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Abstract
In recent Grid research and development, data replication has been used to duplicate frequently
accessed data from its current location to appropriate sites so as to improve the whole system’s data
access performance and reduce bandwidth consumption for data delivery. Several data replication
algorithms have been proposed. Some were designed based on unlimited storage. However, not all
Data Grids are with unlimited storage space. Others were implemented on limited storage
environments. However, none of the algorithms developed on limited storage environments has
considered file popularity, defined as how often a file is accessed by users. In fact, file popularity
and data access patterns of a system vary with time since users sometimes change their interests
where data access patterns, defined as the distribution of access counts on files of a system, may
influence on the data access performance of the system. In other words, the file replication model of
the system might not be able to adapt to the change of users’ data access behaviors. Therefore, in
this study, we proposed an adaptive data replication algorithm, called Popular File Replication First
algorithm (PFRF for short), which is developed on a star-based Data Grid with limited storage
space. With aggregated data access information of previously job execution and user behaviors,
PFRF can predict future file popularity, and replicate potential popular files/replicas to appropriate
cluster/sites to adapt the change. We employ several types of file access behaviors, including
Uniform, Geometric, and Zipf-like distributions, to evaluate PFRF. The simulation results show that
PFRF can effectively shorten average job response time, reduce bandwidth consumption for data

delivery, and increase data availability as compared with the tested algorithms.

Keywords: star-based Data Grid, data replication algorithm, Zipf-like distribution, Geometric

distribution



1. Introduction

Generally, a Data Grid, a specific Grid system that very usual provides a huge amount of
storage space, often maintains a high volume of distributed data to serve users. Many recent
scientific studies [1], engineering applications [2], and commercial applications [3], e.g.,
Biomedical Informatics Research Network (BIRN) [4], the Large Hadron Collider (LHC) [5], the
DataGrid Project (EDG) [6], and physics Data Grids [7][8], have collected a huge number of data
files and performed their complex experiments and analyses on Data Grids.

In a Data Grid, according to 80/20 rules a part of files is frequently accessed and transferred. If
a system does not allow the existence of replicas, a file that a job frequently accesses is possibly
located at a remote site. The data access efficiency of the job will be then poor. Long distance data
transfer always occupies a lot of bandwidth and conducts long transmission delays. So how to
decrease data access latency, lower bandwidth consumption for data transmission, and increase data
availability have been the key research issues of Data Grids [9]. Data replication, a general and
simple approach to achieve these goals, has been widely used in many areas, such as in the Internet
and distributed databases [10][11]. A well-defined data replication method should meet the
following requirements [9][12][13][14], including being able to determine an appropriate time to
replicate files, determining which files should be replicated, and storing these replicas in
appropriate locations.

On the other hand, data access pattern analyses have been the critical steps in designing
efficient dynamic data replication schemes [15][16][17]. Several distributions have been used to
model data access patterns defined as the distribution of access counts on files of a system, and file
popularity defined as how often a file is accessed by users, i.e., how popular a file is [18][19].
Breslau et al. [18] claimed that using a Zipf-like distribution can more accurately model the
distribution of webpage accesses. Cameron et al. [19] showed that the distribution of file accesses in
Data Grids follows the Zipf-like distribution. Ranganthan and Foster [12][21] claimed that the

Geometric distribution can properly model property of temporal/geographical locality and file
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access behaviors, and they in [22] derived file popularity by using both Zipf and Geometric
distributions under the assumption that Grid storage is unlimited or the storage is sufficient to keep
all files and their replicas. Tang et al. [13] used Zipf-like and Geometric distributions to simulate
users’ file access behaviors on a multi-tier Data Grid. Furthermore, [14][26] proposed two data
replication strategies on limited storage. But, [26] did not deal with file popularity and data access
pattern. [14] did not consider the fact that file popularity is changed with time. In fact, the change
influences the performance of the system employing the replication strategies.

Therefore, in this study, we propose an adaptive data replication algorithm, called Popular File
Replication First algorithm (PFRF for short), which is developed on a star-based Data Grid with
limited storage space. A star-based Data Grid, a cluster Data Grid with a center cluster that connects
all other clusters, is a hierarchical architecture that can significantly reduce workload of user
requests [20]. We simulate several cases in which file popularity follows Zipf-like distribution,
Geometric distribution, and Uniform distribution under the assumption that user behaviors vary
with the change of user interests. To adapt the change, PFRF aggregates file access information and
replicates popular files to suitable clusters/sites. Three metrics including response time, data
availability, and bandwidth cost ratio were employed to evaluate the tested algorithms, where
bandwidth cost ratio as a new metric will be defined later. The simulation results show that PFRF
provide users with a system that has higher data availabilities, lower data transmission delays, and
less bandwidth consumption for data access.

The rest of the paper is organized as follows. In Section 2, we introduce related work and
background of this study. Section 3 introduces architecture of a star-based Data Grid and the PFRF.
Simulation results are described and discussed in Section 4. Section 5 concludes this article and

addresses our future research.

2. Background and Related Work

In this section, we describe the architectures of Data Grids and their replication strategies and
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algorithms.

