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Abstract 

In recent Grid research and development, data replication has been used to duplicate frequently 

accessed data from its current location to appropriate sites so as to improve the whole system’s data 

access performance and reduce bandwidth consumption for data delivery. Several data replication 

algorithms have been proposed. Some were designed based on unlimited storage. However, not all 

Data Grids are with unlimited storage space. Others were implemented on limited storage 

environments. However, none of the algorithms developed on limited storage environments has 

considered file popularity, defined as how often a file is accessed by users. In fact, file popularity 

and data access patterns of a system vary with time since users sometimes change their interests 

where data access patterns, defined as the distribution of access counts on files of a system, may 

influence on the data access performance of the system. In other words, the file replication model of 

the system might not be able to adapt to the change of users’ data access behaviors. Therefore, in 

this study, we proposed an adaptive data replication algorithm, called Popular File Replication First 

algorithm (PFRF for short), which is developed on a star-based Data Grid with limited storage 

space. With aggregated data access information of previously job execution and user behaviors, 

PFRF can predict future file popularity, and replicate potential popular files/replicas to appropriate 

cluster/sites to adapt the change. We employ several types of file access behaviors, including 

Uniform, Geometric, and Zipf-like distributions, to evaluate PFRF. The simulation results show that 

PFRF can effectively shorten average job response time, reduce bandwidth consumption for data 

delivery, and increase data availability as compared with the tested algorithms.  

 

Keywords: star-based Data Grid, data replication algorithm, Zipf-like distribution, Geometric 

distribution 
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1. Introduction 

Generally, a Data Grid, a specific Grid system that very usual provides a huge amount of 

storage space, often maintains a high volume of distributed data to serve users. Many recent 

scientific studies [1], engineering applications [2], and commercial applications [3], e.g., 

Biomedical Informatics Research Network (BIRN) [4], the Large Hadron Collider (LHC) [5], the 

DataGrid Project (EDG) [6], and physics Data Grids [7][8], have collected a huge number of data 

files and performed their complex experiments and analyses on Data Grids.  

In a Data Grid, according to 80/20 rules a part of files is frequently accessed and transferred. If 

a system does not allow the existence of replicas, a file that a job frequently accesses is possibly 

located at a remote site. The data access efficiency of the job will be then poor. Long distance data 

transfer always occupies a lot of bandwidth and conducts long transmission delays. So how to 

decrease data access latency, lower bandwidth consumption for data transmission, and increase data 

availability have been the key research issues of Data Grids [9]. Data replication, a general and 

simple approach to achieve these goals, has been widely used in many areas, such as in the Internet 

and distributed databases [10][11]. A well-defined data replication method should meet the 

following requirements [9][12][13][14], including being able to determine an appropriate time to 

replicate files, determining which files should be replicated, and storing these replicas in 

appropriate locations.  

On the other hand, data access pattern analyses have been the critical steps in designing 

efficient dynamic data replication schemes [15][16][17]. Several distributions have been used to 

model data access patterns defined as the distribution of access counts on files of a system, and file 

popularity defined as how often a file is accessed by users, i.e., how popular a file is [18][19]. 

Breslau et al. [18] claimed that using a Zipf-like distribution can more accurately model the 

distribution of webpage accesses. Cameron et al. [19] showed that the distribution of file accesses in 

Data Grids follows the Zipf-like distribution. Ranganthan and Foster [12][21] claimed that the 

Geometric distribution can properly model property of temporal/geographical locality and file 
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access behaviors, and they in [22] derived file popularity by using both Zipf and Geometric 

distributions under the assumption that Grid storage is unlimited or the storage is sufficient to keep 

all files and their replicas. Tang et al. [13] used Zipf-like and Geometric distributions to simulate 

users’ file access behaviors on a multi-tier Data Grid. Furthermore, [14][26] proposed two data 

replication strategies on limited storage. But, [26] did not deal with file popularity and data access 

pattern. [14] did not consider the fact that file popularity is changed with time. In fact, the change 

influences the performance of the system employing the replication strategies. 

