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Abstract

In this paper, we develop a new optimization framework that consists of the extended
compact genetic algorithm (ECGA) and split-on-demand (SoD), an adaptive discretization
technique, to tackle the characteristic determination problem for solid state devices. Because
most decision variables of characteristic determination problems are real numbers due to the
modeling of physical phenomena, and ECGA is designed for handling discrete-type problems,
a specific mechanism to transform the variable types of the two ends is in order. In the
proposed framework, ECGA is used as a back-end optimization engine, and SoD is adopted
as the interface between the engine and the problem. Moreover, instead of one mathematical
model with various parameters, characteristic determination is in fact a set of problems of
which the mathematical formulations may be very different. Therefore, in this study, we
employ the proposed framework on three study cases to demonstrate that the technique
proposed in the domain of evolutionary computation can provide not only the high quality
optimization results but also the flexibility to handle problems of different formulations.

1 Introduction

The realization of modern computing equipment, which vastly contributes to all the fields related
to computation, relies on the advance and development of the integrated circuit (IC) [1, 2]. One
the most fundamental and important element in the integrated circuit is the solid state device [3,
4], for example, the bipolar junction transistor (BJT) [4], the metal-oxide-semiconductor field-
effect transistor (MOSFET) [5], the thin-film transistor (TFT) [6], and the like. The solid state
device is the basic building blocks for the integrated circuit. The quality and properties of the
solid state device are critical to the integrated circuit and are therefore critical to the computer
systems which are built up on the integrated circuit. Hence, the development of solid state
devices plays an essential role in modern computation from a fundamental perspective.

One of the key issues in developing the solid state device is to determine crucial character-
istics for the observed physical phenomena [7, 8]. Different structures, materials, or fabrication
processes can make the produced device to possess different properties. In order to gain un-
derstandings of how the device operates and to improve current devices or invent new devices,
characteristic determination has to be properly conducted. Unlike those problems, which is
composed of one mathematical model with various parameters, often tackled in the computa-
tion related disciplines, characteristic determination is in fact a variety of problems of which
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the mathematical formulations may be very different thanks to the different underlying physical
phenomena. Thus, although certain optimization techniques might be utilized to handle some
characteristic determination problems, it is very difficult to employ a single method to determine
parameters coming from dissimilar physical models.

Given the importance and difficulty of the characteristic determination problem for solid
state devices, researchers and developers oftentimes take two approaches. One is to make a
lot of efforts to adopt a traditional optimization method for every encountered physical model.
The other is to manually determine the characteristics. Manual determination usually involves
several person-weeks or even person-months to handle only a few problems. However, the
methods proposed in evolutionary computation, such as genetic algorithms (GA) [9, 10, 11, 12],
offer an alternative approach thanks to their flexibility. In order to speed up the development
of solid state devices as well as to relocate the manpower for better use, we develop a new
framework based on the techniques in evolutionary computation.

Particularly, in the present work, we adopt the extended compact genetic algorithm (ECGA)
[13] as the back-end optimization engine and the split-on-demand (SoD) technique [14], an adap-
tive discretization method, as the interface between ECGA and the characteristic determination
problem. We employ the proposed framework to tackle three different characteristic determi-
nation problems encountered while conducting research on thin-film transistors. The numerical
results we obtained for determining the characteristics on the three study cases demonstrate
that the proposed framework can handle problems of different natures and deliver high quality
solutions in an efficient manner.

The remainder of the paper is organized as follows. In section 2, the idea, integration, and
workflow of the real-coded ECGA, which is composed of ECGA and SoD, are described in detail.
In section 3, we employ the proposed framework to tackle three characteristic determination
problems of different natures. Finally, section 4 gives a summary and draws conclusions.

2 The Real-Coded ECGA

The real-coded ECGA is a new optimization framework, composed of the extended compact
genetic algorithm [13] and split-on-demand (SoD) [14], proposed in the study. In this section,
we will first give a brief review of ECGA, then describe how SoD discretizes real numbers for
ECGA, and introduce the integration of ECGA and SoD.

2.1 A Brief Review of ECGA

The major difference between ECGA and traditional genetic algorithms is that ECGA is one
of the estimation of distribution algorithms (EDAs) [15, 16], which use probability models to
describe populations and replace the crossover operator with sampling procedures. There are two
main assertions behind the concept of ECGA. First, learning a “good” probability distribution
is equivalent to learning linkage. Second, the “goodness” of a probability distribution is based
on how much space is needed to store the population as well as the distribution.