2.1 A Data Grid Architecture

Data Grids can be classified into multi-tier Data Grids, first proposed by MONARC project
[27][13], and cluster Data Grids, initially proposed by Chang et al. [26]. Fig. 1 illustrates the
multi-tier Data Grid architecture in which a leaf node represents a user or a computation node, and
internal nodes are resource sites keeping sharable files. In this architecture, a file, held by a site, e.g.,
by site n-i shown in Fig. 1, will be also held by all the ancestor sites, i.e., sites n-i-1, n-i-2, ..., 1 and
0,1=0, 1, 2, 3,..., n-1. Therefore, the root (i.c., site 0) will hold all files that the system has. When
an end user, e.g., node n, requires a file which does not exist in n, n then requests the file from its
immediate ancestor, i.e., node n-1. If node n-1 does not have the file, it requests its immediate
ancestor, i.e., node n-2, to give it the file. The process repeats until a node, e.g., node j, which holds
the file duplicates the file to node j + 1. The file will be then delivered to node n following the
reverse direction of the requests. By using the multi-tier Data Grid, file access latency can be

reduced, but files should be redundantly stored. Its maintenance cost is high.

tier 0

tier 1

tier n-2

tier n-1

Fig. 1. A multi-tier Data Grid architecture.

As illustrated in Fig. 2, a cluster Data Grid consists of n clusters connected by the Internet.
Files are distributed to and stored in these clusters. Each cluster has a header node (a header for
short) responsible for managing site information and exchanging file access information with other

cluster headers. A header periodically, every T time units, determines which file should be



replicated to which cluster. After that, the header replicates the file with the largest weight to all
clusters that need the file. Assume that in a specific T, a node, e.g., node A in cluster 1, frequently
accesses a remote file, e.g., file F, with the largest weight. F will be then replicated to cluster 1 so
that A can locally and quickly retrieve F in the next T. Comparing the two types of Data Grids, the

cluster Grid consumes less storage to hold files.

cluster 2

cluster 3 cluster n

Fig. 2. A cluster Data Grid architecture.

2.2 Data Replication Algorithms/Strategies

Least Frequently Used (LFU) [28] and Most Frequently Used (MFU) [28] are two simple
dynamic replication strategies widely used in many areas, such as disk and cache memory
duplication. If a storage device has insufficient space to hold a new file, LFU (MFU) will be
invoked to choose the files that have been least (most) frequently used as the victims to make room
for the new one. However, MFU’s characteristic contradicts our replication strategy. So, only LFU
is involved in the following experiments.

On a multi-tier Data Grid, Ranganathan and Foster [12] presented six replication/caching
strategies: No Replication or Caching, Best Client, Cascading Replication, Plain Caching, Caching
plus Cascading Replication and Fast Spread, among which the experimental results showed that the

Fast Spread’s and Cascading Replication’s performance is better and file access latency is shorter



than those of the other four. However, the six strategies cannot avoid the multi-tier Data Grid’s
disadvantages stated above (recall a file is often redundantly stored in tiers). In fact, the storage
space and access latency is a trade-off [26].

Tang et al. [13] introduced Simple Bottom-Up (SBU) and Aggregate Bottom-Up (ABU)
algorithms to reduce the average data access response time for a Data Grid. However, SBU does not
consider historical access records for files, whereas a node in ABU sends the aggregated historical
records to the upper tiers. The upper tiers do the same until these records reach the root. Due to the
aggregation capability, ABU’s job response time is shorter and its bandwidth consumption is less
than those of the SBU. However, ABU and SBU were developed on multi-tier Data Grids.

Schintke et al. [24] and Ranganathan et al. [23] individually proposed one data replication
algorithms to improve data availability. Files are arbitrarily replicated as needs, even though users
only access these files for just once, thus wasting too much storage space to keep useless replicas.
Kunszt et al. [25] also introduced a file-based replication method to manage a Grid middleware,
with which file access/transfer time can be then reduced. However, the three algorithms were all
developed on unlimited storage space and multi-tier Data Grids.

Chang et al. presented Latest Access Largest Weight (LALW) dynamic replication strategy in
[14] and Hierarchical Replication Strategy (HRS) in [26]. The LALW utilizes the half-life concept
to weigh files. A file with a higher access frequency has a larger weight. With the weight, the
LALW outperformed LFU and no replication data replication strategies [12] in bandwidth
utilization. However, they did not consider the fact that file popularity is changed with time, and
only the most popular file is replicated in each time interval. The HRS, a dynamic replication
strategy for a cluster Data Grid, replicates a locally needed file to the local site from an appropriate
site so as to reduce future-file-access communication costs. However, the HRS did not consider file

popularity and data access pattern.

3. System Framework



The proposed star-based Data Grid architecture as shown in Fig. 3 consists of a global replica
controller (GRC) and several clusters connected to the GRC through the Internet. Each cluster
comprises sites connected by a LAN or LANs, and a local replica controller (LRC) which maintains
a local replica table (LRT) to record file access information, including filename, file location, access
count, file weight, and master file information. In this study, a master file is an original file that
cannot be deleted from the Data Grid. Files are stored in sites of different clusters. The GRC, a
centralized server located on the Internet, is responsible for aggregating file access records for all
clusters and determining which files should be replicated to which clusters. To achieve these, it
maintains a global replica table (GRT) to collect the information recorded in LRTs, e.g., the first
record of GRT shown in Fig. 4 indicates that the information of the file F; is kept in both LRT;
and LRT5;. LRT; shows that F; as a master file with current weight 1 is now stored in site 1 and
has been accessed for 5 times. When the GRC determines to replicate files to a cluster, e.g., cluster
I, it records the location of the new replicas in GRT so that it can reply the location of files/replicas
requested by LRCs. LRT; of course will record information of the replicas.

