Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization

P. N. Suganthan
N. Hansen
J. J. Liang
K. Deb
Y.-p. Chen
A. Auger
S. Tiwari

NCLab Report No. NCL-TR-2005001
May 2005

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University
329 Engineering Building C
1001 Ta Hsueh Road
HsinChu City 300, TAIWAN
http://nclab.tw/

Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization

P. N. Suganthan ${ }^{1}$, N. Hansen ${ }^{2}$, J. J. Liang ${ }^{1}$, K. Deb ${ }^{3}$, Y. -P. Chen ${ }^{4}$, A. Auger 2, S. Tiwari ${ }^{3}$
${ }^{1}$ School of EEE, Nanyang Technological University, Singapore, 639798
²(ETH) Z"urich, Switzerland
${ }^{3}$ Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology, Kanpur, PIN 208 016, India
${ }^{4}$ Natural Computing Laboratory, Department of Computer Science, National Chiao Tung University, Taiwan

epnsugan@ntu.edu.sg, Nikolaus.Hansen@inf.ethz.ch, liangjing@pmail.ntu.edu.sg, deb@iitk.ac.in, ypchen@csie.nctu.edu.tw, Anne.Auger@inf.ethz.ch, tiwaris@iitk.ac.in

Technical Report, Nanyang Technological University, Singapore
And
KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur)

May 2005

Acknowledgement: We also acknowledge the contributions by Drs / Professors Maurice Clerc (Maurice.Clerc@WriteMe.com), Bogdan Filipic (bogdan.filipic@ijs.si), William Hart (wehart@sandia.gov), Marc Schoenauer (Marc.Schoenauer@lri.fr), Hans-Paul Schwefel (hans-paul.schwefel@cs.uni-dortmund.de), Aristin Pedro Ballester (p.ballester@imperial.ac.uk) and Darrell Whitley (whitley@CS.ColoState.EDU) .

Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization

In the past two decades, different kinds of optimization algorithms have been designed and applied to solve real-parameter function optimization problems. Some of the popular approaches are real-parameter EAs, evolution strategies (ES), differential evolution (DE), particle swarm optimization (PSO), evolutionary programming (EP), classical methods such as quasi-Newton method (QN), hybrid evolutionary-classical methods, other non-evolutionary methods such as simulated annealing (SA), tabu search (TS) and others. Under each category, there exist many different methods varying in their operators and working principles, such as correlated ES and CMA-ES. In most such studies, a subset of the standard test problems (Sphere, Schwefel's, Rosenbrock's, Rastrigin's, etc.) is considered. Although some comparisons are made in some research studies, often they are confusing and limited to the test problems used in the study. In some occasions, the test problem and chosen algorithm are complementary to each other and the same algorithm may not work in other problems that well. There is definitely a need of evaluating these methods in a more systematic manner by specifying a common termination criterion, size of problems, initialization scheme, linkages/rotation, etc. There is also a need to perform a scalability study demonstrating how the running time/evaluations increase with an increase in the problem size. We would also like to include some real world problems in our standard test suite with codes/executables.

In this report, 25 benchmark functions are given and experiments are conducted on some real-parameter optimization algorithms. The codes in Matlab, C and Java for them could be found at http://www.ntu.edu.sg/home/EPNSugan/. The mathematical formulas and properties of these functions are described in Section 2. In Section 3, the evaluation criteria are given. Some notes are given in Section 4.

1. Summary of the 25 CEC'05 Test Functions

- Unimodal Functions (5):
$>F_{1}$: Shifted Sphere Function
$>F_{2}$: Shifted Schwefel's Problem 1.2
$>F_{3}$: Shifted Rotated High Conditioned Elliptic Function
$>F_{4}$: Shifted Schwefel's Problem 1.2 with Noise in Fitness
$>F_{5}$: Schwefel's Problem 2.6 with Global Optimum on Bounds
- Multimodal Functions (20):
$>$ Basic Functions (7):
$\diamond \quad F_{6}$: Shifted Rosenbrock's Function
$\diamond \quad F_{7}$: Shifted Rotated Griewank's Function without Bounds
$\triangleleft F_{8}$: Shifted Rotated Ackley’s Function with Global Optimum on Bounds
$\diamond \quad F_{9}$: Shifted Rastrigin's Function
$\diamond F_{10}$: Shifted Rotated Rastrigin's Function
$\diamond \quad F_{11}$: Shifted Rotated Weierstrass Function
४ F_{12} : Schwefel's Problem 2.13
$>$ Expanded Functions (2):
$\diamond F_{13}$: Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2)
$\triangleleft F_{14}$: Shifted Rotated Expanded Scaffer’s F6
$>$ Hybrid Composition Functions (11):
$\diamond F_{15}$: Hybrid Composition Function
$\diamond \quad F_{16}$: Rotated Hybrid Composition Function
$\diamond F_{17}$: Rotated Hybrid Composition Function with Noise in Fitness
$\diamond F_{18}$: Rotated Hybrid Composition Function
$\diamond \quad F_{19}$: Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum
$\diamond F_{20}$: Rotated Hybrid Composition Function with the Global Optimum on the Bounds
$\diamond \quad F_{21}$: Rotated Hybrid Composition Function
$\diamond F_{22}$: Rotated Hybrid Composition Function with High Condition Number Matrix
$\diamond F_{23}$: Non-Continuous Rotated Hybrid Composition Function
$\diamond F_{24}$: Rotated Hybrid Composition Function
$\diamond F_{25}$: Rotated Hybrid Composition Function without Bounds
> Pseudo-Real Problems: Available from
http://www.cs.colostate.edu/~genitor/functions.html. If you have any queries on these problems, please contact Professor Darrell Whitley. Email: whitley@CS.ColoState.EDU

2. Definitions of the $\mathbf{2 5}$ CEC'05 Test Functions

2.1 Unimodal Functions:

2.1.1. $\quad F_{1}$: Shifted Sphere Function
$F_{1}(\mathbf{x})=\sum_{i=1}^{D} z_{i}^{2}+f _$bias $_{1}, \mathbf{z}=\mathbf{x}-\mathbf{0}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions. $\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum.

Figure 2-1 3-D map for 2-D function

Properties:

$>$ Unimodal
> Shifted
> Separable
$>$ Scalable
$>\mathbf{x} \in[-100,100]^{D}$, Global optimum: $\mathbf{x}^{*}=\mathbf{0}, F_{1}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{1}=-450$

Associated Data files:

Name: sphere_func_data.mat
sphere_func_data.txt
Variable: $\quad \mathbf{0} \quad 1^{*} 100$ vector the shifted global optimum
When using, cut $\mathbf{0}=\mathbf{o}(1: D)$
Name: fbias_data.mat
fbias_data.txt
Variable: f_bias $1 * 25$ vector, record all the 25 function's f_{-}bias $_{i}$
2.1.2. $\quad F_{2}$: Shifted Schwefel's Problem 1.2
$F_{2}(\mathbf{x})=\sum_{i=1}^{D}\left(\sum_{j=1}^{i} z_{j}\right)^{2}+f_{-}$bias $_{2}, \mathbf{z}=\mathbf{x}-\mathbf{0}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum

Figure 2-2 3-D map for 2-D function

Properties:

$>$ Unimodal
$>$ Shifted
> Non-separable
$>$ Scalable
$>\mathbf{x} \in[-100,100]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{2}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{2}=-450$

Associated Data files:

Name: schwefel_102_data.mat
schwefel_102_data.txt
$\begin{array}{lll}\text { Variable: } & \mathbf{0} \quad 1^{*} 100 \text { vector } \\ & \text { When using, cut } \mathbf{o}=\mathbf{o}(1: D)\end{array}$ the shifted global optimum
2.1.3. F_{3} : Shifted Rotated High Conditioned Elliptic Function
$F_{3}(\mathbf{x})=\sum_{i=1}^{D}\left(10^{6}\right)^{\frac{i-1}{D-1}} z_{i}^{2}+f_{-}$bias $_{3}, \mathbf{z}=(\mathbf{x}-\mathbf{0}) * \mathbf{M}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum
\mathbf{M} : orthogonal matrix

Figure 2-3 3-D map for 2-D function

Properties:

> Unimodal
$>$ Shifted
$>$ Rotated
> Non-separable
$>$ Scalable
$>\mathbf{x} \in[-100,100]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{3}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{3}=-450$

Associated Data files:

Name: high_cond_elliptic_rot_data.mat high_cond_elliptic_rot_data.txt
Variable: $\quad \mathbf{0} \quad 1 * 100$ vector the shifted global optimum When using, cut $\mathbf{0}=\mathbf{o}(1: D)$

Name: elliptic_M_D10 .mat elliptic_M_D10 .txt
Variable: M 10*10 matrix
Name: elliptic_M_D30 .mat elliptic_M_D30 .txt
Variable: M 30*30 matrix
Name: elliptic_M_D50 .mat elliptic_M_D50 .txt
Variable: M 50*50 matrix
2.1.4. F_{4} : Shifted Schwefel's Problem 1.2 with Noise in Fitness
$F_{4}(\mathbf{x})=\left(\sum_{i=1}^{D}\left(\sum_{j=1}^{i} z_{j}\right)^{2}\right)^{*}(1+0.4|N(0,1)|)+f_{-}$bias $_{4}, \mathbf{z}=\mathbf{x}-\mathbf{0}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum

Figure 2-4 3-D map for 2-D function

Properties:

> Unimodal
$>$ Shifted
> Non-separable
$>$ Scalable
$>$ Noise in fitness
$>\mathbf{x} \in[-100,100]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{4}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{4}=-450$

Associated Data file:

Name: schwefel_102_data.mat
schwefel_102_data.txt
Variable: $\quad \begin{aligned} & \text { o } \\ & 1 * 100 \\ & \text { vector }\end{aligned}$ the shifted global optimum
When using, cut $\mathbf{0}=\mathbf{o}(1: D)$
2.1.5. F_{5} : Schwefel's Problem 2.6 with Global Optimum on Bounds

$$
f(\mathbf{x})=\max \left\{\left|x_{1}+2 x_{2}-7\right|,\left|2 x_{1}+x_{2}-5\right|\right\}, i=1, \ldots, n, \mathbf{x}^{*}=[1,3], f\left(\mathbf{x}^{*}\right)=0
$$

Extend to D dimensions:
$F_{5}(\mathbf{x})=\max \left\{\left|\mathbf{A}_{i} \mathbf{x}-\mathbf{B}_{i}\right|\right\}+f_{-}$bias $_{5}, i=1, \ldots, D, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
\mathbf{A} is a $D^{*} D$ matrix, $a_{i j}$ are integer random numbers in the range $[-500,500], \operatorname{det}(\mathbf{A}) \neq 0, \mathbf{A}_{\boldsymbol{i}}$ is the $i^{\text {th }}$ row of \mathbf{A}.
$\mathbf{B}_{i}=\mathbf{A}_{i}^{*} \mathbf{o}, \mathbf{o}$ is a $D^{*} 1$ vector, o_{i} are random number in the range [-100,100]
After load the data file, set $o_{i}=-100$, for $i=1,2, \ldots,\lceil D / 4\rceil, o_{i}=100$, for $i=\lfloor 3 D / 4\rfloor, \ldots, D$

Figure 2-5 3-D map for 2-D function

Properties:

> Unimodal
> Non-separable
$>$ Scalable
$>$ If the initialization procedure initializes the population at the bounds, this problem will be solved easily.
$>\mathbf{x} \in[-100,100]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{5}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{5}=-310$

Associated Data file:

Name: schwefel_206_data.mat schwefel_206_data.txt
Variable: o $1^{*} 100$ vector the shifted global optimum
A 100*100 matrix
When using, cut $\mathbf{0}=\mathbf{o}(1: D) \quad \mathbf{A}=\mathbf{A}(1: D, 1: D)$
In schwefel_206_data.txt ,the first line is $\mathbf{0}$ ($1 * 100$ vector), and line2-line101 is A(100*100 matrix)

2.2 Basic Multimodal Functions

2.2.1. $\quad F_{6}$: Shifted Rosenbrock's Function

$F_{6}(\mathbf{x})=\sum_{i=1}^{D-1}\left(100\left(z_{i}^{2}-z_{i+1}\right)^{2}+\left(z_{i}-1\right)^{2}\right)+f_{-}$bias $_{6}, \mathbf{z}=\mathbf{x}-\mathbf{0}+1, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum

Figure 2-6 3-D map for 2-D function

Properties:

> Multi-modal
> Shifted
> Non-separable
$>$ Scalable
$>$ Having a very narrow valley from local optimum to global optimum
$>\mathbf{x} \in[-100,100]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{6}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{6}=390$

Associated Data file:

Name: rosenbrock_func_data.mat rosenbrock_func_data.txt
Variable: $\quad \mathbf{0} \quad 1^{*} 100$ vector the shifted global optimum When using, cut $\mathbf{0}=\mathbf{o}(1: D)$
2.2.2. $\quad F_{7}$: Shifted Rotated Griewank's Function without Bounds
$F_{7}(\mathbf{x})=\sum_{i=1}^{D} \frac{z_{i}{ }^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{z_{i}}{\sqrt{i}}\right)+1+f_{-}$bias $_{7}, \mathbf{z}=(\mathbf{x}-\mathbf{0}) * \mathbf{M}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum
M': linear transformation matrix, condition number=3
$\mathbf{M}=\mathbf{M}^{\prime}(1+0.3|\mathrm{~N}(0,1)|)$

Figure 2-7 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Rotated
$>$ Shifted
> Non-separable
$>$ Scalable
> No bounds for variables x
$>$ Initialize population in $[0,600]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}$ is outside of the initialization range, $F_{7}\left(\mathbf{x}^{*}\right)=$ f_bias $_{7}=-180$

Associated Data file:

Name:
Variable: o $1 * 100$ vector When using, cut $\mathbf{0}=\mathbf{o}(1: D)$
griewank_func_data.txt the shifted global optimum

Name: griewank_M_D10.mat griewank_M_D10 .txt
Variable: M 10*10 matrix
Name: griewank_M_D30.mat griewank_M_D30 .txt
Variable: M 30*30 matrix
Name: griewank_M_D50 .mat griewank_M_D50 .txt
Variable: M 50*50 matrix
2.2.3. F_{8} : Shifted Rotated Ackley's Function with Global Optimum on Bounds
$F_{8}(\mathbf{x})=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} z_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos \left(2 \pi z_{i}\right)\right)+20+e+f_{-}$bias $_{8}, \mathbf{z}=(\mathbf{x}-\mathbf{o}) * \mathbf{M}$,
$\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right], D:$ dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum;
After load the data file, set $o_{2 j-1}=-32 o_{2 j}$ are randomly distributed in the search range, for $j=1,2, \ldots,\lfloor D / 2\rfloor$
\mathbf{M} : linear transformation matrix, condition number=100

Figure 2-8 3-D map for 2-D function

Properties:

> Multi-modal
$>$ Rotated
$>$ Shifted
$>$ Non-separable
> Scalable
$>$ A's condition number Cond(A) increases with the number of variables as $O\left(D^{2}\right)$
$>$ Global optimum on the bound
$>$ If the initialization procedure initializes the population at the bounds, this problem will be solved easily.
$>\mathbf{x} \in[-32,32]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}, F_{8}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{8}=-140$

Associated Data file:

Name:
ackley_func_data.mat ackley_func_data.txt
Variable: o $1 * 100$ vector the shifted global optimum
When using, cut $\mathbf{o}=\mathbf{o}(1: D)$
Name: ackley_M_D10 .mat ackley_M_D10 .txt
Variable: M 10*10 matrix
Name:
Variable
Name:
Variable
ackley_M_D30.mat ackley_M_D30.txt
M 30*30 matrix
ackley_M_D50.mat ackley_M_D50.txt
Vaiable: M 50*50 matrix
2.2.4. F_{9} : Shifted Rastrigin's Function
$F_{9}(\mathbf{x})=\sum_{i=1}^{D}\left(z_{i}^{2}-10 \cos \left(2 \pi z_{i}\right)+10\right)+f_{-}$bias $_{9}, \mathbf{z}=\mathbf{x}-\mathbf{0}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\boldsymbol{o}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum

Figure 2-9 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Shifted
> Separable
> Scalable
> Local optima's number is huge
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{9}\left(x^{*}\right)=f_{-}$bias $_{9}=-330$

Associated Data file:

Name: rastrigin_func_data.mat
rastrigin_func_data.txt
$\begin{array}{lll}\text { Variable: } & \mathbf{0} \quad 1^{*} 100 \text { vector } \\ & \text { When using, cut } \mathbf{o}=\mathbf{o}(1: D)\end{array}$ the shifted global optimum

2.2.5. $\quad F_{10}$: Shifted Rotated Rastrigin's Function

$F_{10}(\mathbf{x})=\sum_{i=1}^{D}\left(z_{i}^{2}-10 \cos \left(2 \pi z_{i}\right)+10\right)+f_{-}$bias $_{10}, \mathbf{z}=(\mathbf{x}-\mathbf{0}) * \mathbf{M}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum
\mathbf{M} : linear transformation matrix, condition number=2

Figure 2-10 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Shifted
$>$ Rotated
> Non-separable
$>$ Scalable
> Local optima's number is huge
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{10}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{10}=-330$

Associated Data file:

Name: rastrigin_func_data.mat rastrigin_func_data.txt
Variable: o $1^{*} 100$ vector the shifted global optimum
When using, cut $\mathbf{0}=\mathbf{o}(1: D)$
Name: rastrigin_M_D10 .mat rastrigin_M_D10 .txt
Variable: $\quad \mathbf{M} \quad 10 * 10$ matrix
Name: rastrigin_M_D30 .mat rastrigin_M_D30 .txt
Variable: $\quad \mathbf{M} \quad 30 * 30$ matrix
Name: rastrigin_M_D50 .mat rastrigin_M_D50 .txt
Variable: M 50*50 matrix
2.2.6. F_{11} : Shifted Rotated Weierstrass Function
$F_{11}(\mathbf{x})=\sum_{i=1}^{D}\left(\sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(z_{i}+0.5\right)\right)\right]\right)-D \sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k} \cdot 0.5\right)\right]+f_{-} b i a s_{11}$,
$\mathrm{a}=0.5, \mathrm{~b}=3, \mathrm{k}_{\max }=20, \mathbf{z}=(\mathbf{x}-\mathbf{o}) * \mathbf{M}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum
\mathbf{M} : linear transformation matrix, condition number=5