As a precursor of ECGA, the compact GA (cGA) [17] revealed that the population in genetic
algorithms can be represented as a probability distribution, and the role of crossover can be
played by sampling the model. Thus, finding the optimal solution in cGA is equivalent to
finding the optimal probability distribution. ECGA extends the probability model in cGA to
the marginal product model (MPM). MPMs are similar to the models of the cGA and PBIL [18],
except that they can represent a probability distribution over more than one gene at a time.

The goal of ECGA is to find “good” distributions, but how do we define the criterion of the
quality of a distribution? The answer is the idea of Occam’s Razor [19]:
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By reliance on Occam’s Razor, good distributions are those under which the represen-
tation of the distribution using the current encoding, along with the representation
of the population compressed under that distribution, is minimal.

This idea leads to the definition of the minimum description length (MDL) [20]. Following
the definition, we can use MDL on MPMs and define the model complexity and compressed
population complexity of a probability distribution:

Model Complexity = log2 N

m∑
i=1

2si , (1)

and

Compressed Population Complexity

= N

m∑
i=1

∑
p

−p log2 p .
(2)

In these formulas, m is the number of subsets, si the size of the ith subset, p is the probability
of a pattern in the ith subset, and N is the population size. The combined complexity is the
summation of model complexity and compressed population complexity.

In each generation, after selection, ECGA searches for good MPMs based on their combined
complexity to model the current population. The MPM with the minimal combined complexity
is the very model to use. By sampling the obtained model, the offspring population is created,
and the evolutionary process for optimization is repeated iteratively.

2.2 Split on Demand for Discretization

ECGA is designed for handling problems in the discrete domain. In order to employ ECGA to
tackle problems in the continuous domain, certain mechanism is need to transform the type of
variables. In this work, we adopt an adaptive discretization technique, called split-on-demand
(SoD) [14], to encode the individuals as real vectors into the ones as binary strings such that
ECGA can accomplish the optimization task without significant modifications.

The main idea of SoD is to split the interval where we demand to obtain more information
in order to build a more accurate probabilistic model for the region. There are two parameters
for SoD: the split rate, γ, and the split rate decay, ε. γ is used to determine whether or not an
interval should be split. Assuming that the population size is N , if an interval contains more
than or equal to N × γ individuals, this interval should be split into two small intervals at a
random position. By adjusting the split rate, we can control the accuracy of the probabilistic
model and the size of code table. Figure 1 illustrates a splitting process under different γ. In
Figure 1(a), γ = 0.5 and the search space is split into three intervals. In Figure 1(b), because γ
gets smaller, the search space is split into more intervals.

Most good optimization algorithms consist of two elements: exploitation and exploration.
In the proposed framework, we control the degree of exploitation vs. the degree of exploration
by adjusting the split rate γ. We use a decreasing factor: ε, where 0 < ε < 1 to manipulate γ.
At the early stage of search, we need more exploration than exploitation. γ is set to 0.5, which
means that one dimension of the search space will be split into only two or three intervals. As
the search process goes, exploitation is more and more important. We multiply γ with ε at each
generation to make it gradually smaller and smaller, and the MPM model is more and more
accurate for the regions filled with individuals. Finally, Algorithm 1 shows the SoD pseudo code.
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(a) Population distribution and 2 split positions at generation 1. γ = 0.5.
10× γ = 5.
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(b) Population distribution and 4 split positions at generation 10. γ =
0.4. 10× γ = 4.
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(c) Population distribution and 5 split positions at generation 20. γ =
0.3. 10× γ = 3.

Figure 1: Populations and possible split positions (vertical lines). The numbers close to the
positions are the order in which the positions are decided.

2.3 ECGA with SoD

With the help of SoD, the real-coded ECGA (rECGA) can now handle problems in the contin-
uous domain. The population in rECGA is represented in two forms: real vectors and binary
strings. In the evaluation and selection phases, the population is in the form of real vectors. In
the modeling and crossover phases, the population is in the binary-string form. SoD transforms
real vectors into binary strings, and binary strings are converted back to real vectors by using
random sampling. For example, if the code of an individual is 11 in binary, and the interval for
the code 11 is [−50, 0], the value is uniformly randomly sampled in the interval [−50, 0]. Finally,
the integration of ECGA and SoD, the proposed frameworkr, is shown in Algorithm 2.

