this situation is beyond the scope of this study. We merely speculate that the limitation of
rotation angles not only confines the search scope but also improve the stability of the perfor-
mance offered by ES. Without the limitation, ES might still be able to solve the problem, but
the performance may vary a lot. The cause may be the generation of too many useless search
points because the strategy parameter space is independent of the problem space and there is
no direct signal/feedback from the objective function for choosing strategy parameters. Such a
problem should become worse with the growth of the dimensionality of the objective function.

Finally, Figure 6 shows the mutation ellipses controlled by guided mutation. The search
directions are determined by the current global best individual with limited randomness. With-
out dealing with n(n − 1)/2 rotation angles, the guided mutation operator can still rotate the
mutation ellipses and push the individuals toward promising regions efficiently.

4.2 Benchmark

After observing the search behavior of the guided mutation operator, we would like to check
the performance of PSGES on test functions to further investigate its capability. In this paper,
we adopt a set of benchmark functions [11] proposed in a special session dedicating to real-
parameter optimization at IEEE CEC 2005 as the testbed. The benchmark defines not only
the testing functions but also the stop criteria, maximum function evaluations, feasible regions,
initial conditions, and the like for creating a consistent, real-parameter optimization algorithm
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Figure 3: Uncorrelated mutation.

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

(a) Generation 2.

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

(b) Generation 4.

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

(c) Generation 6.

Figure 4: Correlated mutation with β = 5◦.
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Figure 5: Correlated mutation with β = 360◦.
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Figure 6: Guided mutation.
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Parameter Value
Number of dimensions 10
Population size (µ) 10
Offspring size (λ) 100
Number of recombinants (ρ) 10
Global learning rate (τ) 1/

√
2n

Local learning rate (τ ′) 1/
√

2
√

n

Table 1: PSGES parameters for the benchmark.

testing environment. There are 25 test functions defined in the benchmark, including five uni-
modal functions and twenty multimodal functions. These functions are chosen for their different
characteristics and levels of difficulty. The experimental results on this benchmark may reveal
how PSGES performs on various functions as well as can be compared to those obtained by other
algorithms. Table 1 shows the parameters used by PSGES to solve all of the test functions.

Since PSGES is a modification of ES, we first pay attention to the performance improvement
that integrating swarm intelligence into ES can give us. We compare the results obtained by
applying PSGES to those reported by Costa [12] on the same benchmark. Costa [12] provides
the experimental results of both classic ES and PLES (Parameter-less Evolution Strategy). The
results on the IEEE CEC 2005 benchmark for classic ES, PLES, as well as PSGES are listed
in Table 2. The numbers in the parentheses are the ranks for the performance. As we can see
in Table 2, the results of PSGES is better than that of ES and PLES for the five unimodal
test functions (f1 to f5). Additionally, PSGES outperforms ES and PLES on 13 out of the
20 multimodal functions (f6 to f25). According to the experimental results, we can verify that
incorporating the concept and mechanism of swarm intelligent does improve the ES performance.

After verifying the utilization of the swarm intelligence mechanism for ES, we compare the
numerical results obtained by PSGES to that by some advanced evolutionary algorithms for
real-parameter optimization, including BLX-MA [13], Co-EVO [14], DE [15], DMS-L-PSO [16],
EDA [17], K-PCX [18], LR-CMA-ES [19], and SPC-PNX [20]. For the 25 test functions, we
analyze the number of problems which are “solved” according to the definition provided in the
benchmark. Table 3 lists the number of solved test functions for the evolutionary algorithms,
and the numbers in the parentheses are the ranks. As we can see in Table 3, for the unimodal
functions, PSGES can solve f1, f2, and f4. For the basic functions, PSGES can solve f6, f7, f9,
f12, and f13. For the total number of solved problems, PSGES can solve 8 out of the 25 test
functions. PSGES is ranked top 2 in the comparison and is inferior only to DMS-L-PSO [16],
which is capable of solving 9 test functions, including one hybrid composition function (f15).

