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Abstract

Genetic algorithms and their descendant methods have been deemed robust, effective,
and practical for the past decades. In order to enhance the features and capabilities of
genetic algorithms, tremendous effort has been invested within the research community of
evolutionary computation. One of the major development trends to improve genetic algo-
rithms is trying to extract and exploit the relationship among decision variables, such as
estimation of distribution algorithms and perturbation-based methods. In this study, we
make an attempt to enable a perturbation-based method, inductive linkage identification
(ILI), to detect general problem structures, in which one decision variable can link to an
arbitrary number of other variables. Experiments on circular problem structures composed
of order-4 and order-5 trap functions are conducted. The results indicate that the proposed
technique requires a population size growing logarithmically with the problem size as the
original ILI does on non-overlapping building blocks as well as that the population require-
ment is insensitive to the problem structure consisting of similar sub-structures as long as
the overall problem size is identical.

1 Introduction

As practical optimization frameworks, genetic algorithms (GAs) have shown properties of flex-
ibility, robustness, and ease-of-use since they were proposed [1, 2]. These methods usually get
good performance when the adopted genetic operators are aware of the relationship among de-
cision variables. Crossover operators in early genetic algorithms are likely to break promising
solutions of sub-problems, which are referred to as building blocks (BBs) [3]. As a consequence,
the overall performance is greatly reduced, or the problem cannot be solved [4]. In order to al-
leviate this issue, in recent studies, crossover operators or equivalent mechanisms that maintain
the structure and diversity of building blocks have been proposed, developed, and examined [5].
These techniques significantly increase the performance of genetic algorithms. To provide the
capability of appropriately and effectively handling sub-solutions/building blocks, two key mech-
anisms, building-block identification and building-block exchange, have to be utilized and in-
tegrated in the GA framework. In this study, we focus on the mechanism of building-block
identification, generalize the concept regarding the detection of building blocks, and propose
the use of a modified version of inductive linkage identification [6] to detect general problem
structures.

Most of building-block/linkage identifying methods proposed and utilized in previous studies
can be broadly classified into the following three categories [7]:

1



1. Estimation of distribution algorithms;

2. Linkage learning techniques;

3. Perturbation-based methods.

In the first category, estimation of distribution algorithms construct probabilistic models
from the selected individuals of the population and describe the relationship among decision
variables in a statistical way [8]. Early studies assume no interaction among variables, such
as the population-based incremental learning [9] and the compact genetic algorithm [10]. Sub-
sequent researchers use conditional probabilities to capture pairwise and/or multi-variate in-
teractions, e.g., the mutual information maximizing input clustering [11], Baluja’s dependency
tree approach [12], the bivariate marginal distribution algorithm [13], the factorized distribu-
tion algorithm [14], and the Bayesian optimization algorithm [15]. Methods in this category
are usually quite efficient from the traditional viewpoint of computational cost in evolutionary
computation because they do not need additional fitness evaluations. Nevertheless, less salient
building blocks, which contribute little to the total fitness, are less statistically significant and
therefore might be ignored and undetected [16].

For the methods of the second category, building-block identification is oftentimes viewed as
the (gene/variable) ordering problem. By rearranging variables during the evolutionary process,
interdependent variables are put closer according to the adopted coding scheme such that these
variables are less likely to be split apart by subsequent operations. In these studies, the messy
genetic algorithm [4] and its more efficient descent, the fast messy genetic algorithm [17], ex-
ploit building blocks to identify linkages. Since the rearranging mechanism often acts too slow
to cooperate with the selection operator, such a condition usually leads to premature conver-
gence. The linkage learning genetic algorithm [18] performs two-point crossover on a specifically
designed circular chromosome representation such that tight linkages among related variables
can be formed on the chromosome and preserved during the evolutionary process.