Algorithm 1 Pseudo code for SoD.
procedure Split-on-Demand

Split(lower bound, upper bound)
γ ← γ × ε

end procedure

procedure Split(`, u)
m← random[`, u]
N` ← number of individuals in [`,m]
Nu ← number of individuals in [m,u]
if N` ≥ N × γ then

Split(`, m)
else

Add a code for the range [`,m]
end if
if Nu ≥ N × γ then

Split(m, u)
else

Add a code for the range [m,u]
end if

end procedure
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Algorithm 2 Pseudo code for the real-coded ECGA.
procedure rECGA

Gen← 1
Initialize N individuals of real-numbers at random
while Gen ≤ Genmax do

Evaluate the population of size N
Perform tournament selection of size S
Use SoD to produce the code table
Encode the population by using the code table
Model the encoded population with MPM search
Perform crossover with the given MPM model
Generate the offspring with the code table
Gen← Gen + 1

end while
end procedure

3 Case Study

In the previous section, we proposed a new optimization framework in order to handle the char-
acteristic determination problem for solid state devices. In this section, we apply the proposed
framework to tackle three characteristic determination problems which we encountered while
conducting research on developing thin-film transistors (TFT). The first one is to determine the
quality parameters of the poly-Si thin-film under the normal condition, and the second one deals
with different materials and fabrication processes under high gate bias. Finally, the third case
is to determine the frequency response property of the solid state device.

3.1 Conventional TFT

A conventional poly-Si thin-film transistor, as shown in Figure 2(a), is composed of three ter-
minals: gate, source, and drain. When the transistor is turned on, electrons will transport from
source to drain through the poly-Si area (the dotted area in the figure), and a high-conducting
channel will be formed on the top of this poly-Si area, as shown in Figure 2(b). The poly-Si
area can exhibit a wide range of thin-film qualities. For a high quality poly-Si film, electrons can
easily transport through it. As a result, the transistor can provide a large conduction current.
For a low quality poly-Si thin-film, on the contrary, the electrical conductivity is low and the
transistor output current is also reduced. Therefore, controlling the quality of the poly-Si film
is essential to the creation and production of high-performance transistors. In addition to the
output current, the quality of the poly-Si thin-film in the device is also a key issue to design the
fabrication process and to develop the physical model as well as the SPICE model.

To characterize the poly-Si thin-film quality, the defect state distribution, N(E), as follows
is usually utilized.

N(E) =
Nd√
2πSd

exp
(
−(E − Etd)2

2S2
d

)
+ Nt exp

(
−Ec − E

Ett

)
, (3)

where parameters Nd, Sd, Etd, Nt, and Ett represent the properties of TFT. However, in practice,
these parameters are not available and cannot be directly measured. Instead, these parameters
have to be determined by measuring the observable experimental data and matching the equation

q

∫ Ec−Ea

Ec−Eamax

N(E)dE = Cox (VG − Vfb − φs) , (4)
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(a) Structure of poly-Si TFT.

(b) High-conducting channel for TFT.

Figure 2: Structure and the high-conducting channel formed for the conventional poly-Si TFT.

where q = 1.6 × 10−19, Cox = 7 × 10−8, Ec = 1.2 are constants, and Ea, Eamax, VG, Vfb, and
φs are obtained from the experimental observation, to establish the relationship between the
quality measurements (Nd, Sd, Etd, Nt, Ett) and the observed outcomes (Ea, Eamax, VG, Vfb,
φs). After calculating the integral in Equation (4), we obtain

CoxVG

q
=

[
−NdSd

2
Erf

(
Etd − E√

2Sd

)
+NtEtt exp

(
E − Ec

Ett

)]∣∣∣∣∣
Ec−Ea

Ec−0.6

, (5)

where Erf(·) is the error function.
The characteristic determination problem in this case is to find the values of Nd, Sd, Etd, Nt, Ett

according to the given set of measured values of Ea vs. VG such that Equation (5) can be
matched. We measured the value of Ea for VG = 0, . . . , 10.0 for every 0.1, and obtained 101
pairs of (Ea, VG). The objective value for matching Equation (5) is defined as the sum of the
absolute value of the differences between the calculated results and the 101 pairs of experimental
data. Moreover, the ranges of the parameter can be decided according to physical laws. In this
case, the ranges for the five parameters are

• Nd: 109–1015;

• Sd: 10−2–100;

• Etd: 0.5–0.7;
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Figure 3: Experimental data and the match results for study case I.