Therefore, in this study, we propose an adaptive data replication algorithm, called Popular File 

Replication First algorithm (PFRF for short), which is developed on a star-based Data Grid with 

limited storage space. A star-based Data Grid, a cluster Data Grid with a center cluster that connects 

all other clusters, is a hierarchical architecture that can significantly reduce workload of user 

requests [20]. We simulate several cases in which file popularity follows Zipf-like distribution, 

Geometric distribution, and Uniform distribution under the assumption that user behaviors vary 

with the change of user interests. To adapt the change, PFRF aggregates file access information and 

replicates popular files to suitable clusters/sites. Three metrics including response time, data 

availability, and bandwidth cost ratio were employed to evaluate the tested algorithms, where 

bandwidth cost ratio as a new metric will be defined later. The simulation results show that PFRF 

provide users with a system that has higher data availabilities, lower data transmission delays, and 

less bandwidth consumption for data access. 

The rest of the paper is organized as follows. In Section 2, we introduce related work and 

background of this study. Section 3 introduces architecture of a star-based Data Grid and the PFRF. 

Simulation results are described and discussed in Section 4. Section 5 concludes this article and 

addresses our future research.  

 

2. Background and Related Work 

In this section, we describe the architectures of Data Grids and their replication strategies and 
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algorithms. 

 

2.1 A Data Grid Architecture 

Data Grids can be classified into multi-tier Data Grids, first proposed by MONARC project 

[27][13], and cluster Data Grids, initially proposed by Chang et al. [26]. Fig. 1 illustrates the 

multi-tier Data Grid architecture in which a leaf node represents a user or a computation node, and 

internal nodes are resource sites keeping sharable files. In this architecture, a file, held by a site, e.g., 

by site n-i shown in Fig. 1, will be also held by all the ancestor sites, i.e., sites n-i-1, n-i-2, …, 1 and 

0, i=0, 1, 2, 3,…, n-1. Therefore, the root (i.e., site 0) will hold all files that the system has. When 

an end user, e.g., node n, requires a file which does not exist in n, n then requests the file from its 

immediate ancestor, i.e., node n-1. If node n-1 does not have the file, it requests its immediate 

ancestor, i.e., node n-2, to give it the file. The process repeats until a node, e.g., node	݆, which holds 

the file duplicates the file to node ݆ ൅ 1. The file will be then delivered to node n following the 

reverse direction of the requests. By using the multi-tier Data Grid, file access latency can be 

reduced, but files should be redundantly stored. Its maintenance cost is high. 

 

Fig. 1. A multi-tier Data Grid architecture. 

As illustrated in Fig. 2, a cluster Data Grid consists of n clusters connected by the Internet. 

Files are distributed to and stored in these clusters. Each cluster has a header node (a header for 

short) responsible for managing site information and exchanging file access information with other 

cluster headers. A header periodically, every T time units, determines which file should be 
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replicated to which cluster. After that, the header replicates the file with the largest weight to all 

clusters that need the file. Assume that in a specific T, a node, e.g., node A in cluster 1, frequently 

accesses a remote file, e.g., file F, with the largest weight. F will be then replicated to cluster 1 so 

that A can locally and quickly retrieve F in the next T. Comparing the two types of Data Grids, the 

cluster Grid consumes less storage to hold files. 

 

Fig. 2. A cluster Data Grid architecture. 

 

2.2 Data Replication Algorithms/Strategies  

Least Frequently Used (LFU) [28] and Most Frequently Used (MFU) [28] are two simple 

dynamic replication strategies widely used in many areas, such as disk and cache memory 

duplication. If a storage device has insufficient space to hold a new file, LFU (MFU) will be 

invoked to choose the files that have been least (most) frequently used as the victims to make room 

for the new one. However, MFU’s characteristic contradicts our replication strategy. So, only LFU 

is involved in the following experiments.  

On a multi-tier Data Grid, Ranganathan and Foster [12] presented six replication/caching 

strategies: No Replication or Caching, Best Client, Cascading Replication, Plain Caching, Caching 

plus Cascading Replication and Fast Spread, among which the experimental results showed that the 

Fast Spread’s and Cascading Replication’s performance is better and file access latency is shorter 
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than those of the other four. However, the six strategies cannot avoid the multi-tier Data Grid’s 

disadvantages stated above (recall a file is often redundantly stored in tiers). In fact, the storage 

space and access latency is a trade-off [26]. 