Methods in the last category analyze the fitness difference caused by perturbing variables to
identify linkages. For example, the gene expression messy genetic algorithm [19] incorporates
a special genotype for pairwise relations and a function involving perturbation to find linkage
sets. Linkage identification by nonlinear check [7] uses the linear summation of different and non-
overlapping building blocks to detect linkages. Borrowing the idea from estimation of distribu-
tion algorithms, the dependency detection for distribution derived from the fitness difference [16]
clusters variables according to the fitness difference values caused by perturbation. From theo-
retical points of view, Heckendorn and Wright [20] modeled the linkage/epistatis problem as the
Walsh coefficients for Walsh functions and gave a theoretical complexity for perturbation-based
methods. Zhou et al. [21, 22] later extended this work from the binary domain to domains of
higher cardinalities. Because a perturbed variable only effects the building blocks to which it
belongs, information can be obtained on less salient building blocks from fitness difference val-
ues. However, since extra fitness evaluations are required when a variable is perturbed, methods
in this category cost more function evaluations to identify linkages, although the actual overall
computational cost might be less.

From the viewpoint of extracting the problem structure and exploiting the obtained informa-
tion in order to conduct optimization, estimation of distribution algorithms can be considered
as approaches at the “global” end or organizing the obtained information in a “top-down” man-
ner. Estimation of distribution algorithms assume a probabilistic model and adjust the model
parameters to fit the promising solutions. On the other hand, linkage learning techniques and
perturbation methods are at the “local” end and processing the information in a “bottom-up”
manner. These methods implicitly or explicitly extract information out of the selected individu-
als and recognize the problem structure gradually. In this study, we aim at enhancing the global
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problem structure detection capability of perturbation-based methods and at blurring the line
between estimation of distribution algorithms and methods in the other two categories.

In particular, we firstly extend the notion of building blocks commonly adopted in perturbation-
based methods from overlapping building blocks to general problem structures. Then, a linkage
identification technique, called inductive linkage identification [6], utilizing the ID3 decision
tree [23] is modified and adopted to detect global problem structures. Experiments on the scal-
ability and flexibility are conducted to examine the capability of the modified inductive linkage
identification. The results demonstrate that the proposed technique requires a population size
growing logarithmically with the problem size. The population requirement is insensitive to
the problem structure consisting of similar sub-structures as long as the overall problem size is
identical.

For the remainder of this paper, the background of linkage identification is briefly introduced
in section 2. Why and how inductive linkage identification works are reviewed with illustrative
examples in section 3. Experiments and results are provided in section 4 and discussed in
section 5, followed by the summary and conclusions given in section 6.

2 Linkages, Building Blocks, and Problem Structures

De Jong et al. [24] defined the term dependency, which is also referred to as linkage, as “two
variables in a problem are interdependent if the fitness contribution or optimal setting for one
variable depends on the setting of the other variable.” Moreover, the order of a problem is
also stated as “the order is the largest number of variables that are interdependent.” To obtain
the complete information of linkages, the contribution of each possible pair of variables needs
to be examined. Although it is usually an expensive work to process all possible pairs of
variables, dependencies should be examined as much as possible in a reasonable time such that
the employed genetic algorithm can perform well.

The Schema theorem [1] states that short, low-order, and highly fit sub-solutions increase
their market shares to be combined. Furthermore, the building block hypothesis [3] implies
that combining small partial solutions is essential for genetic algorithms and also consistent
with human innovation. According to these observations, a problem model called the additive
decomposable function (ADF) and written as a sum of low-order sub-functions is proposed in
the literature.

Let a binary string of length `, s = s1s2s3 . . . s` present a solution, where s is a permutation
of the decision variables x = x1x2x3 . . . x` determined by the adopted coding scheme. The fitness
function for s is then defined as

f(s) =
m∑

i=1

fi(svi) ,

where m is the number of sub-functions, fi(·) is the i-th sub-function, and svi is the solution
string for fi(·). For example, if vi = (4, 2, 3, 6), svi = s4s2s3s6. If fi(·) is also a sum of other
sub-functions, it can be replaced by these sub-functions. Therefore, without loss of generality,
each fi(·) can be assumed a non-linear function, and the number of variables of fi(·) is referred to
as its order, i.e., complexity. In the ADF model, variables in the same set vi are interdependent.
These sets referred to as linkage sets, and the related term building block (BB) is used for
candidate solutions to their corresponding sub-functions.