Fig. 5 illustrates the replica catalog structure of the star-based Data Grid, in which GRC 1is the
root. When site 1 needs a file, it checks LRC; to see whether the file exists in cluster 1 or not. If

not, LRC; requests GRC to provide the file location. Then, the LRC; replies site 1 with the file
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Fig. 3. The star-based Data Grid architecture.



LRT;
Filename Location | Access Count | Weight | Master File
F, site 1 5 1 Yes
Fy site 2 4 0.9 No
LRT;
Filename | Location | Access Count [ Weight | Master File
R F, site 3 2 0.7 No
Filename Location Fe site 4 4 0.9 Yes
B || Gy Hie K site 3 s 1 No
F, LRT;, LRTs, LRT,
- T LT,
Fo LRT;, LRT;, LRTs, LRT, LRT:
... Filename Location | Access Count | Weight | Master File
: F, site 5 7 1.2 No
. F, site 5 5 1 No
Fo site 5 4 0.9 Yes
LRT,
Filename Location | Access Count | Weight | Master File
F, site n-1 4 0.9 Yes
Fy site n-2 3 0.8 No
Fy site n 6 1.1 No

Fig. 4. An example of GRT and LRTs.

@ : User

: Computer

cluster 1 cluster 2 cluster 3 cluster n

Fig. 5. The hierarchical replica catalog topology of a star-based Data Grid.

3.1 Zipf-like distribution and Geometric distribution

To achieve a better file access performance, we need to keep track of the changing behaviors
for users’ file accesses so that we can accurately predict which files will be accessed frequently in
the near future. The prediction is a main task of the data replication algorithm/strategy based on the

assumption that a popular one will be accessed more frequently than unpopular files will [13]. This
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assumption is called temporal locality [12]. Breslau et al. [18] as stated above showed that the
webpage requests follow a Zipf-like distribution [19][29], which is derived from Zipf’s law [30]
and in which the access probability of the i-th most popular file, denoted by P(f;), is

P(f) = 1/i" (1)
where i=1, 2,...,nand o is a factor to determine the file access distribution, 0 < a < 1.

Ranganathan and Foster [21][22] adopted Geometric distribution to simulate the file popularity

in which the access probability of the i-th most popular file, denoted by P (i), is

PO =@1-p) "t p 2
where i=1, 2,..., nand 0 <p < 1. A larger value of p represents that a smaller portion of files
has been frequently accessed. In this study, we assume that the users’ access behaviors follow both
Zipf-like distribution or Geometric distribution with different parameters, with which PFRF is

developed.

3.2 Popular File Replication First (PFRF) algorithm
The PFRF algorithm as illustrated in Fig. 6 is performed by GRC at the end of a round where

a round is a dynamic period of time T, in which at least a fixed number of jobs, e.g., X jobs (e.g.,

10 or 20 jobs), is submitted by each cluster. T; has its maximum value T. If some clusters do not

generate at least X jobs in T, T will be treated as a round. The algorithm comprises four phases:

file access aggregate phase, file popularity calculation phase, file selection phase, and file
replication phase.

1. File access aggregate phase: Between lines 2 and 5 of the algorithm, PFRF aggregates the
access count for each file, e.g., file f; in cluster c, at a round, e.g., round r, denoted by
AL(f;), sorts all the files on AL(f;)s in a descending order and stores the sorted result into a
set S. After that, PFRF calculates the total number of files having been accessed by all sites in
cluster ¢ atround r, denoted by TNF{, based on the information stored in LRC,.

2. File popularity calculation phase: At line 6, PFRF calculates popularity weight for file f;,
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denoted by PW/ (f;), where i = 1,2, ... and

PWI™H(f) + AL(f) -a if AL(fi) >0

, r=21c=>1,i>1. 3
PWI Y (f)—b otherwise ' ¢ ! )

PWE(f) =
in which a and b are constants and a < b. We will discuss why a < b later. If AL(f;) > 0,
i.e., f; has been accessed by users in round r, PFRF increases PW " 1(f;) by AL(f;) - a.
Otherwise, it decreases PW/~1(f;) by b. Basically, a higher PW/ (f;) implies that f; is
more popular. In this study, we assume that at round 0 all files follow binomial distribution,
i.e., PWO(f;) = 0.5, indicating the initial probability that f; is accessed is 0.5, and the
minimum value of each PWZ~1(f;) is 0. From previous access records of f;, PFRF can
derive the variation of the popularity of f; and predict the popularity of f; for the next round.

For instance, if f; has been accessed 5 times by cluster 2 in round 1, PW3(f;) = 0.5+ 5 - a.