Tang et al. [13] introduced Simple Bottom-Up (SBU) and Aggregate Bottom-Up (ABU) 

algorithms to reduce the average data access response time for a Data Grid. However, SBU does not 

consider historical access records for files, whereas a node in ABU sends the aggregated historical 

records to the upper tiers. The upper tiers do the same until these records reach the root. Due to the 

aggregation capability, ABU’s job response time is shorter and its bandwidth consumption is less 

than those of the SBU. However, ABU and SBU were developed on multi-tier Data Grids. 

Schintke et al. [24] and Ranganathan et al. [23] individually proposed one data replication 

algorithms to improve data availability. Files are arbitrarily replicated as needs, even though users 

only access these files for just once, thus wasting too much storage space to keep useless replicas. 

Kunszt et al. [25] also introduced a file-based replication method to manage a Grid middleware, 

with which file access/transfer time can be then reduced. However, the three algorithms were all 

developed on unlimited storage space and multi-tier Data Grids. 

Chang et al. presented Latest Access Largest Weight (LALW) dynamic replication strategy in 

[14] and Hierarchical Replication Strategy (HRS) in [26]. The LALW utilizes the half-life concept 

to weigh files. A file with a higher access frequency has a larger weight. With the weight, the 

LALW outperformed LFU and no replication data replication strategies [12] in bandwidth 

utilization. However, they did not consider the fact that file popularity is changed with time, and 

only the most popular file is replicated in each time interval. The HRS, a dynamic replication 

strategy for a cluster Data Grid, replicates a locally needed file to the local site from an appropriate 

site so as to reduce future-file-access communication costs. However, the HRS did not consider file 

popularity and data access pattern. 

 

3. System Framework 
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The proposed star-based Data Grid architecture as shown in Fig. 3 consists of a global replica 

controller (GRC) and several clusters connected to the GRC through the Internet. Each cluster 

comprises sites connected by a LAN or LANs, and a local replica controller (LRC) which maintains 

a local replica table (ܴܶܮ) to record file access information, including filename, file location, access 

count, file weight, and master file information. In this study, a master file is an original file that 

cannot be deleted from the Data Grid. Files are stored in sites of different clusters. The GRC, a 

centralized server located on the Internet, is responsible for aggregating file access records for all 

clusters and determining which files should be replicated to which clusters. To achieve these, it 

maintains a global replica table (ܴܶܩ) to collect the information recorded in ܴܶܮs, e.g., the first 

record of ܴܶܩ shown in Fig. 4 indicates that the information of the file Fଵ is kept in both ܴܮ ଵܶ 

and ܴܮ ଷܶ. ܴܮ ଵܶ shows that Fଵ as a master file with current weight 1 is now stored in site 1 and 

has been accessed for 5 times. When the GRC determines to replicate files to a cluster, e.g., cluster 

i, it records the location of the new replicas in ܴܶܩ so that it can reply the location of files/replicas 

requested by LRCs. ܴܮ ௜ܶ of course will record information of the replicas. 

Fig. 5 illustrates the replica catalog structure of the star-based Data Grid, in which GRC is the 

root. When site 1 needs a file, it checks LRCଵ to see whether the file exists in cluster 1 or not. If 

not, LRCଵ requests GRC to provide the file location. Then, the LRCଵ replies site 1 with the file 

location. 

 

Fig. 3. The star-based Data Grid architecture. 
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Fig. 4. An example of ܴܶܩ and ݏܴܶܮ. 

 

 

Fig. 5. The hierarchical replica catalog topology of a star-based Data Grid. 
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assumption is called temporal locality [12]. Breslau et al. [18] as stated above showed that the 

webpage requests follow a Zipf-like distribution [19][29], which is derived from Zipf’s law [30] 

and in which the access probability of the ݅-th most popular file, denoted by ܲሺ ௜݂ሻ, is 

ܲሺ ௜݂ሻ ൌ 1/݅α																																ሺ1ሻ 

where ݅=1, 2,…, n and α is a factor to determine the file access distribution, 0 ൑ α ൏ 1.  