Figure 2-11 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Shifted
$>$ Rotated
> Non-separable
$>$ Scalable
$>$ Continuous but differentiable only on a set of points
$>\mathbf{x} \in[-0.5,0.5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{11}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{11}=90$

Associated Data file:

Name:
Variable:
weierstrass_data.mat
o 1*100 vector When using, cut $\mathbf{o}=\mathbf{o}(1: D)$

Name: weierstrass_M_D10 .mat
Variable: $\quad \mathbf{M} \quad 10 * 10$ matrix
Name: weierstrass_M_D30 .mat weierstrass_M_D30 .txt
Variable: M 30*30 matrix
Name: weierstrass_M_D50 .mat weierstrass_M_D50 .txt
Variable: M 50*50 matrix
weierstrass_data.txt the shifted global optimum
weierstrass_M_D10.txt (
2.2.7. F_{12} : Schwefel's Problem 2.13
$F_{12}(\mathbf{x})=\sum_{i=1}^{D}\left(\mathbf{A}_{i}-\mathbf{B}_{i}(\mathbf{x})\right)^{2}+f_{_}$bias $_{12}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
$\mathbf{A}_{i}=\sum_{j=1}^{D}\left(a_{i j} \sin \alpha_{j}+b_{i j} \cos \alpha_{j}\right), \mathbf{B}_{i}(x)=\sum_{j=1}^{D}\left(a_{i j} \sin x_{j}+b_{i j} \cos x_{j}\right)$, for $i=1, \ldots, D$
D: dimensions
\mathbf{A}, \mathbf{B} are two $D^{*} D$ matrix, $a_{i j}, b_{i j}$ are integer random numbers in the range [-100,100], $\alpha=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{D}\right], \alpha_{j}$ are random numbers in the range $[-\pi, \pi]$.

Figure 2-12 3-D map for 2-D function
Properties:
$>$ Multi-modal
$>$ Shifted
> Non-separable
$>$ Scalable
$>\mathbf{x} \in[-\pi, \pi]^{D}$, Global optimum $\mathbf{x}^{*}=\alpha, F_{12}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{12}=-460$

Associated Data file:

Name: schwefel_213_data.mat schwefel_213_data.txt
Variable: alpha $1 * 100$ vector the shifted global optimum
a $100 * 100$ matrix
b $100 * 100$ matrix
When using, cut alpha=alpha(1:D) $\mathbf{a}=\mathbf{a}(1: D, 1: D) \quad \mathbf{b}=\mathbf{b}(1: D, 1: D)$
In schwefel_213_data.txt, and line1-line100 is a (100*100 matrix), and line101line200 is \mathbf{b} (100*100 matrix), the last line is alpha(1*100 vector),

2.3 Expanded Functions

Using a 2-D function $F(x, y)$ as a starting function, corresponding expanded function is:
$E F\left(x_{1}, x_{2}, \ldots, x_{D}\right)=F\left(x_{1}, x_{2}\right)+F\left(x_{2}, x_{3}\right)+\ldots+F\left(x_{D-1}, x_{D}\right)+F\left(x_{D}, x_{1}\right)$
2.3.1. $\quad F_{13}$: Shifted Expanded Griewank's plus Rosenbrock's Function (F8F2)

F8: Griewank's Function: $F 8(x)=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1$
F2: Rosenbrock's Function: $F 2(x)=\sum_{i=1}^{D-1}\left(100\left(x_{i}^{2}-x_{i+1}\right)^{2}+\left(x_{i}-1\right)^{2}\right)$
$F 8 F 2\left(x_{1}, x_{2}, \ldots, x_{D}\right)=F 8\left(F 2\left(x_{1}, x_{2}\right)\right)+F 8\left(F 2\left(x_{2}, x_{3}\right)\right)+\ldots+F 8\left(F 2\left(x_{D-1}, x_{D}\right)\right)+F 8\left(F 2\left(x_{D}, x_{1}\right)\right)$
Shift to
$F_{13}(\mathbf{x})=F 8\left(F 2\left(z_{1}, z_{2}\right)\right)+F 8\left(F 2\left(z_{2}, z_{3}\right)\right)+\ldots+F 8\left(F 2\left(z_{D-1}, z_{D}\right)\right)+F 8\left(F 2\left(z_{D}, z_{1}\right)\right)+f _$bias $_{13}$ $\mathbf{z}=\mathbf{x}-\mathbf{o}+1, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D: dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]:$ the shifted global optimum

Figure 2-13 3-D map for 2-D function

Properties:

$>$ Multi-modal
> Shifted
> Non-separable
$>$ Scalable
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{13}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{13}(13)=-130$

Associated Data file:

Name: EF8F2_func_data.mat
EF8F2_func_data.txt
$\begin{array}{lll}\text { Variable: } & \mathbf{0} \quad 1^{*} 100 \text { vector } & \text { the shifted global optimum } \\ & \text { When using, cut } \mathbf{0}=\mathbf{o}(1: D)\end{array}$
2.3.2. F_{14} : Shifted Rotated Expanded Scaffer's F6 Function
$F(x, y)=0.5+\frac{\left(\sin ^{2}\left(\sqrt{x^{2}+y^{2}}\right)-0.5\right)}{\left(1+0.001\left(x^{2}+y^{2}\right)\right)^{2}}$
Expanded to
$F_{14}(\mathbf{x})=E F\left(z_{1}, z_{2}, \ldots, z_{D}\right)=F\left(z_{1}, z_{2}\right)+F\left(z_{2}, z_{3}\right)+\ldots+F\left(z_{D-1}, z_{D}\right)+F\left(z_{D}, z_{1}\right)+f_{-}$bias $_{14}$, $\mathbf{z}=(\mathbf{x}-\mathbf{0})^{*} \mathbf{M}, \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
D : dimensions
$\mathbf{0}=\left[o_{1}, o_{2}, \ldots, o_{D}\right]$: the shifted global optimum
\mathbf{M} : linear transformation matrix, condition number=3

Figure 2-14 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Shifted
> Non-separable
$>$ Scalable
$>\mathbf{x} \in[-100,100]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{0}, F_{14}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{14}(14)=-300$

Associated Data file:

Name:
E_ScafferF6_func_data.mat E_ScafferF6_func_data.txt
Variable: o $1^{*} 100$ vector the shifted global optimum
When using, cut $\mathbf{o}=\mathbf{o}(1: D)$
Name: E_ScafferF6_M_D10.mat E_ScafferF6_M_D10 .txt
Variable
M $10 * 10$ matrix
Name: E_ScafferF6_M_D30.mat E_ScafferF6_M_D30 .txt
Variable: M 30*30 matrix
Name: E_ScafferF6_M_D50 .mat E_ScafferF6_M_D50 .txt
Variable: M 50*50 matrix

2.4 Composition functions

$F(\mathbf{x})$: new composition function
$f_{i}(\mathbf{x}): \mathrm{i}^{\text {th }}$ basic function used to construct the composition function
n : number of basic functions
D : dimensions
\mathbf{M}_{i} : linear transformation matrix for each $f_{i}(\boldsymbol{x})$
\mathbf{o}_{i} : new shifted optimum position for each $f_{i}(\boldsymbol{x})$

$$
F(\mathbf{x})=\sum_{i=1}^{n}\left\{w_{i} *\left[f_{i}^{\prime}\left(\left(\mathbf{x}-\mathbf{o}_{i}\right) / \lambda_{i} * \mathbf{M}_{i}\right)+\text { bias }_{i}\right]\right\}+f_{-} \text {bias }
$$

w_{i} : weight value for each $f_{i}(\mathbf{x})$, calculated as below:

$$
\begin{aligned}
& w_{i}=\exp \left(-\frac{\sum_{k=1}^{D}\left(x_{k}-o_{i k}\right)^{2}}{2 D \sigma_{i}^{2}}\right), \\
& w_{i}=\left\{\begin{array}{cc}
w_{i} & w_{i}=\max \left(w_{i}\right) \\
w_{i}^{*}\left(1-\max \left(w_{i}\right) \cdot \wedge 10\right) & w_{i} \neq \max \left(w_{i}\right)
\end{array}\right. \\
& \text { then normalize the weight } w_{i}=w_{i} / \sum_{i=1}^{n} w_{i}
\end{aligned}
$$

σ_{i} : used to control each $f_{i}(\mathbf{x})$'s coverage range, a small σ_{i} give a narrow range for that $f_{i}(\mathbf{x})$
λ_{i} : used to stretch compress the function, $\lambda_{i}>1$ means stretch, $\lambda_{i}<1$ means compress
$\mathbf{o}_{\boldsymbol{i}}$ define the global and local optima's position, bias $_{i}$ define which optimum is global optimum.
Using \mathbf{o}_{i}, bias $_{i}$, a global optimum can be placed anywhere.
If $f_{i}(\mathbf{x})$ are different functions, different functions have different properties and height, in order to get a better mixture, estimate a biggest function value $f_{\max i}$ for 10 functions $f_{i}(\mathbf{x})$, then normalize each basic functions to similar heights as below:
$f_{i}^{\prime}(\mathbf{x})=C^{*} f_{i}(\mathbf{x}) /\left|f_{\text {maxi }}\right|, \mathrm{C}$ is a predefined constant.
$\left|f_{\text {maxi }}\right|$ is estimated using $\left|f_{\text {maxi }}\right|=f_{i}\left(\left(\mathbf{x}^{\prime} / \lambda_{i}\right) * \mathbf{M}_{i}\right), \mathbf{x}^{\prime}=[5,5 \ldots, 5]$.