The average popularity of f; in all clusters, denoted by PW,i4(f;), is
Nc r
P =2 TS
where N, is the total number of clusters having f; in the concerned Data Grid.
File selection phase: Between lines 7 and 10, PFRF sorts the set S on the average popular
weights in a decreasing order, calculates Ny which is the number of files that might be
replicated, and selects the first Ny files as cluster c’s duplication candidates from S, where
Ny = |TNF¢ X (1 —x)] (5)
in which x is aconstant, 0 < x < 1.
File replication phase: The replication phase, between lines 11 and 30 in Figure 6, first checks
to see whether each file, e.g., file f;, in cluster c’s replication candidates is in cluster c or not.
If yes, PFRF does nothing. Otherwise, it further checks to see whether there is a site in cluster
c that has sufficient storage space to accommodate f; or not. If yes, PFRF duplicates f; to

the site from a nearest cluster having f;. Otherwise, PFRF deletes v files (v = 1) that are

less popular than f; from a site of cluster c, leaving enough storage space to keep f;.
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From the algorithm we can realize that files and the users may be located at different sites in
the same cluster or different clusters. But PFRF tries to localize files since inter-cluster access is

much more time-consuming than intra-cluster access is [14].

PFRF data replication algorithm
Input: The total access count of f;, i = 1,2, ..., N, where N, is the number of files in cluster c
in round r;
Output: Duplicating the files that should be replicated to cluster ¢ denoted by
F.={fifo ...,fo} to cluster c;
1: for each cluster ¢, ¢ = 1,2, ..., N.{ /*N, is the number of cluster that the concerned Data Grid has*/
Aggregate AL(f;), i = 1,2, ..., Ny; /*N, is the number of files that cluster ¢ has*/
Sort all the files according to AL(f;) in a descending order;
Store the sorting result into set S;
Calculate TNF{ for LRC;
Calculate PW/ (f;) and PWi.(f;), i = 1,2,...,Ni;  /* equations (3) and (4)*/
Sort the set S according to the average popular weights;
Set the valueof x =08, 0 <x < 1; /*according to 80/20 rules*/
Calculate Ny with equation (5);  /*N; derived from equation (5) on x=0.8 is the number of

NN AT A R o

popular files. */
10:  Select the first Ny files from S and put them into the set S'; /* S": the set of replication

candidates™®/
11:  foreach file fjin S'{
12: check LRC, to see whether cluster ¢ has f;;
13: if cluster ¢ does not have f;{
14: if any site of cluster ¢ has sufficient storage to save f;
15: replicate f; to the site from a nearest cluster which has f;;
16: else if{ for each site Y in cluster c { /* check storage space of each site Y in cluster c*/
17: for each file f, keptinsite Y;
18: compare PW,iq(f) with PVI@’{,g(fj);
19: if there are V files that are less popular than f; and the total size of these
20: v files plus the remaining storage space of site Y is sufficient to keep f;
21: { PFRF deletes these v files and replicates f; to Y;
22: break;}
23: }
24 }
25: else /*The total size of all files that are less popular than f; plus the remaining storage

11



space is not enough to hold f;*/
26: {  print (“no sites in cluster ¢ cankeep f;”);
27: PFRF will not replicate f;;
28: }
29: }
30:  }
31:}

Fig. 6. PFRF data replication algorithm.
4. Simulation and Performance Comparison

To evaluate the proposed scheme, a Grid testbed or a Grid simulator is required. However, the
maintenance cost of a real testbed is high and our TigerGrid [31] is not organized as a star topology.
In fact, the cost of reconfiguring the TigerGrid to a star topology is also high. Thus, we choose a
Grid simulator as the simulation tool. Many Grid simulators have been introduced, such as
MicroGrid [32], OptorSim [33], SimGrid [34], MONARC [35], ChicSim [36], and GridSim [20], in
which GridSim due to providing a flexible and extensible simulation environment and allowing
researchers to increase new components/functions is chosen to construct our test platform. The

compared algorithms include LFU and No Replication (NR) data replication algorithms.

4.1 Experimental Environment and Parameters

The test environment illustrated in Fig. 8 consists of a GRC and four clusters. Each cluster has
a LRC. The specifications of all resources and job parameters are listed in Table 1. Each site
comprises six computers, and each computer has four processors, i.e., each cluster has 24
processors. A processor’s processor rating is 1,600 MIPS. Therefore, the total processor rating of a
cluster is 38,400 (=24x1,600) MIPS. Each cluster has 50GB storage space to accommodate files,
and the file size of a master file is 1GB. Fig. 9 illustrates that job execution is divided into rounds
based on the definition defined above. We assume that T;=800 seconds and in each round at least
10 jobs are submitted by users in each cluster, i.e., at least 40 jobs are submitted, and each job

requests 5 to 10 files. Fig. 10 shows an example of job execution in cluster ¢ in which the
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durations of different rounds may be different. Each simulation is performed twenty rounds, and we
assume that users in cluster c in the first round cannot locally access files F;, F,, and Fg, so it
needs more time to duplicate these files from remote clusters. Thus, uses can locally retrieve the
three files in the second round. Theoretically, the duration of a later round is shorter than any
previous rounds if users do not change their file access behaviors. The phenomenon will be shown

in the following simulation.

cluster 2 cluster 1

_________

cluster 4

Cluster3

Fig. 8. The simulation Topology.