Ranganathan and Foster [21][22] adopted Geometric distribution to simulate the file popularity 

in which the access probability of the ݅-th most popular file, denoted by ܲሺ݅ሻ, is 

ܲሺ݅ሻ ൌ ሺ1 െ ሻ௜ିଵ݌ ∙  ሺ2ሻ																				݌

where ݅=1, 2,…, n and 0 ൏ ݌ ൏ 1. A larger value of ݌ represents that a smaller portion of files 

has been frequently accessed. In this study, we assume that the users’ access behaviors follow both 

Zipf-like distribution or Geometric distribution with different parameters, with which PFRF is 

developed. 

 

3.2 Popular File Replication First (PFRF) algorithm  

The PFRF algorithm as illustrated in Fig. 6 is performed by GRC at the end of a round where 

a round is a dynamic period of time ௗܶ in which at least a fixed number of jobs, e.g., x jobs (e.g., 

10 or 20 jobs), is submitted by each cluster. ௗܶ has its maximum value ܶ. If some clusters do not 

generate at least x jobs in ܶ, ܶ will be treated as a round. The algorithm comprises four phases: 

file access aggregate phase, file popularity calculation phase, file selection phase, and file 

replication phase. 

1. File access aggregate phase: Between lines 2 and 5 of the algorithm, PFRF aggregates the 

access count for each file, e.g., file ௜݂ in cluster c, at a round, e.g., round ݎ, denoted by 

Aୡ௥ሺ ௜݂ሻ, sorts all the files on Aୡ௥ሺ ௜݂ሻs in a descending order and stores the sorted result into a 

set S. After that, PFRF calculates the total number of files having been accessed by all sites in 

cluster c at round ݎ, denoted by TNFୡ௥, based on the information stored in LRCୡ.  

2. File popularity calculation phase: At line 6, PFRF calculates popularity weight for file ௜݂, 
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denoted by ܲ ୡܹ
௥ሺ ௜݂ሻ, where ݅ ൌ 1,2, … and   

ܲ ୡܹ
௥ሺ ௜݂ሻ ൌ ൜

ܲ ୡܹ
௥ିଵሺ ௜݂ሻ ൅ Aୡ௥ሺ ௜݂ሻ ∙ a				if		Aୡ௥ሺ ௜݂ሻ ൐ 0

ܲ ୡܹ
௥ିଵሺ ௜݂ሻ െ b																								otherwise

ݎ			,	 ൒ 1, c ൒ 1, ݅ ൒ 1.						ሺ3ሻ 

in which a and b are constants and a ൏ b. We will discuss why a ൏ b later. If Aୡ௥ሺ ௜݂ሻ ൐ 0, 

i.e., ௜݂ 	has been accessed by users in round ݎ, PFRF increases ܲ ୡܹ
௥ିଵሺ ௜݂ሻ by Aୡ௥ሺ ௜݂ሻ ∙ a. 

Otherwise, it decreases ܲ ୡܹ
௥ିଵሺ ௜݂ሻ by b. Basically, a higher ܲ ୡܹ

௥ሺ ௜݂ሻ implies that ௜݂  is 

more popular. In this study, we assume that at round 0 all files follow binomial distribution, 

i.e., ܲ ୡܹ
଴ሺ ௜݂ሻ ൌ 0.5, indicating the initial probability that ௜݂  is accessed is 0.5, and the 

minimum value of each ܲ ୡܹ
௥ିଵሺ ௜݂ሻ is 0. From previous access records of ௜݂, PFRF can 

derive the variation of the popularity of ௜݂ and predict the popularity of ௜݂ for the next round. 

For instance, if ଷ݂ has been accessed 5 times by cluster 2 in round 1, ܲ ଶܹ
ଵሺ ଷ݂ሻ ൌ 	0.5 ൅ 5 ∙ a. 