For complex problems, sub-functions are oftentimes overlapping. Similar to interdependent
variables, shared variables affect the respective contributions of the overlapping building blocks
to the total fitness of the problem and therefore make these building blocks interdependent.
Under such a circumstance, considering the interdependent sub-functions as either a single,
longer building block or separate, shorter ones become inappropriate. Reviewing previous studies
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on pairwise interactions, building blocks, and order-k linkage sets, researchers attempt to capture
structures of certain orders. However, if the overall structure can somehow be recognized as that
obtained by the model building process in estimation of distribution algorithms, perturbation-
based methods should also be able to provide sufficient understandings of the problem for those
linkage-aware operations.

Therefore, in this paper, we firstly generalize the concept of overlapping building blocks to
the notion of problem structures such that interactions among variables can be described as
general as possible. The term sub-problem is used to describe how the overall problem structure
is constructed instead of decomposed. The terms interaction and linkage are still used for the
dependency between any two variables.

3 Inductive Linkage Identification

In this section, a perturbation-based method called inductive linkage identification (ILI) is re-
viewed. Firstly, a brief introduction of ID3 decision trees is given, followed by how ILI adopts
the method of ID3 into the fitness perturbation and linkage identification procedure. Then, we
describe the modified version of ILI for detecting general problem structures. A simple example
is given for illustration.

3.1 ID3 for Recognizing Linkage

The ID3 decision tree construction algorithm is a supervised categorization method working
on discrete data sets, in which the datum entries consist of several decision variables and each
decision variable is limited to certain predefined values. ID3 aims to build a decision tree
according to entropy and information gain. Using a more mathematical description, let a decision
variable X have n possible values {x1, x2, x3, . . . , xn}. The entropy of X is defined as:

Entropy(X) = −
n∑

i=1

p(xi) log(p(xi)) ,

where p(xi) is the probabilities for X being xi. The entropy can be regarded as the indicator for
how uniform the contents of a decision variable are. For example, a zero entropy value means
that the variable always appears as a certain value, while a high entropy value indicates that
there are many distinct values for the variable.

Let Y be also a decision variable with m distinct values {y1, y2, y3, ...ym}. If X is somehow
affected by Y , it can be split into m subsets for m different values of Y , denoted as Xyi . Based
on the entropies, the interference of Y on X is written as the information gain:

Gain(X, Y ) = Entropy(X)−
m∑

i=1

|Xyi |
|X|

Entropy(Xyi) .

Under this definition, higher values are obtained if the respective contents of each Xyi are more
identical, meaning that it is more suitable to classify X by Y .

When more decision variables are involved, says that X is affected by Y1, Y2, Y3, . . . , etc.,
the contributions of variables can be decided according to their information gains. By grouping
the variables with the highest information gain, the training data set can be split into several
subsets. Each subset contains the datum entries with a certain value of that variable. Then, the
described procedure is applied on these subsets recursively until all the elements of each subset
are identical, respectively. This procedure creates a decision sequence which tells how different
values of Yi result in different xi values of X. Since this sequence is usually illustrated by using
tree structures, the term decision tree is used to represent the outcome of this procedure.
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Wind Outlook Jogging
1 Strong Rainy No
2 Weak Sunny No
3 Weak Cloudy Yes
4 Weak Cloudy Yes
5 Weak Sunny No
6 Strong Sunny Yes
7 Weak Cloudy Yes
8 Strong Sunny Yes
9 Strong Cloudy No
10 Weak Rainy No

(a) Jogging records for 10 days

Wind Outlook Jogging
1 Strong Rainy No
10 Weak Rainy No
2 Weak Sunny No
5 Weak Sunny No
6 Strong Sunny Yes
8 Strong Sunny Yes
7 Weak Cloudy Yes
3 Weak Cloudy Yes
4 Weak Cloudy Yes
9 Strong Cloudy No

(b) Rearranged table by Outlook

Table 1: A example for ID3

A practical example for ID3 might be finding some patterns whether someone will go for
jogging under certain weather conditions from records shown in Table 1. In this example, the
ID3 proceeds as the following, the three decision variables, Wind, Outlook and Jogging, are
denoted respectively as W , O, and J for convenience:

1. Compute Entropy(J):
Entropy(J)
= −p(Jyes) log p(Jyes)− p(Jno) log p(Jno)
= − 5

10 log 5
10 −

5
10 log 5

10 = 1.