Table 1 Resources and Job parameters

Resources Value
Number of clusters 4
Storage available in a cluster 50GB
Single processor rating (MIPS) 1,600
Number of processors in a cluster 24
Processor rating of a cluster 38,400 (=24x1600)
Inter-router bandwidth 10Gb/s
Router-to-site bandwidth 2.5Gb/s
User-to-router bandwidth 100Mb/s
GRC-to-router bandwidth 2.5Gb/s
LRC-to-router bandwidth 1Gb/s
Job parameters Value
Number of master files 100

13



Minimum number of jobs performed by
users in each cluster in a round
The minimum number of jobs performed

in each round

40 (at least 4x10 jobs)

Size of a master file 1GB
Number of files accessed by a job 5~10
The longest duration of a round () 800 seconds

Job, | Job; > Job ; . Job, ; Job,» Job, 1 Jobp > |
departs departs departs departsdeparts departsdeparts
A TT A
SeS et eee——— %% % Y Y Y S 7 ity YR W W >
]Ob]) 1 JOb]wz JObL} JObz‘ 1
LRC + T T T T 'y T T ............... T T >
JOb]AV] JOb]‘z J0b1,3 JObL“ JObzy[ JObz)z JObzym JObg‘] JObpﬂl JObp,Z
arrives arrives arrives arrives arrives arrives arrives | arrives arrives arrives
Round 1 Round 2 Round p
Fig. 9. Job execution in a cluster in different rounds.
- . access file from remote clusters
—> : access file from local cluster
Job; 4 Fi » Fy > Fr > F6; Fs \JObz' 1 i} . &» JObzoq 1 3 . F_6>
Fs Fg F, F; F F F;, Fi, F F Fi, F F F
JobL2 5; 3; 2: 3; 11; 1 ~ 7; 1(& 13 - 6 JobL2 ) 6 JObzu,z 8. 7
F F
Job, ; Fs= Fi, > F, > FS; Fy > F¢ > F, Job, 3 I 4 Joby 3 F, o Fs
Fii Fg Fo F, F; F4 F; Fy Fi Fio Fs F,
Joby, 4 >—> > >—> Job; 4}—» Jobysb— . . .
: Fo Fio
Joby o] Fo Fp Fs F _Fs  F, Fy Fyg Jobz, 1of—» . —>]  Jobao, 10 EL ... Iy
Round 1 Round 2 Round 20

Fig. 10. Files accessed by jobs of cluster c in different rounds.

To compare PFRF and LFU algorithms, 100 master files are randomly distributed to the four

clusters (see Table 2). With NR algorithm, there are two cases. The first, denoted by NR casel, is
14



that 100 masters files are all stored in GRC, and the other, denoted by NR case2, is that the 100 files
are randomly distributed to the four LRCs. Neither cases replicate files. In NR casel, a cluster does
not locally hold a file. Hence, a job has to remotely access GRC to acquire the files. In NR case2,
some accessed files are local and some are remote. So if users would like to access a non-local file,

they have to remotely retrieve it from other cluster, instead of from GRC.

Table 2 Master files settings for PFRF, LFU, NR casel, and NR case2 algorithms
Data replication algorithm  Setting

PFRF 100 master files are randomly distributed to the four clusters
LFU 100 master files are randomly distributed to the four clusters
NR casel 100 master files are all stored in GRC

NR case2 100 master files are randomly distributed to the four LRCs

4.2 Access Patterns

Ten access patterns listed in Table 3 are employed to simulate user file access behaviors. File
popularity is calculated as stated above under the assumption that file accesses follow Zipt-like,
Geometric, and Uniform distributions where Uniform distribution (Uniform for short) represents
that the probability of accessing a file by each user is the same. JRR, standing for job repeating rate,
is the probability of accessing the files that were accessed in the previous round, 0 < JRR < 1, and
o and p are the parameters respectively used when employing Zipf-Like distribution and
Geometric distribution.

Table 3 Different access patterns employed

No. File Popularity o/p JRR (%)  p(fi)/p@)

1 Zipf-like 0.8 0 1/i%8

2 Zipf-like 0.8 25 1/i%8

3 Zipf-like 0.6 0 1/i%6

4 Zipf-like 0.6 25 1/i%6

5  Geometric 0.2 0 (1-0.2)71-0.2
6  Geometric 0.2 25 (1-0.2)71-0.2
7 Geometric 0.5 0 (1-0.5)71-05
8  Geometric 0.5 25 (1-0.5)1-0.5
9 Uniform none 0 none
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10 Uniform none 25 none

To effectively analyze the proposed system, we evenly partition the popularities of the 100
master files into 10 levels, and divide consecutive twenty rounds into three phases. As listed in
Table 4, the first phase includes rounds 1 to 7. The second and the third respectively contain rounds
8 to 14 and rounds 15 to 20. In the first phase, we assume that FileO to File9 are the most popular
files, i.e., belonging to the first popularity level. File10 to File19 are the second popular files, hence
they are the second popularity level, and so on. In the second phase, we swap the files of the first
two popularity levels, i.e., Filel0 to Filel9 become the most popular, FileO to File9 become the
second, to simulate file popularity change, and other files’ popularities remain unchanged. In the
third phase, File20 to File29 are the most popular, File10 to File19 the second, and FileO to File9 the
third. Other levels’ file popularities remain unchanged. With the settings listed in Table 4, we
conduct the following experiments to evaluate whether PFRF on LFU, NR casel, and NR case2 can
adapt themselves to the change of file popularities or not.