The average popularity of ௜݂ in all clusters, denoted by ܲ ୟܹ୴୥
௥ ሺ ௜݂ሻ, is 

ܲ ୟܹ୴୥
௥ ሺ ௜݂ሻ ൌ

∑ ܲ ୡܹ
௥ሺ ௜݂ሻ

ேౙ
୩ୀଵ

ୡܰ
																ሺ4ሻ 

where ୡܰ is the total number of clusters having ௜݂ in the concerned Data Grid. 

3. File selection phase: Between lines 7 and 10, PFRF sorts the set S on the average popular 

weights in a decreasing order, calculates ௙ܰ which is the number of files that might be 

replicated, and selects the first ௙ܰ files as cluster c’s duplication candidates from S, where 

௙ܰ ൌ TNFୡ௥ہ ൈ ሺ1 െ  ሺ5ሻ																									ۂሻݔ

 in which ݔ is a constant, 0 ൏ ݔ ൏ 1. 

4. File replication phase: The replication phase, between lines 11 and 30 in Figure 6, first checks 

to see whether each file, e.g., file ௜݂, in cluster c’s replication candidates is in cluster c or not. 

If yes, PFRF does nothing. Otherwise, it further checks to see whether there is a site in cluster 

c that has sufficient storage space to accommodate ௝݂ or not. If yes, PFRF duplicates ௝݂ to 

the site from a nearest cluster having ௝݂. Otherwise, PFRF deletes ݒ files ሺݒ ൒ 1ሻ that are 

less popular than ௝݂ from a site of cluster c, leaving enough storage space to keep ௝݂.  

 



11 
 

From the algorithm we can realize that files and the users may be located at different sites in 

the same cluster or different clusters. But PFRF tries to localize files since inter-cluster access is 

much more time-consuming than intra-cluster access is [14].  

 

PFRF data replication algorithm  

Input: The total access count of ௜݂ , ݅ ൌ 1,2, … , ௞ܰ, where ௞ܰ is the number of files in cluster c

     in round ݎ; 

Output: Duplicating the files that should be replicated to cluster c denoted by  
       Fୡ ൌ ሼ ଵ݂, ଶ݂, … , ே݂೑ሽ to cluster c; 

1: for each cluster c, c ൌ 1,2, … , ୡܰ{    /* ୡܰ is the number of cluster that the concerned Data Grid has*/

2:    Aggregate Aୡ௥ሺ ௜݂ሻ, ݅ ൌ 1,2, … , ௞ܰ; /* ௞ܰ is the number of files that cluster c has*/ 

3:    Sort all the files according to Aୡ௥ሺ ௜݂ሻ in a descending order; 

4:    Store the sorting result into set S; 

5:    Calculate TNFୡ௥ for LRCୡ; 
6:    Calculate ܲ ୡܹ

௥ሺ ௜݂ሻ and ܲ ୟܹ୴୥
௥ ሺ ௜݂ሻ, ݅ ൌ 1,2, … , ௞ܰ;   /* equations (3) and (4)*/ 

7:    Sort the set S according to the average popular weights;  

8:    Set the value of ݔ ൌ 0.8, 0 ൏ ݔ ൏ 1;    /*according to 80/20 rules*/ 

9:    Calculate ௙ܰ with equation (5);   /* ௙ܰ derived from equation (5) on x=0.8 is the number of  

popular files. */ 

10:   Select the first ௙ܰ files from S and put them into the set S′; /* S′: the set of replication 

candidates*/ 

11:   for each file ௝݂ 	in S′{ 

12:      check LRCୡ to see whether cluster c has ௝݂; 

13:      if cluster c does not have ௝݂{ 

14:         if any site of cluster c has sufficient storage to save ௝݂ 

15:             replicate ௝݂ to the site from a nearest cluster which has ௝݂; 

16:         else if{ for each site ܻ in cluster c { /* check storage space of each site ܻ in cluster c*/

17:                for each file ௞݂ kept in site ܻ; 

18:                compare ܲ ୟܹ୴୥
௥ ሺ ௞݂ሻ with ܲ ୟܹ୴୥

௥ ൫ ௝݂൯; 

19:                if there are v files that are less popular than ௝݂ and the total size of these 

20:                 v files plus the remaining storage space of site ܻ is sufficient to keep ௝݂

21:                 { PFRF deletes these v files and replicates ௝݂ to ܻ; 

22:                   break;} 

23:               } 

24:          } 

25:          else   /*The total size of all files that are less popular than ௝݂ plus the remaining storage  
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space is not enough to hold ௝݂*/ 

26:          {   print (“no sites in cluster c can keep ௝݂”); 

27:              PFRF will not replicate ௝݂;  

28:          } 

29:      } 

30:   } 

31:} 

Fig. 6. PFRF data replication algorithm. 