In the following composition functions,
Number of basic functions $n=10$.
D : dimensions
o: $\mathrm{n}^{*} D$ matrix, defines $f_{i}(\mathbf{x})$'s global optimal positions
bias $=[0,100,200,300,400,500,600,700,800,900]$. Hence, the first function $f_{1}(\mathbf{x})$ always the function with the global optimum.
$C=2000$

Pseudo Code:

Define f1-f10, σ, λ, bias, C, load data file o and rotated linear transformation matrix M1-M10 $\mathbf{y}=[5,5 \ldots, 5]$.
For $\mathrm{i}=1: 10$

$$
\begin{aligned}
& w_{i}=\exp \left(-\frac{\sum_{k=1}^{D}\left(x_{k}-o_{i k}\right)^{2}}{2 D \sigma_{i}^{2}}\right), \\
& f i t_{i}=f_{i}\left(\left(\left(\mathbf{x}-\mathbf{o}_{i}\right) / \lambda_{i}\right)^{*} \mathbf{M}_{i}\right) \\
& f \max _{i}=f_{i}\left(\left(\mathbf{y} / \lambda_{i}\right) * \mathbf{M}_{i}\right), \\
& f i t_{i}=C^{*} f i t_{i} / f \max _{i}
\end{aligned}
$$

EndFor
$S W=\sum_{i=1}^{n} w_{i}$
$\operatorname{MaxW}=\max \left(w_{i}\right)$
For $\mathrm{i}=1: 10$
$w_{i}=\left\{\begin{array}{ccc}w_{i} & \text { if } & w_{i}==\text { MaxW } \\ w_{i}^{*}(1-M a x W . \wedge 10) & \text { if } & w_{i} \neq \text { MaxW }\end{array}\right.$
$w_{i}=w_{i} / S W$
EndFor
$F(\mathbf{x})=\sum_{i=1}^{n}\left\{w_{i} *\left[\right.\right.$ fit $_{i}+$ bias $\left.\left._{i}\right]\right\}$
$F(\mathbf{x})=F(\mathbf{x})+f _$bias

2.4.1. F_{15} : Hybrid Composition Function

$f_{1-2}(\mathbf{x})$: Rastrigin's Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right)
$$

$f_{3-4}(\mathbf{x})$: Weierstrass Function

$$
\begin{aligned}
& \quad f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(\sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(x_{i}+0.5\right)\right)\right]\right)-D \sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k} \cdot 0.5\right)\right], \\
& \mathrm{a}=0.5, \mathrm{~b}=3, \mathrm{k}_{\max }=20 \\
& f_{5-6}(\mathbf{x}): \text { Griewank’s Function } \\
& \quad f_{i}(\mathbf{x})=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1
\end{aligned}
$$

$f_{7-8}(\mathbf{x})$: Ackley's Function

$$
f_{i}(\mathbf{x})=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos \left(2 \pi x_{i}\right)\right)+20+e
$$

$f_{9-10}(\mathbf{x})$: Sphere Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D} x_{i}^{2}
$$

$\sigma_{i}=1$ for $i=1,2, \ldots, D$
$\lambda=[1,1,10,10,5 / 60,5 / 60,5 / 32,5 / 32,5 / 100,5 / 100]$
\mathbf{M}_{i} are all identity matrices
Please notice that these formulas are just for the basic functions, no shift or rotation is included in these expressions. x here is just a variable in a function.
Take f_{1} as an example, when we calculate $f_{1}\left(\left(\left(\mathbf{x}-\mathbf{o}_{1}\right) / \lambda_{1}\right) * \mathbf{M}_{1}\right)$, we need calculate $f_{1}(\mathbf{z})=\sum_{i=1}^{D}\left(z_{i}^{2}-10 \cos \left(2 \pi z_{i}\right)+10\right), \mathbf{z}=\left(\left(\mathbf{x}-\mathbf{o}_{1}\right) / \lambda_{1}\right) * \mathbf{M}_{1}$.

Figure 2-15 3-D map for 2-D function

Properties:

$>$ Multi-modal
> Separable near the global optimum (Rastrigin)
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Sphere Functions give two flat areas for the function
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{15}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{15}=120$

Associated Data file:

Name: hybrid_func1_data.mat
hybrid_func1_data.txt
Variable: o $10 * 100$ vector the shifted optimum for 10 functions When using, cut $\mathbf{o}=\mathbf{o}(:, 1: D)$

2.4.2. F_{16} : Rotated Version of Hybrid Composition Function F_{15}

Except \mathbf{M}_{i} are different linear transformation matrixes with condition number of 2, all other settings are the same as F_{15}.

Figure 2-16 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Rotated
> Non-Separable
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Sphere Functions give two flat areas for the function.
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{16}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{16}=120$

Associated Data file:

Name: hybrid_func1_data.mat
hybrid_func1_data.txt
Variable: $\quad \begin{aligned} & \mathbf{o} \\ & \quad 10 * 100 \\ & \text { vector }\end{aligned}$ the shifted optima for 10 functions

Name: hybrid_func1_M_D10 .mat
Variable: $\quad \mathbf{M} \quad$ an structure variable
Contains M.M1 M.M2, ... , M.M10 ten 10*10 matrixes
Name: hybrid_func1_M_D10 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 10*10 matrixes, 1-10 lines are
M1, 11-20 lines are M2,..., 91 -100 lines are M10
Name: hybrid_func1_M_D30 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 30*30 matrix
Name: hybrid_func1_M_D30 .txt

Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 30*30 matrixes, 1-30 lines are M1, 31-60 lines are M2,...,271-300 lines are M10

Name: hybrid_func1_M_D50 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 50*50 matrix Name: hybrid_func1_M_D50 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 50*50 matrixes, 1-50 lines are M1, 51-100 lines are M2,....,451-500 lines are M10
2.4.3. $\quad F_{17}: F_{16}$ with Noise in Fitness

Let $\left(F_{16}-f_{-}\right.$bias $\left._{16}\right)$ be $G(x)$, then
$F_{17}(\mathbf{x})=G(\mathbf{x})^{*}(1+0.2|\mathrm{~N}(0,1)|)+f$ _bias $_{17}$
All settings are the same as F_{16}.

Figure 2-17 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Rotated
> Non-Separable
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Sphere Functions give two flat areas for the function.
$>$ With Gaussian noise in fitness
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{17}\left(\mathbf{x}^{*}\right)=f _$bias $_{17}=120$

Associated Data file:

Same as F_{16}.

2.4.4. F_{18} : Rotated Hybrid Composition Function

$f_{1-2}(\mathbf{x})$: Ackley's Function

$$
f_{i}(\mathbf{x})=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos \left(2 \pi x_{i}\right)\right)+20+e
$$

$f_{3-4}(\mathbf{x})$: Rastrigin's Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right)
$$

$f_{5-6}(\mathbf{x})$: Sphere Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D} x_{i}^{2}
$$

$f_{7-8}(\mathbf{x})$: Weierstrass Function

$$
\begin{aligned}
& f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(\sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(x_{i}+0.5\right)\right)\right]\right)-D \sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k} \cdot 0.5\right)\right], \\
& \mathrm{a}=0.5, \mathrm{~b}=3, \mathrm{k}_{\max }=20
\end{aligned}
$$

$f_{9-10}(\mathbf{x})$: Griewank's Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1
$$

$\sigma=[1,2,1.5,1.5,1,1,1.5,1.5,2,2] ;$
$\lambda=[2 * 5 / 32 ; 5 / 32 ; 2 * 1 ; 1 ; 2 * 5 / 100 ; 5 / 100 ; 2 * 10 ; 10 ; 2 * 5 / 60 ; 5 / 60]$
\mathbf{M}_{i} are all rotation matrices. Condition numbers are [2 323232030200 300]
$\mathbf{o}_{10}=[0,0, \ldots, 0]$

Figure 2-18 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Rotated
> Non-Separable
> Scalable
> A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Sphere Functions give two flat areas for the function.
$>$ A local optimum is set on the origin
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{18}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{18}=10$