In the following experiments, 1000 jobs, instead of 40 jobs, were submitted in each phase. The
experimental results are illustrated in Figs. 11 to 15, in which Figs. 11a to 15a show users’ file
access behaviors in the first phase; Figs. 11b to 15b (Figs. 11c to 15c) plot those in the second (the
third) phase. Taking ZipfL-0.8 (see Fig. 11) as an example, the access count (AC) of each most
popular file in all the three phases (figures) is about 215, and unpopular files, i.e., File30 to File99,
are accessed less and less. In the case of ZipfL-0.6 (see Fig. 12), the AC of each most popular file in
all the three phases is about 170. However, the ACs of the other popularity levels, i.e., between
levels 4 and 10, in the three phases are not evidently different, like a Uniform distribution. When
Geo-0.2 is invoked (see Fig. 13), the AC of each most popular file is about 175, and the ACs decline
sharply when file IDs increase. In the Geo-0.5 case (see Fig. 14), the difference between/among the
most popular files’ ACs and those of the second and the third popular files in each of the three

phases is significant. Generally, the ACs of the first three popularity levels on all access patterns are
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clearly different from those of the other popularity levels, implying that FileO to File29 are
frequently accessed, while File70 to File99 are rare. The difference among the ACs of different

popularity levels on the Uniform as shown in Fig. 15 is not significant.

Table 4 The file popularities in the three phases (Rounds 1~7, 8~14, and 15~20)

Phases Phase 1 Phase 2 Phase 3
Popularity level (Files (Rounds 1~7) (Rounds 8~14) (Rounds 15~20)
1 (FileO~File9) 1st Popular 2nd Popular 3rd Popular
A
2 (File10~File19) 2nd Popular 1st Popular 2nd Popular
A
3 (File20~File29) 3rd Popular 3rd Popular 1st Popular
10 (File90~File99) 10th Popular 10th Popular 10th Popular
2 " [=—2pfL-0.5 (inhal e popudartty| : " [—— 2oL Bichange te popudarty at frst e | i;: (== 2010 8change e porty af second tme)]
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Fig. 11. Distributions of file requests in the simulation process on ZipflL.-0.8.
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Fig. 12. Distributions of file requests in the simulation process on ZipfL.-0.6.

17



H ——-Geo-n-ﬂnnal-llle popt.-lamyl_

Access Counts
83838

=
2

8

-2
=
=
g.
3

(a) phase 1

Acces:s Counts

10

2

v

——6eo—02(cnuge file pop\.lmlym [II'S; une]].

0 % 6 70 80 90 9

File 1D

(b) phase 2

T '—-—:Geo-o.zimang;me pop:.lariry at second time)

Access Counts

D 0 20 30 40 5 60 70 8 90 99
Fike IO

(c) phase 3

Fig. 13. Distributions of file requests in the simulation process on Geo-0.2.

* [=—Geo-0 5nital e popularity)|

g 8

Access Counts
g 8 8 8%

8

o

0 10 20 30 40

50
File ID

(a) phase 1

Access Counts

g

g

g

2

=}

[——Geo-0.5(change file popularity at first bme) |

(b) phase 2

Access Counts

——Geo-0.5(change file popularity at second time) |

§

g 8

1} 10 20 30 40 50 6O 7O a0 a0 a9
File ID

(c) phase 3

Fig. 14. Distributions of file requests in the simulation process on Geo-0.5.

—— Uniformiinitialfle popuarity)|

Access Counts

0 10 20 30 40 &0 70 80 %0 @9
File ID

(a) phase 1

Access Counts

—— Uniform(change file poputarity at first time) |

10

20

30

40 50 &0 70 80 90 99
File ID

(b) phase 2

Access Counts

—— Uniform{change file popularity at second time)

o 10 20 30 40 50 B0 70 80 90 99
File 1D

(c) phase 3

Fig. 15. Distributions of file requests in the simulation process on Uniform.

4.3 Simulation results

The tested algorithms are run on the same experimental environment so we can fairly compare

the performance. Several test metrics are used. The first is Job response time (in seconds) defined as

the time interval from the time point when a job sends a file request to its LRC to the time point
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when the requested files are successfully delivered. The second is Data availability which proposed
by GridSim [20] for a job, e.g., Job,, to access N, files stored in cluster y, denoted by Avail,,, is

formally defined as
t

xy
N, (6)

Availy, =
where t,, is the time that Job, consumes to acquire the N, files from cluster y. The average
data availability over all jobs, e.g., Jobs, submitted to y, denoted by avgAvail,, in a round is

defined as

er]obsy Availxy
|]obsy|

(7)

avgAvail, =

The bandwidth cost ratio of cluster ¢ in a round, denoted by BCR,, is defined as

BCR. = LC.-LFA, + RC. - RFA, _ LC.-LFA, + RC. - RFA,
¢ Cbaseline 'AFAC Cbaseline ’ (LFAC + RFAC)

®

where LFA. (RFA.) is the number of files that cluster ¢ can locally (should remotely) accessed,
AFA. = LFA. + RFA., LC, is the cost of file access inside cluster ¢, RC. is the cost of file
access between cluster ¢ and a remote cluster and Cpqgeine 15 the access cost when the file
request issued by a cluster ¢ job is in a remote cluster. We further assume that all file have the

same size, i.e., 1 GB. So formula (8) only involves number of files and neglects file sizes. The

Average Bandwidth Cost Ratio (ABCR) defined as

N,
¢, BCR
ABCR = Zuz1 BRe
N

€)

is to determine whether a data replication algorithm could accurately predict popular files or not
where N, is the number of clusters the concerned Data Grid has. If LFA, is larger than RFA,,
that means the concerned data replication algorithm can more accurately predict user file access
behaviors. Otherwise, the algorithm due to inaccurate prediction would consume a lot of network
resources to remotely deliver files required by jobs. In other words, a data replication algorithm that

produce a smaller ABCR value will result in better Grid performance.