2. Compute information gains for W and O. The later is omitted due to the similar calcula-
tion:
Gain(J,W )

= Entropy(J)−
|JWStrong

|
10 Entropy(JWStrong

)− |JWWeak
|

10 Entropy(JWWeak
)

= 1− 4
10(−2

4 log 2
4 −

2
4 log 2

4)− 6
10(−3

6 log 3
6 −

3
6 log 3

6)
= 1− 0.4− 0.6 = 0.
Gain(J,O) = 0.27549

3. Since Gain(J,O) > Gain(J,W ), O is chosen for grouping, and the resultant three subsets
are shown in Table 1(b).

4. The same procedure is applied on these three subsets:

(a) JORainy
: All records give “No,” and therefore no need for further split.

(b) JOSunny
and JOCloudy

: Regroup again using decision variable W , respectively. Four
subsets are obtained: JOSunny ,WStrong

, JOSunny ,WWeak
, JOCloudy ,WStrong

, and JOCloudy ,WWeak
,

respectively give “Yes,” “No,” “No,” and “Yes.”

5. Because all subsets give either “Yes” or “No” without exceptions, the classification is
finished with the decision tree shown in Figure 1.

This decision tree describes how the records under different weathers can be grouped into
classification categories. What the ID3 algorithm does is to construct the relations within those
conditions and whether go for jogging. In other words, it identifies dependencies among those
decision variables, and what it solves is quite similar to those linkage identification problems.
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Figure 1: The result decision tree from Table 1
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Figure 2: A k-trap function.

For the perturbation procedure, the fitness difference values, denoted as df , are obtained by
subtracting the fitness value after perturbation from the original fitness value. This operation
implicitly isolates the affected portions of the whole problem structure and reveals them as
fitness difference values. The k-trap function [25, 26] is employed in this study as an illustrative
example as well as the elementary sub-problem for composing larger problem instances:

trapk(s1s2s3 . . . sk) =
{

k, if u = k;
k − u− 1, otherwise.

,

where u is the number of 1’s in the solution string. Figure 2 shows the characteristic of a k-trap
function.

With k-trap functions as elementary sub-problems, more complicated problem instances can
be created following the ADF model. For example, an 8-bit function composed of a 3-trap and
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s1s2s3 . . . s8 f df

111 01001 5 3
111 10100 5 3
111 01111 3 3
000 11111 7 1
000 00100 5 1
000 00001 5 1
000 10110 3 1
000 11100 3 1
001 01000 4 1
001 00011 3 1
001 00011 3 1
001 10100 3 1
010 01000 4 1
010 00100 4 1
010 01100 3 1

s1s2s3 . . . s8 f df

010 10100 3 1
010 00111 2 1
010 11011 1 1
100 00000 5 -1
100 00100 4 -1
110 11111 5 -1
110 01101 1 -1
110 01111 0 -1
110 11011 0 -1
101 10000 3 -1
101 01101 1 -1
101 11110 0 -1
011 00001 3 -3
011 00110 2 -3
011 01111 0 -3

Table 2: Results obtained by perturbing variable s1.

a 5-trap function can be defined as

f(s1s2s3 . . . s8) = trap3(s1s2s3) + trap5(s4s5s6s7s8) .

By conducting perturbation on a binary variable s1, the fitness difference df is obtained as

df = f(s1s2s3 . . . s8)− f(s1s2s3 . . . s8)
= (trap3(s1s2s3) + trap5(s4s5s6s7s8))
− (trap3(s1s2s3) + trap5(s4s5s6s7s8))

= trap3(s1s2s3)− trap3(s1s2s3) .

(1)

Equation (1) gives a mathematical explanation that df is only affected by the perturbed
variable s1 and those variables belonging to the same sub-problem as s1. Table 2 is the example
of Equation (1) and shows that permutations of s1, s2, and s3 yield the identical df value.