4. Simulation and Performance Comparison 

To evaluate the proposed scheme, a Grid testbed or a Grid simulator is required. However, the 

maintenance cost of a real testbed is high and our TigerGrid [31] is not organized as a star topology. 

In fact, the cost of reconfiguring the TigerGrid to a star topology is also high. Thus, we choose a 

Grid simulator as the simulation tool. Many Grid simulators have been introduced, such as 

MicroGrid [32], OptorSim [33], SimGrid [34], MONARC [35], ChicSim [36], and GridSim [20], in 

which GridSim due to providing a flexible and extensible simulation environment and allowing 

researchers to increase new components/functions is chosen to construct our test platform. The 

compared algorithms include LFU and No Replication (NR) data replication algorithms. 

 

4.1 Experimental Environment and Parameters 

The test environment illustrated in Fig. 8 consists of a GRC and four clusters. Each cluster has 

a LRC. The specifications of all resources and job parameters are listed in Table 1. Each site 

comprises six computers, and each computer has four processors, i.e., each cluster has 24 

processors. A processor’s processor rating is 1,600 MIPS. Therefore, the total processor rating of a 

cluster is 38,400 (=24ൈ1,600) MIPS. Each cluster has 50GB storage space to accommodate files, 

and the file size of a master file is 1GB. Fig. 9 illustrates that job execution is divided into rounds 

based on the definition defined above. We assume that ௗܶ=800 seconds and in each round at least 

10 jobs are submitted by users in each cluster, i.e., at least 40 jobs are submitted, and each job 

requests 5 to 10 files. Fig. 10 shows an example of job execution in cluster c in which the 
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durations of different rounds may be different. Each simulation is performed twenty rounds, and we 

assume that users in cluster c in the first round cannot locally access files Fଵ, Fସ, and Fଽ, so it 

needs more time to duplicate these files from remote clusters. Thus, uses can locally retrieve the 

three files in the second round. Theoretically, the duration of a later round is shorter than any 

previous rounds if users do not change their file access behaviors. The phenomenon will be shown 

in the following simulation. 

 

Fig. 8. The simulation Topology. 

Table 1 Resources and Job parameters 

Resources Value 

Number of clusters 4 

Storage available in a cluster 50GB 

Single processor rating (MIPS) 1,600 

Number of processors in a cluster 24 

Processor rating of a cluster 38,400 (=24ൈ1600) 

Inter-router bandwidth 10Gb/s 

Router-to-site bandwidth 2.5Gb/s 

User-to-router bandwidth 100Mb/s 

GRC-to-router bandwidth 2.5Gb/s 

LRC-to-router bandwidth 1Gb/s 

Job parameters Value 

Number of master files 100 
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2.5Gb/s
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. . .
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. . .
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. . .
. . .
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Minimum number of jobs performed by 

users in each cluster in a round 

10 

The minimum number of jobs performed 

in each round 

40 (at least 4ൈ10 jobs) 

Size of a master file 1GB 

Number of files accessed by a job 5~10 

The longest duration of a round ( ௗܶ) 800 seconds 

 

 

Fig. 9. Job execution in a cluster in different rounds. 

 

 

Fig. 10. Files accessed by jobs of cluster c in different rounds. 

 

To compare PFRF and LFU algorithms, 100 master files are randomly distributed to the four 

clusters (see Table 2). With NR algorithm, there are two cases. The first, denoted by NR case1, is 
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that 100 masters files are all stored in GRC, and the other, denoted by NR case2, is that the 100 files 

are randomly distributed to the four LRCs. Neither cases replicate files. In NR case1, a cluster does 

not locally hold a file. Hence, a job has to remotely access GRC to acquire the files. In NR case2, 

some accessed files are local and some are remote. So if users would like to access a non-local file, 

they have to remotely retrieve it from other cluster, instead of from GRC. 