In Section 4.3.1 and 4.3.2, each simulation is performed fifteen times.

19



4.3.1 Average Job Response Time (ART) and Data Availability (DA)

Figs. 16a to 20a show the experimental results of ARTs for PFRF, LFU, and NR case2 given
the ten access patterns. When ZipfL-0.8 with JRR=0% (JRR=25%) is used, after the third round
(the fourth round), as shown in Fig.16a PFRF has shorter ARTs than LFU has. Figs. 17a and 18a
show that the experimental results on ZipfL-0.6 and Geo-0.2 are similar to those of Fig. 16a.
PFRF’s and LFU’s response delays on Uniform with JRR=0% and with JRR=25% as shown in Fig.
20a are longer than those shown in Figs. 16a to 19a since the tested algorithms like that shown in
Fig. 15 cannot effectively discriminate the file popularities for files. Also, in Figs. 16a to 18a and
Fig. 20a, PFRF has shorter ARTs than those of LFU, i.e., PFRF gives the best ARTs among the
tested algorithms. Nevertheless, when the data access pattern is Geo-0.5 with JRR=0% and 25%
(see Fig. 19a), PFRF and LFU have similar ARTs since the popular files as shown in Fig. 14 can be
easily identified, and both of the two algorithms can accurately identify users’ file access behaviors.
Their ARTs are the smallest, about 460 seconds, compared with PFRF’s and LFU’s ARTS shown in
Figs. 16a, 17a, 18a, and 20a. Table 5 lists ARTs of PFRF on ZipfL-0.8 with JRR=25% in twenty
rounds. The trend is that the duration of a later round as stated above is shorter than any previous
rounds, except when the file popularities were changed in specific rounds, e.g., in rounds 8 and 15
since as listed in Table 4 we swap popular files after round 7 (the end of phase 1) and round 14 (the
end of phase 2).

With NR casel algorithm, a job in each round spent a longer time, about 1,740 seconds (not
shown in Figs. 16a to 20a, otherwise the difference between PFRF’s and LFU’s ARTs cannot be
identified), to access files since all files are located in GRC. With NR case2, a job in each round
spent about 730 to 760 seconds (see Figs. 16a to 20a). Apparently, ARTs of both PFRF and LFU on
all access patterns are all less than those of NR case2. From these 5 figures, we can also see that the
ARTSs in the first three rounds reduced quickly, and PFRF eftectively adapted itself to the change of
file popularities.

Fig. 21 shows the replication delays of PFRF and LFU on ZipfL-0.8 with JRR=0% and
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JRR=25%. Since PFRF learns users’ file access behaviors step by step, its ARTs reduce gradually.
But LFU’s ARTs remarkably decline after first round since LFU continuously replicates needed files
until storage of a cluster is full.

In fact, the difference of PFRF’s ARTs on JRR=0% and JRR=25% is insignificant. The key
reason is that regardless of whether JRR=25% or 0% the access patterns do follow Zipf-like or
Geometric distribution. The LFU’s ARTs have the similar phenomenon. But PFRF’s (LFU’s) ARTs
on Uniform with JRR=25% as shown in Fig. 20a are better than PFRF’s (LFU’s) ARTs on Uniform
with JRR=0% since with JRR=25%, the probability that the 25% of files are local in current round
due to replication algorithms duplicating popular files to local cluster at the end of a round will be
higher than that with JRR=0%.

Figs. 16b to 20b illustrate the Data availabilities for the ten access patterns. A relatively
smaller Data availability represents a better performance. According to the definition of data
availability presented in formula (6), the numerator t,, =ART so that Data availabilities are
similar to the corresponding ARTs, i.e., Fig. X(a) and Fig. X (b) are similar where X=16, 17, 18, 19,
and 20. Note that NR casel is also the worst, about 0.235 in each round (not shown, otherwise the

difference between PFRF’s and LFU’s Data availabilities cannot be identified), in accessing files

since files are all stored in GRC. No required files are local.
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Fig. 17(a). Average job response time for PFRF, LFU, and NR
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Table 5 Average job response delays of PFRF on ZipfL-0.8 with JRR=25% in twenty rounds

Round 1 2 3 4 5 6 7 8 9 10

Time (sec.) 724.84 61229 53323  500.09 483.41 469.54 480.15 485.32 48551 484.54

Round 11 12 13 14 15 16 17 18 19 20

Time (sec.) 481.88 48290 482.05 473.54 487.06 487.57 500.12 492.58 485.88  476.86

4.3.2 Average Bandwidth Cost Ratio (ABCR)
Figs. 22 to 26 illustrate the ABCRs of PFRF, LFU, NR casel, and NR case2 on the ten access
patterns. The bandwidths of an inter-router link, a router-to-site link, and a GRC-to-router link as

listed in Table 1 are respectively 10, 2.5, and 2.5, and the corresponding unit costs are respectively