ILI considers the distinct df values as the classification categories and each variable as the
decision variable for the ID3 algorithm. By performing ID3 on the perturbed variable as the
tree root, a decision tree is accordingly constructed. The internal nodes on the decision tree
are then collected as a linkage set Vi. Figure 3 shows the built decision tree corresponding to
Table 2, and the internal nodes s1, s2, and s3 form a linkage set.

3.2 Original ILI

The original ILI [6] can handle only those problem structures composed of non-overlapping sub-
problems. After perturbing a variable and constructing a decision tree such as that is shown in
Figure 3, a linkage set is identified, and the used variables are removed from the variable set. The
procedure of perturbation and decision tree construction is repeated on one of the uncategorized
variables until all variables are categorized. Taking Table 2 for example, after V1 = {s1, s2, s3}
is identified, ILI then perturbs an uncategorized variable, say, s4, and constructs a decision tree
with {s4, s5, s6, s7, s8}. Then, one of the remaining uncategorized variables if exists. In this
example, the final linkage sets are V1 = {s1, s2, s3} and V2 = {s4, s5, s6, s7, s8}.

When there are no overlapping building blocks, experiments [27] demonstrate that the pop-
ulation size required by ILI to correctly identify building blocks grows sub-linearly with the
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Figure 3: The decision tree constructed for Table 2.

problem size while the complexity of sub-problems is fixed. On the other hand, the population
size requirement grows exponentially with the complexity of sub-problem while the problem size
is fixed. Such a result indicates that ILI is relatively insensitive to the overall problem size as
well as the number of sub-problems and quite sensitive to the complexity of sub-problems.

3.3 Modifications on ILI

As mentioned in section 2, overlapping sub-problems may form large, complicated problem
structures and may be difficult or inappropriate to be identified as separate building blocks.
Taking overlapping sub-problems trap4(s1s2s3s4) and trap4(s3s4s5s6) as an example, {s1, s2}
indirectly interacts with {s5, s6} via {s3, s4} since they belong to both of the sub-problems.
These direct and indirect interactions do form a dependency structure of the two sub-problems.
Instead of viewing them as either one building block or two, the actual structure should be found
and reported to the subsequent linkage-aware operations.

In order to visualize these problem structures, a graph notation is adopted in this paper.
Each variable is represented as a graph node, and direct interactions between any two variables
are represented as edges between the corresponding graph nodes. For instance, Figure 4(a) shows
the graph representation for two non-overlapping trap4 functions. Because variables in the same
sub-problems are interdependent, interactions among the four related variables are represented
as a complete graph of four nodes. Since these two sub-problems are not overlapping, there exists
no edge connecting the two separate sub-graphs. Figure 4(b) is the example for two overlapping
sub-functions, trap4(s1s2s3s4) and trap4(s3s4s5s6), and shows that the shared variables interact
with all other variables, while the unshared variables only interacts with the variables of the
same sub-problems. Using the graph representation, complex dependency structures can be
illustrated. E.g., Figure 4(c) shows a circular structure consisting of six overlapping trap4 sub-
problems with two shared variables between adjacent sub-problems. Figure 4(d) is the case
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(a) Two non-overlapping trap4 functions. (b) Two overlapping trap4 functions.

(c) Circular structure. (d) Complete graph.

Figure 4: Problem structure examples: variables of sub-problems are circled by dashed eclipses.

in which each variable depends on all others to create a very complex overlapping problem
structure.

To enable ILI to detect general problem structures composed of arbitrary overlapping sub-
problems, key modifications on ILI are proposed in the present work. As described in section 3.2,
a variable is removed from the variable set V after being categorized. Such an operation makes
the removed variable invisible at later stages of ID3 and thus renders the linkages to other sub-
problems undetectable. For example, thinking of Figure 4(b), when the perturbation and ID3
tree construction are performed on variable s1, the resultant linkage set is {s1, s2, s3, s4}, and
the rest elements are {s5, s6} where the relations between {s3, s4} and {s5, s6} are lost. One of
the proposed modifications is to perturb and perform ID3 on each variable si without removing
any variable such that all variables can be examined by ID3.