Associated Data file:
Name: hybrid_func2_data.mat
hybrid_func2_data.txt
Variable: o $10 * 100$ vector the shifted optima for 10 functions
When using, cut $\mathbf{0}=\mathbf{o}(:, 1: D)$
Name: hybrid_func2_M_D10 .mat
Variable: $\quad \mathbf{M}$ an structure variable
Contains M.M1 M.M2, ... , M.M10 ten 10*10 matrixes
Name: hybrid_func2_M_D10.txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 10*10 matrixes, 1-10 lines are M1, 11-20 lines are M2,..., 91-100 lines are M10

Name: hybrid_func2_M_D30 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 30*30 matrix
Name: hybrid_func2_M_D30 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 30*30 matrixes, 1-30 lines are M1, 31-60 lines are M2,....,271-300 lines are M10

Name: hybrid_func2_M_D50 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 50*50 matrix
Name: hybrid_func2_M_D50 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 50*50 matrixes, 1-50 lines are M1, 51-100 lines are M2,....,451-500 lines are M10
2.4.5. $\quad F_{19}$: Rotated Hybrid Composition Function with narrow basin global optimum All settings are the same as F_{18} except $\sigma=[0.1,2,1.5,1.5,1,1,1.5,1.5,2,2]$;,
$\lambda=[0.1 * 5 / 32 ; 5 / 32 ; 2 * 1 ; 1 ; 2 * 5 / 100 ; 5 / 100 ; 2 * 10 ; 10 ; 2 * 5 / 60 ; 5 / 60]$

Figure 2-19 3-D map for 2-D function
Properties:
$>$ Multi-modal
$>$ Non-separable
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Sphere Functions give two flat areas for the function.
$>$ A local optimum is set on the origin
$>$ A narrow basin for the global optimum
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{19}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{19}(19)=10$

Associated Data file:

Same as F_{18}.
2.4.6. F_{20} : Rotated Hybrid Composition Function with Global Optimum on the Bounds All settings are the same as F_{18} except after load the data file, set $o_{1(2 j)}=5$, for $j=1,2, \ldots,\lfloor D / 2\rfloor$

Figure 2-20 3-D map for 2-D function

Properties:

$>$ Multi-modal
> Non-separable
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Sphere Functions give two flat areas for the function.
$>$ A local optimum is set on the origin
$>$ Global optimum is on the bound
$>$ If the initialization procedure initializes the population at the bounds, this problem will be solved easily.
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{20}\left(\mathbf{x}^{*}\right)=f _$bias $_{20}=10$

Associated Data file:

Same as F_{18}.

2.4.7. F_{21} : Rotated Hybrid Composition Function

$f_{1-2}(\mathbf{x})$: Rotated Expanded Scaffer's F6 Function

$$
\begin{aligned}
& F(x, y)=0.5+\frac{\left(\sin ^{2}\left(\sqrt{x^{2}+y^{2}}\right)-0.5\right)}{\left(1+0.001\left(x^{2}+y^{2}\right)\right)^{2}} \\
& f_{i}(\mathbf{x})=F\left(x_{1}, x_{2}\right)+F\left(x_{2}, x_{3}\right)+\ldots+F\left(x_{D-1}, x_{D}\right)+F\left(x_{D}, x_{1}\right)
\end{aligned}
$$

$f_{3-4}(\mathbf{x})$: Rastrigin's Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right)
$$

$f_{5-6}(\mathbf{x})$: F8F2 Function

$$
\begin{aligned}
& F 8(\mathbf{x})=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1 \\
& F 2(\mathbf{x})=\sum_{i=1}^{D-1}\left(100\left(x_{i}^{2}-x_{i+1}\right)^{2}+\left(x_{i}-1\right)^{2}\right) \\
& f_{i}(\mathbf{x})=F 8\left(F 2\left(x_{1}, x_{2}\right)\right)+F 8\left(F 2\left(x_{2}, x_{3}\right)\right)+\ldots+F 8\left(F 2\left(x_{D-1}, x_{D}\right)\right)+F 8\left(F 2\left(x_{D}, x_{1}\right)\right)
\end{aligned}
$$

$f_{7-8}(\mathbf{x})$: Weierstrass Function
$f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(\sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(x_{i}+0.5\right)\right)\right]\right)-D \sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k} \cdot 0.5\right)\right]$,
$\mathrm{a}=0.5, \mathrm{~b}=3, \mathrm{k}_{\max }=20$
$f_{9-10}(\mathbf{x})$: Griewank's Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1
$$

$\sigma=[1,1,1,1,1,2,2,2,2,2]$,
$\lambda=[5 * 5 / 100 ; 5 / 100 ; 5 * 1 ; 1 ; 5 * 1 ; 1 ; 5 * 10 ; 10 ; 5 * 5 / 200 ; 5 / 200] ;$
\mathbf{M}_{i} are all orthogonal matrix

Figure 2-21 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Rotated
> Non-Separable
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{21}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{21}=360$

Associated Data file:

Name: hybrid_func3_data.mat hybrid_func3_data.txt
Variable: o $10 * 100$ vector the shifted optima for 10 functions
When using, cut $\mathbf{o}=\mathbf{o}(:, 1: D)$
Name: hybrid_func3_M_D10.mat
Variable: $\quad \mathbf{M} \quad$ an structure variable Contains M.M1 M.M2, ... , M.M10 ten 10*10 matrixes
Name: hybrid_func3_M_D10 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 10*10 matrixes, 1-10 lines are M1, 11-20 lines are M2,....,91-100 lines are M10

Name: hybrid_func3_M_D30 .mat
Variable: \mathbf{M} an structure variable contains M.M1,...,M.M10 ten $30 * 30$ matrix
Name: hybrid_func3_M_D30 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 30*30 matrixes, 1-30 lines are M1, 31-60 lines are M2,....,271-300 lines are M10

Name: hybrid_func3_M_D50 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 50*50 matrix
Name: hybrid_func3_M_D50 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 50*50 matrixes, 1-50 lines are M1, 51-100 lines are M2,....,451-500 lines are M10
2.4.8. F_{22} : Rotated Hybrid Composition Function with High Condition Number Matrix

All settings are the same as F_{21} except \mathbf{M}_{i} 's condition numbers are [10 20501002001000 200030004000 5000]

Figure 2-22 3-D map for 2-D function

Properties:

$>$ Multi-modal
> Non-separable
> Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Global optimum is on the bound
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{22}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{22}=360$

Associated Data file:

Name: hybrid_func3_data.mat
hybrid_func3_data.txt
Variable: $\quad \mathbf{0} \quad 10^{*} 100$ vector the shifted optima for 10 functions
When using, cut $\mathbf{0}=\mathbf{o}(:, 1: D)$
Name: hybrid_func3_HM_D10 .mat
Variable: \quad M an structure variable
Contains M.M1 M.M2, ... , M.M10 ten 10*10 matrixes
Name: hybrid_func3_HM_D10.txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 10*10 matrixes, 1-10 lines are M1, 11-20 lines are M2,..., 91-100 lines are M10

Name: hybrid_func3_HM_D30 .mat
Variable: $\quad \mathbf{M}$ an structure variable contains M.M1,...,M.M10 ten $30 * 30$ matrix
Name: hybrid_func3_MH_D30.txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 30*30 matrixes, 1-30 lines are M1, 31-60 lines are M2,....,271-300 lines are M10

Name: hybrid_func3_MH_D50 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 50*50 matrix
Name: hybrid_func3_HM_D50.txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 50*50 matrixes, 1-50 lines are M1, 51-100 lines are M2,....,451-500 lines are M10
2.4.9. F_{23} : Non-Continuous Rotated Hybrid Composition Function All settings are the same as F_{21}.
Except $x_{j}=\left\{\begin{array}{ll}x_{j} & \left|x_{j}-o_{1 j}\right|<1 / 2 \\ \operatorname{round}\left(2 x_{j}\right) / 2 & \left|x_{j}-o_{1 j}\right|>=1 / 2\end{array}\right.$ for $j=1,2, . ., D$
$\operatorname{round}(x)=\left\{\begin{array}{ccc}a-1 & \text { if } & x<=0 \& b>=0.5 \\ a & \text { if } & b<0.5 \\ a+1 & \text { if } & x>0 \& b>=0.5\end{array}\right.$,
where a is x 's integral part and b is x 's decimal part
All "round" operators in this document use the same schedule.

Figure 2-23 3-D map for 2-D function

Properties:

> Multi-modal
> Non-separable
$>$ Scalable
> A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Non-continuous
$>$ Global optimum is on the bound
$>\mathrm{x} \in[-5,5]^{D}$, Global optimum $\mathrm{x}^{*}=\mathbf{o}_{1}, f\left(\boldsymbol{x}^{*}\right) \approx \boldsymbol{f}_{\mathbf{\prime}} \boldsymbol{b i a s}(23)=360$

Associated Data file:

Same as F_{21}.