1 1

v 7o d —. With NR casel, LC, and LFA, in formula (8) are Os since all master files are

located in GRC with no replicas. AFA, is equal to RFA., RC. is 0.5 (=1—10 + 2—15), and Cpgsetine =
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RC,

O.6(=i+i+i). Thus, BCR. (NR casel) = = 0.834, and ABCR (NR casel)
10 10 25

baseline

= BCR, . Therefore, ABCR (NR casel)s are all 0.834 in all rounds on all access patterns.
For PFRF, LFU, and NR case2, RC, = Cpgyseiine = 0.6, and LC, = % Figs. 22 to 26 show

PFRF’s, LFU’s, NR casel’s, and NR case2’s ABCRs on ZipfL-0.8, ZipfL-0.6, Geo-0.2, Geo-0.5,
and Uniform, respectively. We can see that ABCRs of NR case2 in the five figures are all the worst,
about 0.91 to 0.92. The reason is that NR case2 replicates remote files needed by jobs from remote
clusters, even though ARTs of NR case2 are shorter than those of NR casel (not shown in Figs 16a
to 20a, as stated above). Due to the change of file popularities at the end of phase 1 and phase 2, we
can see that PFRF’s ABCRs on ZipfL-0.8, ZipfL.-0.6, and Geo-0.2 are lower than LFU’s ABCRs.
PFRF’s and LFU’s ABCRs on Geo-0.5 (see Fig. 25) are similar and the smallest compared to
PFRF’s and LFU’s ABCRs on other access patterns. In other words, Geo-0.5 is the best access
pattern. The reason has been stated above.

On Uniform with JRR=0% and 25% (see Fig. 26), PFRF’s and LFU’s ABCRs are similar since
popularities of all files as shown is Fig. 15 are the same and without changing with time. According
to formulas (8) and (9), the increase of RFA_s will result in higher BCR.s and ABCRs. It is also the
reason why the bandwidth cost on Uniform is higher than those on the other access patterns.
Moreover, although PFRF’s ARTs are shorter than those of LFU on Uniform, the bandwidths

consumed by PFRF and LFU are similar from the whole system viewpoint.
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4.3.3 Comparison of PFRF parameters a and b

The experimental environment used to evaluate the parameters a and b in formula (3) is also
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the topology shown in Fig. 8 and the specifications listed in Table 1. But the file popularities do not
change with time and each simulation is performed thirty times. Fig. 27 shows experimental results
for PFRF’s ARTs when a < b(a=0.1, b=0.15), a=b(a=0.1, b=0.1), and a> b(a=
0.15, b = 0.1) on ZipfL-0.8 with JRR=0%. Fig. 28 is the zoomed-in figure between round 6 and
round 15 shown in Fig. 27. Evidently, the case when a < b (a = 0.1, b = 0.15) has the best
ARTs, showing that it can accurately reflect which files are more popular. Therefore, in this study

the case a < b(a = 0.1, b =0.15) is then selected.
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4.3.4 Discussion

From an end user viewpoint, the primary goal of invoking a data replication algorithm is to
shorten the average response time and data availability, and from the whole system viewpoint, the
data replication algorithm should reduce bandwidth cost/consumption for Grid systems. From the
simulation results, we can see that PFRF and LFU can reduce job response time and average
bandwidth cost ratio and improve data availability. Although NR case2 can reduce job response
time and improve data availability, it cannot reduce average bandwidth cost ratio. In most situations,
PFRF outperforms LFU and NR case2 on the three given performance metrics since PFRF
accurately predicts the popular files/replicas in each round based on data access history, and then

replicates required files/replicas to appropriate sites. Furthermore, the influence of the file
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popularity change on LFU is higher than that on PFRF.

Furthermore, the change of file popularity has a larger impact on LFU as compared with PFRF.

LFU’s performance is generally similar to that of PFRF, but it performs replication frequently,
consequently consuming a huge amount of storage, causing high workload and overhead for a Grid
system. In the simulation, the average job response time does not include job replication time, so

LFU is superficially optimal.

5. Conclusions

In this paper, we propose the PFRF data replication algorithm for a star-based Data Grid
constrained on limited storage space to improve its file access performance. We have also
instantiated three algorithms PFRF, LFU, and NR to create ten access patterns, and evaluate the
performance of these algorithms on a simulation tool, GridSim. PFRF calculates popularity weights
for files to predict which files will be frequently accessed by users in the next round. Whenever
users request popular files that do not currently exist in local cluster, PFRF replicates these files to
appropriate site/cluster. Nevertheless, if unpopular files which do not exist in local sites are
requested by users, PFRF will not duplicate them to local sites, implying users have to remotely
access them. In addition to average job response time and data availability, bandwidth cost ratio is
also involved to evaluate the data replication algorithms. We also demonstrate that PFRF efficiently
shortens the file access response time, increases data availability, and decreases bandwidth
cost/consumption compared with those of LFU and NR algorithms, even though the users’ file
access behaviors change from time to time.

In the future, we will try to replicate files to users’ local sites, instead of to users’ current clusters.
This can more efficiently reduce intra-cluster bandwidth consumption and unnecessary transmission
time. Furthermore, we will develop a reliability model for sites to evaluate how many file replicas

are required for a file so that the data reliability can fulfill the reliability requirement. We also plan
27



to validate our simulation results on real Data Grids so as to evaluate the proposed scheme on a real

testbed. Those constitute our future research.
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