Another modification is to make ILI not directly return linkage sets corresponding to sub-
problems, which are also referred to as building blocks. As aforementioned, the concept of
building blocks is not very clear when sub-problems are overlapping. In order to determine
the overall problem structure, an `-by-` matrix M`×` is employed, where ` is the number of
variables. The element mi,j = 1 if there is a connection between variables si and sj ; otherwise,
mi,j = 0. In this study, we adopt undirected linkages. After si is perturbed and a linkage set
containing sj is constructed, not only mi,j but mj,i are also marked, although the proposed
matrix representation can possibly be used for directed linkages in the future.

Algorithm 1 shows the modified inductive linkage identification procedure. For further illus-
tration, the modified ILI is demonstrated by an example composed of two 4-trap functions with
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Algorithm 1 Modified ILI for general problem structures.
1: procedure ILI(f , `, n)
2: Initialize a population P with n strings of length `
3: Evaluate the fitness of strings in P using f
4: V ← Shuffle(1, 2, 3, . . . , `)
5: M`×` ← 0`×`

6: for each v in V do
7: for each si = si

1s
i
2s

i
3 . . . si

l in P do
8: Perturb si

v

9: df i ← calculate the fitness difference
10: end for
11: Build an ID3 tree using (P, df) with v as root
12: for each internal node vj in the tree do
13: mv,j ← 1
14: mj,v ← 1
15: end for
16: end for
17: Return the structure matrix M
18: end procedure

two shared variables defined as

f(s1s2s3s4s5s6) = trap4(s1s2s3s4) + trap4(s3s4s5s6) (2)

and shown in Figure 5. Initially, the structure matrix M6×6 is a zero-matrix indicating that
there is no known interaction among any variables as shown in Figure 5(a). After initialization,
the modified ILI begins to perturb variables in a randomly determined order: s1, s3, s2, s5,
s4, and s6. By perturbing and performing ID3 on variable s1, a linkage set {s1, s2, s3, s4} is
recognized and indicates that s1 interacts with s2, s3, and s4. Figure 5(b) shows the detected
partial structure. Notice that although s2, s3, and s4 belong to the same sub-problem as defined
in Equation (2), there is no interaction among them detected at the current iteration. Next,
when s3 is perturbed, ID3 identifies that s3 interacts with all other five variables since it belongs
to both sub-problems as shown in Figure 5(c). The procedure is repeated on s2, s5, s4, and s6

sequentially. After all the variables are proceeded, the final structure is constructed as shown
in Figure 5(f).

Because there is no control parameter for the problem order/complexity, the obtained link-
age information of the overall problem structure is unconstrained by any assumptions on the
complexity of sub-problems. The only key factor in this condition regarding the correctness is
whether or not the employed population is large enough for ILI to avoid getting confused by
the noise of fitness difference values. Our preliminary experiments involving different problem
structures have shown that the proposed ILI modifications are able to construct correct problem
structures as long as sufficiently large populations are utilized. For the purpose of gaining more
understanding of the population size requirement by the modified ILI, in the next section, we
design and conduct more experiments to observe the scalability and flexibility of the proposed
modifications.

4 Experiments and Results

Experiments and results on circular structures are examined in this section. Circular structures
hold certain good properties for experimental control. The number of linkages increases linearly
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(a) Initial state. (b) After perturbing s1. (c) After perturbing s3.

(d) After perturbing s2. (e) After perturbing s5. (f) Final state.

Figure 5: Problem structures detected during the ILI process. Dashed and solid lines represent
known and newly discovered interactions respectively.

with the number of sub-problems and so does the number of nodes. These easily controlled
properties enable us to concentrate on the population requirement.

The required population size is determined by a bisection method. For a given problem
structure and a range of population sizes [boundL, boundU ], if the modified ILI can correctly
detect the given problem structure for at least 29 times out of 30 independent runs with the
population size Psize = (boundL + boundU )/2, we consider that Psize is large enough for the
modified ILI to detect this problem structure and set Psize as the new boundU for the next
iteration. Otherwise, Psize is too small to provide appropriate statistics, and thus, the next
iteration will be conducted on interval [Psize, boundU ]. This bisection procedure repeats until
the interval is smaller than 2, and the final mean value, Psize, is regarded as the required
population size. For all the experiments in this study, the bisection process is performed for 50
interdependent trails, and the mean value and the standard deviation are calculated accordingly.