2.4.10. F_{24} : Rotated Hybrid Composition Function

$f_{1}(\mathbf{x})$: Weierstrass Function

$$
\begin{aligned}
& f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(\sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(x_{i}+0.5\right)\right)\right]\right)-D \sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k} 0.5\right)\right] \\
& \mathrm{a}=0.5, \mathrm{~b}=3, \mathrm{k}_{\max }=20
\end{aligned}
$$

$f_{2}(\mathbf{x})$: Rotated Expanded Scaffer’s F6 Function

$$
\begin{aligned}
& F(x, y)=0.5+\frac{\left(\sin ^{2}\left(\sqrt{x^{2}+y^{2}}\right)-0.5\right)}{\left(1+0.001\left(x^{2}+y^{2}\right)\right)^{2}} \\
& f_{i}(\mathbf{x})=F\left(x_{1}, x_{2}\right)+F\left(x_{2}, x_{3}\right)+\ldots+F\left(x_{D-1}, x_{D}\right)+F\left(x_{D}, x_{1}\right)
\end{aligned}
$$

$f_{3}(\mathbf{x})$: F8F2 Function

$$
\begin{aligned}
& F 8(\mathbf{x})=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1 \\
& F 2(\mathbf{x})=\sum_{i=1}^{D-1}\left(100\left(x_{i}^{2}-x_{i+1}\right)^{2}+\left(x_{i}-1\right)^{2}\right) \\
& f_{i}(\mathbf{x})=F 8\left(F 2\left(x_{1}, x_{2}\right)\right)+F 8\left(F 2\left(x_{2}, x_{3}\right)\right)+\ldots+F 8\left(F 2\left(x_{D-1}, x_{D}\right)\right)+F 8\left(F 2\left(x_{D}, x_{1}\right)\right)
\end{aligned}
$$

$f_{4}(\mathbf{x})$: Ackley's Function

$$
f_{i}(\mathbf{x})=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos \left(2 \pi x_{i}\right)\right)+20+e
$$

$f_{5}(\mathbf{x})$: Rastrigin's Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right)
$$

$f_{6}(\mathbf{x})$: Griewank's Function

$$
f_{i}(\mathbf{x})=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1
$$

$f_{7}(\mathbf{x})$: Non-Continuous Expanded Scaffer's F6 Function

$$
\begin{aligned}
& F(x, y)=0.5+\frac{\left(\sin ^{2}\left(\sqrt{x^{2}+y^{2}}\right)-0.5\right)}{\left(1+0.001\left(x^{2}+y^{2}\right)\right)^{2}} \\
& f(x)=F\left(y_{1}, y_{2}\right)+F\left(y_{2}, y_{3}\right)+\ldots+F\left(y_{D-1}, y_{D}\right)+F\left(y_{D}, y_{1}\right) \\
& y_{j}=\left\{\begin{array}{ll}
x_{j} & \left|x_{j}\right|<1 / 2 \\
\operatorname{round}\left(2 x_{j}\right) / 2 & \left|x_{j}\right|>=1 / 2
\end{array} \text { for } j=1,2, . ., D\right.
\end{aligned}
$$

$f_{8}(\mathbf{x})$: Non-Continuous Rastrigin’s Function

$$
f(\mathbf{x})=\sum_{i=1}^{D}\left(y_{i}^{2}-10 \cos \left(2 \pi y_{i}\right)+10\right)
$$

$$
y_{j}=\left\{\begin{array}{ll}
x_{j} & \left|x_{j}\right|<1 / 2 \\
\operatorname{round}\left(2 x_{j}\right) / 2 & \left|x_{j}\right|>=1 / 2
\end{array} \text { for } j=1,2, \ldots, D\right.
$$

$f_{9}(\mathbf{x})$: High Conditioned Elliptic Function

$$
f(\mathbf{x})=\sum_{i=1}^{D}\left(10^{6}\right)^{\frac{i-1}{D-1}} x_{i}^{2}
$$

$f_{10}(\mathbf{x})$: Sphere Function with Noise in Fitness

$$
f_{i}(\mathbf{x})=\left(\sum_{i=1}^{D} x_{i}^{2}\right)(1+0.1|N(0,1)|)
$$

$\sigma_{i}=2$, for $i=1,2 \ldots, D$
$\lambda=[10 ; 5 / 20 ; 1 ; 5 / 32 ; 1 ; 5 / 100 ; 5 / 50 ; 1 ; 5 / 100 ; 5 / 100]$
\mathbf{M}_{i} are all rotation matrices, condition numbers are [100 503010554322];

Figure 2-24 3-D map for 2-D function

Properties:

$>$ Multi-modal
$>$ Rotated
> Non-Separable
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Unimodal Functions give flat areas for the function.
$>\mathbf{x} \in[-5,5]^{D}$, Global optimum $\mathbf{x}^{*}=\mathbf{o}_{1}, F_{24}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{24}=260$

Associated Data file:

Name: hybrid_func4_data.mat
hybrid_func4_data.txt
Variable: $\quad \mathbf{0} \quad 10 * 100$ vector \quad the shifted optima for 10 functions
When using, cut $\mathbf{0}=\mathbf{o}(:, 1: D)$

Name: hybrid_func4_M_D10 .mat
Variable: $\quad \mathbf{M} \quad$ an structure variable
Contains M.M1 M.M2, ... , M.M10 ten 10*10 matrixes
Name: hybrid_func4_M_D10 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 10*10 matrixes, 1-10 lines are M1, 11-20 lines are M2,...,,91-100 lines are M10

Name: hybrid_func4_M_D30 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 30*30 matrix
Name: hybrid_func4_M_D30 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 30*30 matrixes, 1-30 lines are M1, 31-60 lines are M2,....,271-300 lines are M10

Name: hybrid_func4_M_D50 .mat
Variable: M an structure variable contains M.M1,...,M.M10 ten 50*50 matrix
Name: hybrid_func4_M_D50 .txt
Variable: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 50*50 matrixes, 1-50 lines are M1, 51-100 lines are M2,....,451-500 lines are M10
2.4.11. F_{25} : Rotated Hybrid Composition Function without bounds

All settings are the same as F_{24} except no exact search range set for this test function.

Properties:

$>$ Multi-modal
> Non-separable
$>$ Scalable
$>$ A huge number of local optima
$>$ Different function's properties are mixed together
$>$ Unimodal Functions give flat areas for the function.
$>$ Global optimum is on the bound
$>$ No bounds
$>$ Initialize population in $[2,5]^{D}$, Global optimum $\boldsymbol{x}^{*}=\boldsymbol{o}_{1}$ is outside of the initialization range, $F_{25}\left(\mathbf{x}^{*}\right)=f_{-}$bias $_{25}=260$

Associated Data file:

Same as F_{24}

2.5 Comparisons Pairs

Different Condition Numbers:

$>F_{1}$. Shifted Rotated Sphere Function
$>F_{2}$. Shifted Schwefel's Problem 1.2
$>F_{3}$. Shifted Rotated High Conditioned Elliptic Function

Function With Noise Vs Without Noise

Pair 1:
$>\quad F_{2}$. Shifted Schwefel's Problem 1.2
$>F_{4}$. Shifted Schwefel's Problem 1.2 with Noise in Fitness
Pair 2:
$>F_{16}$. Rotated Hybrid Composition Function
$>F_{17} . F_{16}$. with Noise in Fitness

Function without Rotation Vs With Rotation

Pair 1:
$>F_{9}$. Shifted Rastrigin's Function
$>F_{10}$. Shifted Rotated Rastrigin's Function
Pair 2:
$>F_{15}$. Hybrid Composition Function
$>F_{16}$. Rotated Hybrid Composition Function

Continuous Vs Non-continuous

$>F_{21}$. Rotated Hybrid Composition Function
$>F_{23}$. Non-Continuous Rotated Hybrid Composition Function

Global Optimum on Bounds Vs Global Optimum on Bounds

$>F_{18}$. Rotated Hybrid Composition Function
$>F_{20}$. Rotated Hybrid Composition Function with the Global Optimum on the Bounds

Wide Global Optimum Basin Vs Narrow Global Optimum Basin

$>F_{18}$. Rotated Hybrid Composition Function
$>F_{19}$. Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum

Orthogonal Matrix Vs High Condition Number Matrix

$>F_{21}$. Rotated Hybrid Composition Function
$>F_{22}$. Rotated Hybrid Composition Function with High Condition Number Matrix

Global Optimum in the Initialization Range Vs outside of the Initialization Range

$>F_{24}$. Rotated Hybrid Composition Function
$>F_{25}$. Rotated Hybrid Composition Function without Bounds

2.6 Similar Groups:

Unimodal Functions

Function 1-5

Multi-modal Functions

Function 6-25
$>$ Single Function: Function 6-12
$>$ Expanded Function:
Function 13-14
$>$ Hybrid Composition Function: Function 15-25
Functions with Global Optimum outside of the Initialization Range
$>\quad F_{7}$. Shifted Rotated Griewank’s Function without Bounds
$>F_{25}$. Rotated Hybrid Composition Function 4 without Bounds