In addition, it might be interesting to compare the results of PSGES to that of the most
advanced evolution strategy, LR-CMA-ES [19]. Before conducting the numerical experiments,
we expected LR-CMA-ES to outperform PSGES because LR-CMA-ES has been proven able to
solve real-parameter optimization problems effectively and efficiently. By analyzing the com-
position of the solved functions for PSGES and LR-CMA-ES, we can find that LR-CMA-ES
performs better on the unimodal functions and PSGES performs better on the basic multimodal
functions. Furthermore, such a condition also holds when we analyze the results for other algo-
rithms in Table 3. PSGES solved the least number, 3, of the unimodal functions but the most
number, 5, of the basic multimodal functions. Accordingly, we might speculate that PSGES
may have a good global search mechanism and need an enhancement for its local search facility.
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ES [12] PLES [12] PSGES
f1 9.86e-9 (3) 8.40e-9 (2) 0.00e+0 (1)
f2 2.90e-6 (3) 9.65e-9 (2) 0.00e+0 (1)
f3 3.52e+5 (3) 1.18e+5 (2) 3.17e+0 (1)
f4 4.13e+3 (2) 6.03e+3 (3) 1.36e-14 (1)
f5 1.36e+3 (2) 9.05e+2 (3) 1.05e+2 (1)
f6 7.49e+1 (3) 3.05e+1 (2) 1.59e-1 (1)
f7 1.18e+0 (2) 4.09e+0 (3) 7.39e-3 (1)
f8 2.03e+1 (1) 2.03e+1 (2) 2.09e+1 (3)
f9 4.48e+1 (3) 1.67e+1 (2) 3.46e+0 (1)
f10 1.03e+2 (3) 2.56e+1 (2) 1.46e+1 (1)
f11 8.91e+0 (1) 9.52e+0 (2) 1.35e+1 (3)
f12 4.40e+3 (3) 3.25e+3 (2) 3.60e+2 (1)
f13 9.59e+0 (3) 8.66e+0 (2) 8.21e-1 (1)
f14 3.53e+0 (1) 4.13e+0 (2) 5.00e+0 (3)
f15 5.71e+2 (3) 3.79e+2 (2) 3.26e+2 (1)
f16 4.38e+2 (3) 1.46e+2 (1) 2.01e+2 (2)
f17 4.49e+2 (3) 1.95e+2 (1) 3.03e+2 (2)
f18 1.14e+3 (3) 1.01e+3 (2) 7.15e+2 (1)
f19 1.12e+3 (3) 1.00e+3 (2) 6.69e+2 (1)
f20 1.12e+3 (3) 9.98e+2 (2) 7.05e+2 (1)
f21 1.31e+3 (3) 1.07e+3 (2) 8.89e+2 (1)
f22 9.29e+2 (3) 8.80e+2 (2) 8.11e+2 (1)
f23 1.34e+3 (3) 1.11e+3 (2) 1.08e+3 (1)
f24 1.19e+3 (3) 2.82e+2 (1) 4.19e+2 (2)
f25 4.15e+2 (1) 6.92e+2 (3) 4.15e+2 (2)

Rank 2.56 (64/25) 2.04 (51/25) 1.40 (35/25)

Table 2: The average results for ES, PLES, and PSGES on the IEEE CEC 2005 benchmark.
The numbers in the parentheses are the ranks.

Algorithm U B E&H Total
PSGES 1,2,4 6,7,9,12,13 * 8 (2)

BLX-MA[13] 1,2,4,5 9,11,12 * 7 (3)
Co-EVO[14] 1,2,3,4 7 * 5 (4)

DE[15] 1,2,3,4,5 6,9 * 7 (3)
DMS-L-PSO[16] 1,2,3,5 6,7,9,12 15 9 (1)

EDA[17] 1,2,3,4 * * 4 (5)
K-PCX[18] 1,2,4 6,9,10,12 * 7 (3)

LR-CMA-ES[19] 1,2,3,4,5 6,7,12 * 8 (2)
SPC-PNX[20] 1,2,4,5 6,7,11 * 7 (3)

Table 3: The number of solved test functions in the IEEE CEC 2005 benchmark for various
advanced evolutionary algorithms. U: Unimodal functions (f1 to f5); B: Basic functions (f6 to
f12); E: Expanded functions (f13 and f14); H: Hybrid composition functions (f15 to f25). The
numbers in the parentheses are the ranks.
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5 Summary and Conclusions

This paper first gave a brief background of evolution strategy (ES) and particle swarm opti-
mization (PSO) to present the fundamentals for this study. In order to retain the capability of
rotating mutation ellipses and eliminate the need of a large number of rotation angles in ES, we
integrated the concept and mechanism of swarm intelligence into the ES mutation operator as
well as the ES work-flow for determining the search direction of mutation ellipses. By visualizing
the search behavior of the guided mutation operator and conducting numerical experiments on
a set of benchmark functions, we demonstrated that the proposed framework, PSGES, should
be an interesting research topic.

PSGES considers swarm intelligence as a global search operator and ES mutation as a local
search facility. By combining the strengths coming from the two different methodologies, PSGES
outperforms the classic ES and performs as well as the most advanced ES in the experiments
conducted in this work. However, in ES, there also exist certain global search mechanisms,
such as recombination, as well as in PSO, there exist some local search operations, such as the
randomness in the particle movement. In order to bring good, working mechanisms from ES
and PSO together, we need to further understand the strengths and weaknesses of all of their
components to avoid possible destructive side-effects caused by the conflicting components.
Finally, the framework of PSGES may reveal a paradigm for integrating different methodologies
together by analyzing the individual capabilities and appropriately assembling the components.
Along this line may there be a great possibility to create more advanced evolutionary algorithms.
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