4.1 Scalability on Circular Structures

In this series of experiments, the scalability of the modified ILI is examined by using the trap4

and trap5 functions with circular overlapping problem structures. For the experiments of trap4

functions, each sub-problem shares two variables with one of its neighbor sub-problem and the
others two variables with the other neighbor. The circular overlapping structure can be described
as

C4n(s1s2s3 . . . s2n) =
n−1∑
i=1

trap4(s2i−1s2is2i+1s2i+2) + trap4(s2n−1s2ns1s2) ,

where n is the number of sub-problems and greater than 2 to form a circle. For example,
C43(s1s2s3 . . . s6) = trap4(s1s2s3s4) + trap4(s3s4s5s6) + trap4(s5s6s1s2) is the smallest circular
problem structure for trap4 under this definition as shown in Figure 6(a), and inserting one
more sub-problem will form a structure shown in Figure 6(c).

The overlapping scheme for trap5 functions is similar, except that each sub-problem has one
unshared variable. For example, the minimal circular structure of 3 trap5 functions, shown in
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(a) 3 trap4 (b) 3 trap5

(c) 4 trap4 (d) 4 trap5

Figure 6: The minimal circular problem structures.

Figure 6(b), can be put as

C53(s1s2s3 . . . s9) = trap5(s1s2s3s4s5) + trap5(s4s5s6s7s8)
+trap5(s7s8s9s1s2) ,

where s3, s6, and s9 are unshared.
The experimental results of C4n and C5n are shown in Figure 7. The results demonstrate

that the modified ILI is capable of correctly detecting linkages among variables even when the
problem size gets large. The growth rates are both in the logarithmic order.

4.2 Insensitivity on Sub-structures

The series of experiments in this section aims to examine the capability of detecting problem
structures composed of sub-structures. Separate circular problem structures form a large prob-
lem structure, and the population requirement of the modified ILI is compared to that for larger
structures of the same problem size. In these experiments, circular problem structures composed
of m smaller sub-structures are defined as

C4m
n =

m−1∑
i=0

C4n(s1+nis2+nis3+ni . . . s2n+ni) .

in this definition, those sub-problems of a sub-structure are depended in the circular manner,
while there exist no dependencies among sub-structures.
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(a) trap4 functions as sub-problems.
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(b) trap5 functions as sub-problems.

Figure 7: The population requirement for the modified ILI to correctly detect circular problem
structures composed of trap4 and trap5 functions.
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Figure 8 shows examples of circular structures composed of two and three sub-structures of
five trap4 sub-problems. Experimental results on those problem structures, C4n, C42

n, and C43
n,

are shown in Figure 9.

5 Discussion

In this section, we firstly discuss the experimental results and then the suitability of applying
the modified ILI on problems composed of other sub-problems via the ADF model.

5.1 Logarithmic Scalability

From Figure 7, the result for our experiments of the scalability, two observations can be made.
The first one is that the results can be well fitted by using logarithmic curves. Such a phe-
nomenon implies that the required population size grows logarithmically with respect to the
number of sub-problems and indicates the modified ILI is quite efficient and scalable on the
circular problem structures adopted in the experiments. The population size growth rate is also
similar to that required by the original ILI on non-overlapping building blocks as reported in the
literature [27]. Secondly, since the growth of the required population size can be well fitted with
logarithmic curves for both trap4 and trap5 functions, the modified ILI should require similar
population sizes for the problems of similar structures.

In our experiment for sub-structures, whose results are shown in Figure 9, the required
population sizes of C42

n and C43
n are very close to that of C4n when the overall problem sizes

are identical. All the experimental results are therefore well fitted by the same logarithmic curve
that fits the results of C4n. Such an outcome indicates that the modified ILI is able to correctly
identify isolated as well as interdependent parts of a large problem structure without extra cost.