• Nt: 1011–1017;

• Ett: 0.05–1.0.

We ran rECGA with 250 individuals for 25 generations. Detailed parameters of rECGA are
shown in Table 1. In the 50 independent trials, the curve generated from the best solutions is
shown as the solid line in Figure 3. To simply verify that the results we obtained are not merely
“lucky shots”, we also conducted the pure random search for 250×25×50 function evaluations.
The result for the random search is shown as a dashed line in the figure. As we can see in the
figure, the curve generated the pure random search goes very far from experimental data. As a
side note, the curve of a similar matching quality can also be manually obtained for about three
to five person-days, while the proposed framework takes only minutes to finish all the 50 trials.

Parameter Value
Population size (N) 250
Tournament size (S) 8

Number of generation (Genmax) 25
Crossover probability 0.975
Initial split rate (γ) 0.5
Split rate decay (ε) 0.995

Table 1: Parameters adopted in the real-coded ECGA for handling the three study cases.
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Figure 4: TFT under high gate bias.

3.2 TFT under High Gate Bias

When the transistors are operated under high gate bias, it is reported that the interface, as
shown in Figure 4, between the poly-Si and the gate insulator also has great influence on the
output current. As a consequence, to determine the property of TFTs under high gate bias, an
interface-state distribution is inserted into N(E) to model the overall defect quality:

N(E) =
Nd√
2πSd

exp
(
−(E − Etd)2

2S2
d

)
+ Nt exp

(
−Ec − E

Ett

)
+ Ni exp

(
−Ec − E

Eit

)
, (6)

where Ni and Eit are two more fitting parameters for the interface-state distribution. The ranges
of Ni and Eit are

• Ni: 1011–1020;

• Eit: 0.05–1.0.

In this study case, we determine the quality parameters for four kinds of TFTs: ELA [21],
FLA [22], SSL [23], and SPC [24]. There are several instances for each kind of TFT, and for
simplicity in the present work, we choose only one or two instances to perform the computation.
Similar to the previous study case, the values of the quality parameters can be obtained by
fitting the experimental data to Equation (6). The parameters for rECGA are identical to those
used for case I, which is shown in Table 1. The curves generated by the best solutions in the 50
independent trials are shown as solid lines in Figure 5, and the best results obtained by the pure
random search are shown as dashed lines. As we can observe in the figures, the pure random
search can only match the first data point in all cases, while the proposed framework can provide
high quality matching curves. Furthermore, these problem instances cannot be easily handled
by human manipulation. We merely succeeded in manually matching a few problem instances
for several person-weeks.

3.3 Frequency Response

The previous-addressed poly-Si thin-film quality and the interface quality also influence the
frequency response of transistors. Since in circuitry, transistors may be operated under various
frequencies, the frequency response is a very important property to determine the fabrication
process, to determine the device model, and to determine the circuit design. In poly-Si TFTs,
the frequency response is characterized through the capacitance measurement. As indicated in
Figure 6(a), the gate/SiO2/poly-Si structure can be expressed by the equivalent circuit depicted
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Figure 5: Experimental data and the match results for study case II. ELA, SSL, FLA, and SPC
are four different kinds of TFTs.
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Figure 5: Experimental data and the match results for study case II. ELA, SSL, FLA, and SPC
are four different kinds of TFTs.
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(a) Structure of gate/SiO2/poly-Si.

(b) Equivalent circuit for the structure.

Figure 6: Structure of gate/SiO2/poly-Si and its equivalent circuit.

in Figure 6(b). That is, the total effective capacitance is the series of the oxide capacitance
Cox and the equivalent parasitic capacitance Ceq. The equivalent parasitic capacitance Ceq is
the shunt of the bulk capacitance Cb and the interface capacitance Cit. Generally, Cox is a
constant, which is independent of gate bias or frequency, while Cb and Cit have a dependence
on frequencies according to the following equation

Ceq = Cit + Cb = qDit
tan−1(ωτit)

ωτit
+ qDs

tan−1(ωτs)
ωτs

, (7)

where ω is 2πf , and f is the frequency. Dit and τit are independent of frequencies, but depend on
gate biases. Ds and τs are independent of both frequencies and gate biases, since the frequency
and gate bias should not strongly influence the bulk properties.