 

Table 2 Master files settings for PFRF, LFU, NR case1, and NR case2 algorithms 
Data replication algorithm Setting 
PFRF 100 master files are randomly distributed to the four clusters  
LFU 100 master files are randomly distributed to the four clusters 
NR case1 100 master files are all stored in GRC 
NR case2 100 master files are randomly distributed to the four LRCs 

 

4.2 Access Patterns 

Ten access patterns listed in Table 3 are employed to simulate user file access behaviors. File 

popularity is calculated as stated above under the assumption that file accesses follow Zipf-like, 

Geometric, and Uniform distributions where Uniform distribution (Uniform for short) represents 

that the probability of accessing a file by each user is the same. JRR, standing for job repeating rate, 

is the probability of accessing the files that were accessed in the previous round, 0 ൑ JRR ൑ 1, and 

α  and ݌  are the parameters respectively used when employing Zipf-Like distribution and 

Geometric distribution. 

Table 3 Different access patterns employed 

No. File Popularity α/݌ JRR (%) ሺ݌ ௜݂ሻ/݌ሺ݅ሻ 

1 Zipf-like 0.8 0 1 ݅଴.଼⁄  

2 Zipf-like 0.8 25 1 ݅଴.଼⁄  

3 Zipf-like 0.6 0 1 ݅଴.଺⁄  

4 Zipf-like 0.6 25 1 ݅଴.଺⁄  

5 Geometric 0.2 0 ሺ1 െ 0.2ሻ௜ିଵ ∙ 0.2 

6 Geometric 0.2 25 ሺ1 െ 0.2ሻ௜ିଵ ∙ 0.2 

7 Geometric 0.5 0 ሺ1 െ 0.5ሻ௜ିଵ ∙ 0.5 

8 Geometric 0.5 25 ሺ1 െ 0.5ሻ௜ିଵ ∙ 0.5 

9 Uniform none 0 none 
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10 Uniform none 25 none 

 

To effectively analyze the proposed system, we evenly partition the popularities of the 100 

master files into 10 levels, and divide consecutive twenty rounds into three phases. As listed in 

Table 4, the first phase includes rounds 1 to 7. The second and the third respectively contain rounds 

8 to 14 and rounds 15 to 20. In the first phase, we assume that File0 to File9 are the most popular 

files, i.e., belonging to the first popularity level. File10 to File19 are the second popular files, hence 

they are the second popularity level, and so on. In the second phase, we swap the files of the first 

two popularity levels, i.e., File10 to File19 become the most popular, File0 to File9 become the 

second, to simulate file popularity change, and other files’ popularities remain unchanged. In the 

third phase, File20 to File29 are the most popular, File10 to File19 the second, and File0 to File9 the 

third. Other levels’ file popularities remain unchanged. With the settings listed in Table 4, we 

conduct the following experiments to evaluate whether PFRF on LFU, NR case1, and NR case2 can 

adapt themselves to the change of file popularities or not. 

In the following experiments, 1000 jobs, instead of 40 jobs, were submitted in each phase. The 

experimental results are illustrated in Figs. 11 to 15, in which Figs. 11a to 15a show users’ file 

access behaviors in the first phase; Figs. 11b to 15b (Figs. 11c to 15c) plot those in the second (the 

third) phase. Taking ZipfL-0.8 (see Fig. 11) as an example, the access count (AC) of each most 

popular file in all the three phases (figures) is about 215, and unpopular files, i.e., File30 to File99, 

are accessed less and less. In the case of ZipfL-0.6 (see Fig. 12), the AC of each most popular file in 

all the three phases is about 170. However, the ACs of the other popularity levels, i.e., between 

levels 4 and 10, in the three phases are not evidently different, like a Uniform distribution. When 