Because the modified ILI is a deterministic method, the number of required function evalu-
ations can be calculated directly according to the required population size. Compare to some
theoretical upper bounds, the complexity of the proposed technique empirically obtained is much
lower than that proposed in [20] as well as that in [21, 22].

5.2 Other Types of Sub-problems

Since this method is based on the property that the same permutation of a sub-function will
cause the same fitness difference under the ADF model, the ID3 algorithm should also work on
other functions possessing this property as well as the function adopted in the present work,
trapk. In Table 3, we examine this property for two other frequently used functions, nithk and
valleyk:

nithk(s1s2s3 . . . sk) =
{

k, if u = k;
0, otherwise.

,

valleyk(s1s2s3 . . . sk) = |u− bk
2
c|,

where u is the number of 1’s in the solution string. As a consequence, the capability of the mod-
ified ILI to detect problem structure constructed based on these two frequently used functions
are verified.

6 Summary and Conclusions

In this paper, we extended the inductive linkage identification to detect general problem struc-
tures composed of overlapping sub-problems and conducted experiments by using circular over-
lapping structures for gaining more insights and understandings. According to the experimen-
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(a) C42
n (b) C43

n

Figure 8: Circular problem structures composed of separate sub-structures, where n = 5.
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Figure 9: Circular problem structures composed of one, two, and three sub-structures with trap4

as the elementary sub-problems.
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s1s2s3 . . . s7 f df

0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 1 0 1 0 1 0 0
0 0 1 0 1 1 0 0 0
0 1 1 1 1 0 1 0 -4
1 0 0 0 0 0 1 0 0
1 0 0 0 1 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 0 0 1 1 0 0 0
1 1 0 0 1 1 0 0 0
1 1 0 0 1 1 0 0 0
1 1 1 1 0 0 1 4 4
1 1 1 1 0 1 0 4 4
1 1 1 1 0 1 0 4 4

(a) nith4

s1s2s3 . . . s7 f df

1 0 1 0 0 0 1 1 -1
1 0 1 0 0 1 0 1 -1
1 0 1 0 1 0 0 1 -1
1 0 1 0 1 0 1 0 -1
1 0 1 1 0 0 0 2 1
1 0 1 1 0 0 1 1 1
1 1 0 0 0 0 0 2 -1
1 1 0 0 1 0 1 0 -1
1 1 0 0 1 0 1 0 -1
1 1 0 0 1 1 0 0 -1
1 1 0 0 1 1 0 0 -1
1 1 0 0 1 1 0 0 -1
1 1 1 1 0 0 1 2 1
1 1 1 1 0 1 0 2 1
1 1 1 1 0 1 0 2 1

(b) valley4

Table 3: Fitness differences of different sub-functions by using f(s) = func(s1s2s3s4) +
func(s4s5s6s7)

tal observations, the proposed technique was found able to correctly detect circular problem
structures and require a population size growing logarithmically with the problem size. The
population requirement was observed insensitive to the problem structure consisting of similar
sub-structures for the identical overall problem size.

One of the major differences between ILI and most of the other existing linkage learning
methods is the absence of algorithmic parameters for the complexity of sub-problems. The pro-
posed modifications of ILI keep this feature unchanged. Since ILI performs the task of linkage
identification without assumptions on the problem structure, such as the chosen probabilis-
tic model or the maximum degree of interactions, the relationship among variables should be
extracted as authentic as possible.

Since the modified ILI is capable of detecting general problem structures, it may be applied
in two ways. Firstly, by serving as a preprocessor of genetic algorithms, the proposed technique
can express the dependencies among variable as a graph such that delicately-designed genetic,
linkage-aware operators, such as CrossNet [5], or certain processing mechanisms may utilize
the linkage information to preserve and exchange the building blocks. Secondly, the proposed
technique can be employed to inspect and extract the relationship among decision variables for
understanding the inner structure of the problem at hand in order to assist potential further
applicable operations or be integrated in some advanced frameworks, such as the concept of
data-centric grey-box optimization in Optinformatics [28, 29].
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