As the previous two study cases, the frequency response parameters (Dit, τit, Ds, τs) cannot
be directly measured, either. As a result, we measure Ceq under various gate biases and frequen-
cies and determine the frequency response parameters according to the observed experimental
data. The frequency response of Ceq under different gate biases are shown in Figure 7. The
values of gate biases and frequencies we used to obtained the experimental data are

• Gate biases: −1.3, −1.4, −1.5, −1.6, −1.7, −1.8, −1.9, −2.0, −2.1, −2.2;

• Frequencies: 1× 104, 3× 104, 5× 104, 1× 105, 3× 105, 5× 105, 1× 106.

There are totally 70 values for Ceq under the combinations of gate biases and frequencies mea-
sured. We used these experimental data to calculate Ceq according to Equation (7). As shown

11



0 2 4 6 8 10

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−7

frequency

C
eq

Vg=−2.2
Vg=−2.1
Vg=−2.0
Vg=−1.9
Vg=−1.8

(a) Frequency response for VG = −2.2, . . . ,−1.8.

0 2 4 6 8 10

x 10
5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−8

frequency

C
eq

Vg=−1.7
Vg=−1.6
Vg=−1.5
Vg=−1.4
Vg=−1.3

(b) Frequency response for VG = −1.7, . . . ,−1.3.

Figure 7: Frequency response for TFTs.
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in Figure 7, there are ten gate biases. Equation (7) indicates that there is a single pair of Ds

and τs for all Ceq values, and for each set of Ceq values obtained under the same VG, one pair of
Dit and τit should be determined. There are 22 frequency response parameters. The objective
value is also the sum of differences between the experimental data and the calculated results.

Without determining all the frequency response parameters simultaneously, we handle these
parameters in separate groups. Because the values of Ceq are smallest when the gate bias is −1.3
or −1.4, higher accuracy is needed to determine the parameters for the two sets of experimental
data. Therefore, in the first group, we determine Ds, τs, Dit|VG=−1.3, τit|VG=−1.3, Dit|VG=−1.4,
τit|VG=−1.4. After obtaining Ds and τs, which are independent of VG and f , we use the Ds and
τs to determine Dit and τit for other gate biases. All rECGA parameters are identical to those
in previous study cases, and the matching results are shown as the solid lines in Figure 8.

Figure 8 demonstrates that the matching results are remarkably satisfactory as the experi-
mental data and the physical model pose a very difficult challenge for human to manually handle.
Furthermore, based on the outcomes from the previous study cases, the pure random search has
been decided inappropriate to handle the characteristic determination problem for solid state
devices. As we can see in this work, the proposed framework of the real-coded ECGA, com-
posed of ECGA and SoD, can be employed to tackle the characteristic determination problems
of which the physical phenomena may be quite different.

4 Summary and Conclusions

In the paper, we proposed a new optimization framework by integrating the extended compact
genetic algorithm (ECGA) and split-on-demand (SoD), an adaptive discretization method, to
tackle the characteristic determination problem for solid state devices. Firstly, we briefly re-
viewed the key idea of ECGA and introduced the mechanism of SoD. Then, the real-coded
ECGA (rECGA), which is an integration of ECGA and SoD, proposed in the present work was
described in detail. We employed rECGA to handle three characteristic determination problems
of which the physical phenomena and the mathematical models were different. The numerical
results demonstrated that the proposed framework performed well on the study cases.

The characteristic determination problem is very important not only because the develop-
ment of modern electronic computing equipment relies on solid state devices but also because
more and more unknown physical phenomena are observed while the scale of the device gets
smaller and smaller. In order to gain understandings of all these unknown phenomena, getting
access to the parameters that cannot be directly measured or observed is of great assistance.
With the help of methodologies in evolutionary computation, this paper offers a good approach
for researchers and developers to deal with encountered characteristic determination problems
effectively and efficiently.

Along this line of research, the immediate future work is to continue to apply the proposed
framework on other problems emerging from the research on solid state devices. Moreover, in the
process of extracting the desired parameters for the specific physical model, novel insights could
be gained because computation of such an intensity is seldom utilized in this way to examine
the existing physical models.
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