Functions with Global Optimum on Bounds

$>F_{5}$. Schwefel's Problem 2.6 with Global Optimum on Bounds
$>F_{8}$. Shifted Rotated Ackley's Function with Global Optimum on Bounds
$>F_{20}$. Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds

3. Evaluation Criteria

3.1 Description of the Evaluation Criteria

Problems: 25 minimization problems
Dimensions: $D=10,30,50$
Runs / problem: 25 (Do not run many 25 runs to pick the best run)
Max_FES: $10000^{*} D$ (Max_FES_10D= 100000; for 30D=300000; for 50D=500000)
Initialization: Uniform random initialization within the search space, except for problems 7 and 25 , for which initialization ranges are specified.
Please use the same initializations for the comparison pairs (problems 1, 2,3 \& 4, problems 9 \& 10, problems 15, $16 \& 17$, problems 18, $19 \& 20$, problems 21, $22 \& 23$, problems $24 \& 25$). One way to achieve this would be to use a fixed seed for the random number generator.
Global Optimum: All problems, except 7 and 25, have the global optimum within the given bounds and there is no need to perform search outside of the given bounds for these problems. 7 \& 25 are exceptions without a search range and with the global optimum outside of the specified initialization range.
Termination: Terminate before reaching Max_FES if the error in the function value is 10^{-8} or less.
Ter_Err: 10^{-8} (termination error value)

1) Record function error value $\left(f(x)-f\left(x^{*}\right)\right)$ after 1e3, 1e4, 1e5 FES and at termination (due to Ter_Err or Max_FES) for each run.

For each function, sort the error values in 25 runs from the smallest (best) to the largest (worst)
Present the following: $1^{\text {st }}$ (best), $7^{\text {th }}, 13^{\text {th }}$ (median), $19^{\text {th }}, 25^{\text {th }}$ (worst) function values Mean and STD for the 25 runs

2) Record the FES needed in each run to achieve the following fixed accuracy level. The Max_FES applies.

Table 3-1 Fixed Accuracy Level for Each Function

Function	Accuracy	Function	Accuracy
1	$-450+1 \mathrm{e}-6$	14	$-300+1 \mathrm{e}-2$

2	$-450+1 \mathrm{e}-6$	15	$120+1 \mathrm{e}-2$
3	$-450+1 \mathrm{e}-6$	16	$120+1 \mathrm{e}-2$
4	$-450+1 \mathrm{e}-6$	17	$120+1 \mathrm{e}-1$
5	$-310+1 \mathrm{e}-6$	18	$10+1 \mathrm{e}-1$
6	$390+1 \mathrm{e}-2$	19	$10+1 \mathrm{e}-1$
7	$-180+1 \mathrm{e}-2$	20	$10+1 \mathrm{e}-1$
8	$-140+1 \mathrm{e}-2$	21	$360+1 \mathrm{e}-1$
9	$-330+1 \mathrm{e}-2$	22	$360+1 \mathrm{e}-1$
10	$-330+1 \mathrm{e}-2$	23	$360+1 \mathrm{e}-1$
11	$90+1 \mathrm{e}-2$	24	$260+1 \mathrm{e}-1$
12	$-460+1 \mathrm{e}-2$	25	$260+1 \mathrm{e}-1$
13	$-130+1 \mathrm{e}-2$		

Successful Run: A run during which the algorithm achieves the fixed accuracy level within the Max_FES for the particular dimension.

For each function/dimension, sort FES in 25 runs from the smallest (best) to the largest (worst)

Present the following: $1^{\text {st }}$ (best), $7^{\text {th }}, 13^{\text {th }}$ (median), $19^{\text {th }}, 25^{\text {th }}$ (worst) FES
Mean andSTD for the 25 runs

3) Success Rate \& success Performance For Each Problem

Success Rate= (\# of successful runs according to the table above) / total runs
Success Performance=mean (FEs for successful runs)*(\# of total runs) / (\# of successful runs) The above two quantities are computed for each problem separately.

4) Convergence Graphs (or Run-length distribution graphs)

Convergence Graphs for each problem for $\boldsymbol{D}=\mathbf{3 0}$. The graph would show the median performance of the total runs with termination by either the Max_FES or the Ter_Err. The semilog graphs should show $\log 10\left(f(x)-f\left(x^{*}\right)\right)$ vs FES for each problem.

5) Algorithm Complexity

a) Run the test program below:
for $\mathrm{i}=1: 1000000$
$x=$ (double) 5.55;
$x=x+x ; x=x . / 2 ; x=x^{*} x ; x=\operatorname{sqrt}(x) ; x=\ln (x) ; x=\exp (x) ; y=x / x$;
end
Computing time for the above=T0;
b) evaluate the computing time just for Function 3. For 200000 evaluations of a certain dimension D, it gives T1;
c) the complete computing time for the algorithm with 200000 evaluations of the same D dimensional benchmark function 3 is $T 2$. Execute step c 5 times and get $5 T 2$ values.

$$
\widehat{T} 2=\operatorname{Mean}(T 2)
$$

The complexity of the algorithm is reflected by: $\widehat{T} 2, T 1, T 0$, and ($\widehat{T} 2-T 1$)/T0

The algorithm complexities are calculated on 10, 30 and 50 dimensions, to show the algorithm complexity's relationship with dimension. Also provide sufficient details on the computing system and the programming language used. In step c, we execute the complete algorithm 5 times to accommodate variations in execution time due adaptive nature of some algorithms.

6) Parameters

We discourage participants searching for a distinct set of parameters for each problem/dimension/etc. Please provide details on the following whenever applicable:
a) All parameters to be adjusted
b) Corresponding dynamic ranges
c) Guidelines on how to adjust the parameters
d) Estimated cost of parameter tuning in terms of number of FEs
e) Actual parameter values used.

7) Encoding

If the algorithm requires encoding, then the encoding scheme should be independent of the specific problems and governed by generic factors such as the search ranges.

3.2 Example

System: Windows XP (SP1)
CPU: Pentium(R) 43.00 GHz
RAM: 1 G
Language: Matlab 6.5

Algorithm: Particle Swarm Optimizer (PSO)

Results

$D=10$
Max_FES=100000

Table 3-2 Error Values Achieved When FES=1e3, FES=1e4, FES=1e5 for Problems 1-8

Prob FES		1	2	3	4	5	6	7	8
1e3	$1^{\text {st }}$ (Best)	$4.8672 \mathrm{e}+2$	$4.7296 \mathrm{e}+2$	$2.2037 \mathrm{e}+6$	$4.6617 \mathrm{e}+2$	$2.3522 \mathrm{e}+3$			
	$7^{\text {th }}$	$8.0293 \mathrm{e}+2$	$9.8091 \mathrm{e}+2$	$8.5141 \mathrm{e}+6$	$1.2900 \mathrm{e}+3$	$4.0573 \mathrm{e}+3$			
	$13^{\text {th }}$ (Median)	$9.2384 \mathrm{e}+2$	$1.5293 \mathrm{e}+3$	$1.4311 \mathrm{e}+7$	$1.9769 \mathrm{e}+3$	$4.6308 \mathrm{e}+3$			
	$19^{\text {th }}$	$1.3393 \mathrm{e}+3$	$1.7615 \mathrm{e}+3$	$1.9298 \mathrm{e}+7$	$2.9175 \mathrm{e}+3$	$4.8015 \mathrm{e}+3$			
	$25^{\text {th }}$ (Worst)	$1.9151 \mathrm{e}+3$	$3.2337 \mathrm{e}+3$	$4.4688 \mathrm{e}+7$	$6.5038 \mathrm{e}+3$	$5.6701 \mathrm{e}+3$			
	Mean	$1.0996 \mathrm{e}+3$	$1.5107 \mathrm{e}+3$	$1.5156 \mathrm{e}+7$	$2.3669 \mathrm{e}+3$	$4.4857 \mathrm{e}+3$			
	Std	$4.0575 \mathrm{e}+2$	7.2503e+2	$9.3002 \mathrm{e}+6$	$1.5082 \mathrm{e}+3$	$7.0081 \mathrm{e}+2$			
1e4	$1^{\text {st }}$ (Best)	3.1984e-3	$1.0413 \mathrm{e}+0$	$1.3491 \mathrm{e}+5$	$6.7175 \mathrm{e}+0$	$1.6584 \mathrm{e}+3$			
	$7^{\text {th }}$	$2.6509 \mathrm{e}-2$	$1.3202 \mathrm{e}+1$	$4.4023 \mathrm{e}+5$	$3.8884 \mathrm{e}+1$	$2.3522 \mathrm{e}+3$			
	$13^{\text {th }}$ (Median)	$6.0665 \mathrm{e}-2$	$1.9981 \mathrm{e}+1$	$1.1727 \mathrm{e}+6$	$5.5027 \mathrm{e}+1$	$2.6335 \mathrm{e}+3$			
	$19^{\text {th }}$	$1.0657 \mathrm{e}-1$	$3.5319 \mathrm{e}+1$	$2.0824 \mathrm{e}+6$	7.1385e+1	$2.8788 \mathrm{e}+3$			
	$25^{\text {th }}$ (Worst)	4.3846e-1	$1.0517 \mathrm{e}+2$	$2.9099 \mathrm{e}+6$	$1.7905 \mathrm{e}+2$	$3.6094 \mathrm{e}+3$			
	Mean	8.6962e-2	$2.7883 \mathrm{e}+1$	$1.3599 \mathrm{e}+6$	$5.9894 \mathrm{e}+1$	$2.6055 \mathrm{e}+3$			
	Std	$9.6616 \mathrm{e}-2$	$2.3526 \mathrm{e}+1$	$9.1421 \mathrm{e}+5$	$3.5988 \mathrm{e}+1$	$4.5167 \mathrm{e}+2$			
1 e 5	$1^{\text {st }}$ (Best)	$4.7434 \mathrm{e}-9 \mathrm{~T}$	$5.1782 \mathrm{e}-9 \mathrm{~T}$	$4.2175 \mathrm{e}+4$	1.7070e-5	$1.1864 \mathrm{e}+3$			
	$7^{\text {th }}$	7.9845e-9T	$8.5278 \mathrm{e}-9 \mathrm{~T}$	$1.2805 \mathrm{e}+5$	$1.2433 \mathrm{e}-3$	$1.4951 \mathrm{e}+3$			
	$13^{\text {th }}$ (Median)	$9.0901 \mathrm{e}-9 \mathrm{~T}$	$9.7281 \mathrm{e}-9 \mathrm{~T}$	$2.3534 \mathrm{e}+5$	$4.0361 \mathrm{e}-3$	$1.7380 \mathrm{e}+3$			
	$19^{\text {th }}$	$9.6540 \mathrm{e}-9 \mathrm{~T}$	$1.5249 \mathrm{e}-8$	$4.6436 \mathrm{e}+5$	$1.8283 \mathrm{e}-2$	$1.9846 \mathrm{e}+3$			
	$25^{\text {th }}$ (Worst)	$9.9506 \mathrm{e}-9 \mathrm{~T}$	$2.3845 \mathrm{e}-7$	$2.2776 \mathrm{e}+6$	$3.9795 \mathrm{e}-1$	$2.3239 \mathrm{e}+3$			
	Mean	8.5375e-9T	3.2227e-8	$4.6185 \mathrm{e}+5$	$3.4388 \mathrm{e}-2$	$1.7517 \mathrm{e}+3$			
	Std	1.4177e-9T	$6.2340 \mathrm{e}-8$	5.4685e+5	8.2733e-2	$2.9707 \mathrm{e}+2$			

* xxx.e-9T means it get termination error before it gets the predefined record FES.

Table 3-3 Error Values Achieved When FES=1e+3, FES=1e+4, FES=1e+5 for Problems 9-17

Prob FES		9	10	11	12	13	14	15	16	17
1e+3	$1^{\text {st }}$ (Best)									
	$7^{\text {th }}$									
	$13^{\text {th }}$ (Median)									
	$19^{\text {th }}$									
	$25^{\text {th }}$ (Worst)									
	Mean									
	Std									
$1 \mathrm{e}+4$	$1^{\text {st }}$ (Best)									
	$7^{\text {th }}$									
	$13^{\text {th }}$ (Median)									
	$19^{\text {th }}$									
	$25^{\text {th }}$ (Worst)									
	Mean									
	Std									
$1 \mathrm{e}+5$	$1^{\text {st }}$ (Best)									
	$7^{\text {th }}$									
	$13^{\text {th }}$ (Median)									
	$19^{\text {th }}$									
	$25^{\text {th }}$ (Worst)									
	Mean									
	Std									

Table 3-4 Error Values Achieved When FES=1e+3, FES=1e+4, FES=1e+5 for Problems 18-25

		18	19	20	21	22	23	24	25
1e+3	$1^{\text {st}}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								
1e+4	$1^{\text {st }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								
1e+5	$1^{\text {st }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								

Table 3-5 Number of FES to achieve the fixed accuracy level

Prob	$1^{\text {st }}$ (Best)	$7^{\text {th }}$	$13^{\text {th }}$ (Median)	$19^{\text {th }}$	$25^{\text {th }}$ (Worst)	Mean	Std	Success rate	Success Performance
1	11607	12133	12372	12704	13022	$1.2373 \mathrm{e}+4$	$3.6607 \mathrm{e}+2$	100%	$1.2373 \mathrm{e}+4$
2	17042	17608	18039	18753	19671	$1.8163 \mathrm{e}+4$	$7.5123 \mathrm{e}+2$	100%	$1.8163 \mathrm{e}+4$
3	-	-	-	-	-	-	-	0%	-
4	-	-	-	-	-	-	-	0%	-
5	-	-	-	-	-	-	-	0%	-
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									

$D=30$

Max_FES=300000

Table 3-6 Error Values Achieved When FES=1e3, FES=1e4, FES=1e5 for Problems 1-8

		1	2	3	4	5	6	7	8
1e3	$1^{\text {st }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								
1e4	$1^{\text {st }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								
1e5	$1^{\text {st }}$ (Best)								
	$7{ }^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								

......

D=50
Max_FES=500000

Table 3-7 Error Values Achieved When FES=1e3, FES=1e4, FES=1e5 for Problems 1-8

		1	2	3	4	5	6	7	8
1e3	$1^{\text {st }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								
1e4	$1^{\text {st }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								
125	$1^{\text {st }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								
3 C 5	$1^{\text {st/ }}$ (Best)								
	$7^{\text {th }}$								
	$13^{\text {th }}$ (Median)								
	$19^{\text {th }}$								
	$25^{\text {th }}$ (Worst)								
	Mean								
	Std								

Convergence Graphs (30D)

Figure 3-1 Convergence Graph for Functions 1-5
Figure 3-2 Convergence Graph for Function 6-10
Figure 3-3 Convergence Graph for Function 11-14
Figure 3-4 Convergence Graph for Function 15-20
Figure 3-5 Convergence Graph for Function 21-25

Algorithm Complexity

Table 3-8 Computational Complexity

	T0	T1	T2	($\widehat{T} 2-T 1$)/T0
$D=10$	39.5470	31.1250	82.3906	1.2963
$D=30$		38.1250	90.8437	1.3331
$D=50$		46.0780	108.9094	1.5888

Parameters

a) All parameters to be adjusted
b) Corresponding dynamic ranges
c) Guidelines on how to adjust the parameters
d) Estimated cost of parameter tuning in terms of number of FES
e) Actual parameter values used.

4. Notes

Note 1: Linear Transformation Matrix

$$
\mathbf{M}=\mathbf{P}^{*} \mathbf{N}^{*} \mathbf{Q}
$$

\mathbf{P}, \mathbf{Q} are two orthogonal matrixes, generated using Classical Gram-Schmidt method \mathbf{N} is diagonal matrix

$$
u=\operatorname{rand}(1, D), d_{i i}=c^{\frac{u_{i}-\min (u)}{\max (u)-\min (u)}}
$$

M's condition number $\operatorname{Cond}(\mathbf{M})=\mathrm{c}$

Note 2: On page 17, wi values are sorted and raised to a higher power. The objective is to ensure that each optimum (local or global) is determined by only one function while allowing a higher degree of mixing of different functions just a very short distance away from each optimum.

Note 3: We assign different positive and negative objective function values, instead of zeros. This may influence some algorithms that make use of the objective values.

Note 4: We assign the same objective values to the comparison pairs in order to make the comparison easier.

Note 5: High condition number rotation may convert a multimodal problem into a unimodal problem. Hence, moderate condition numbers were used for multimodal.

Note 6: Additional data files are provided with some coordinate positions and the corresponding fitness values in order to help the verification process during the code translation.

Note 7: It is insufficient to make any statistically meaningful conclusions on the pairs of problems as each case has at most 2 pairs. We would probably require 5 or 10 or more pairs for each case. We would consider this extension for the edited volume.

Note 8: Pseudo-real world problems are available from the web link given below. If you have any queries on these problems, please contact Professor Darrell Whitley directly. Email: whitley@CS.ColoState.EDU Web-link: http://www.cs.colostate.edu/~genitor/functions.html.

Note 9: We are recording the numbers such as 'the number of FES to reach the given fixed accuracy', 'the objective function value at different number of FES' for each run of each problem and each dimension in order to perform some statistical significance tests. The details of a statistical significance test would be made available a little later.

References:

[1] N. Hansen, S. D. Muller and P. Koumoutsakos, "Reducing the Time Complexity of the Derandomized evolution Strategy with Covariance Matrix Adaptation (CMA-ES)." Evolutionary Computation, 11(1), pp. 1-18, 2003
[2] A. Klimke, "Weierstrass function's matlab code", http://matlabdb.mathematik.unistuttgart.de/download.jsp?MC_ID=9\&MP_ID=56
[3] H-P. Schwefel, "Evolution and Optimum Seeking", http://ls11-www.cs.unidortmund.de/lehre/wiley/
[4] D. Whitley, K. Mathias, S. Rana and J. Dzubera, "Evaluating Evolutionary Algorithms" Artificial Intelligence, 85 (1-2): 245-276 AUG 1996.