Geo-0.2 is invoked (see Fig. 13), the AC of each most popular file is about 175, and the ACs decline 

sharply when file IDs increase. In the Geo-0.5 case (see Fig. 14), the difference between/among the 

most popular files’ ACs and those of the second and the third popular files in each of the three 

phases is significant. Generally, the ACs of the first three popularity levels on all access patterns are 
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when the requested files are successfully delivered. The second is Data availability which proposed 

by GridSim [20] for a job, e.g., Job௫, to access ௫ܰ files stored in cluster y, denoted by ݈݅ܽݒܣ௫௬, is 

formally defined as  

௫௬݈݅ܽݒܣ ൌ
௫௬ݐ
௫ܰ
																																						ሺ6ሻ 

where ݐ௫௬ is the time that Job௫ consumes to acquire the ௫ܰ files from cluster ݕ. The average 

data availability over all jobs, e.g., Jobs௬ submitted to ݕ, denoted by ݈ܽ݅ܽݒܣ݃ݒ௬, in a round is 

defined as 

௬݈݅ܽݒܣ݃ݒܽ ൌ
∑ ௫௬௫∈୎୭ୠୱ೤݈݅ܽݒܣ

หJobs௬ห
.																														ሺ7ሻ 

The bandwidth cost ratio of cluster c in a round, denoted by ܴܥܤ௖, is defined as  

௖ܴܥܤ ൌ
௖ܥܮ ∙ ௖ܣܨܮ ൅ ௖ܥܴ ∙ ௖ܣܨܴ

௕௔௦௘௟௜௡௘ܥ ∙ ௖ܣܨܣ
ൌ 		

௖ܥܮ ∙ ௖ܣܨܮ ൅ ௖ܥܴ ∙ ௖ܣܨܴ
௕௔௦௘௟௜௡௘ܥ ∙ ሺܣܨܮ௖ ൅ ௖ሻܣܨܴ

					ሺ8ሻ 

where ܣܨܮ௖	ሺܴܣܨ௖ሻ is the number of files that cluster c can locally (should remotely) accessed, 

௖ܣܨܣ ൌ ௖ܣܨܮ ൅  ௖ is the cost of fileܥܴ ,௖ is the cost of file access inside cluster cܥܮ ,௖ܣܨܴ

access between cluster c and a remote cluster and ܥ௕௔௦௘௟௜௡௘ is the access cost when the file 

request issued by a cluster c job is in a remote cluster. We further assume that all file have the 

same size, i.e., 1 GB. So formula (8) only involves number of files and neglects file sizes. The 

Average Bandwidth Cost Ratio (ABCR) defined as  

ܴܥܤܣ ൌ
∑ ௖ܴܥܤ
ேౙ
௨ୀଵ

ୡܰ
																		ሺ9ሻ 

is to determine whether a data replication algorithm could accurately predict popular files or not 

where ୡܰ is the number of clusters the concerned Data Grid has. If ܣܨܮ௖ is larger than ܴܣܨ௖, 

that means the concerned data replication algorithm can more accurately predict user file access 

behaviors. Otherwise, the algorithm due to inaccurate prediction would consume a lot of network 

resources to remotely deliver files required by jobs. In other words, a data replication algorithm that 

produce a smaller ABCR value will result in better Grid performance. 

In Section 4.3.1 and 4.3.2, each simulation is performed fifteen times. 
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4.3.1 Average Job Response Time (ART) and Data Availability (DA) 

Figs. 16a to 20a show the experimental results of ARTs for PFRF, LFU, and NR case2 given 

the ten access patterns. When ZipfL-0.8 with JRR=0% (JRR=25%) is used, after the third round 

(the fourth round), as shown in Fig.16a PFRF has shorter ARTs than LFU has. Figs. 17a and 18a 

show that the experimental results on ZipfL-0.6 and Geo-0.2 are similar to those of Fig. 16a. 

PFRF’s and LFU’s response delays on Uniform with JRR=0% and with JRR=25% as shown in Fig. 

20a are longer than those shown in Figs. 16a to 19a since the tested algorithms like that shown in 

Fig. 15 cannot effectively discriminate the file popularities for files. Also, in Figs. 16a to 18a and 

Fig. 20a, PFRF has shorter ARTs than those of LFU, i.e., PFRF gives the best ARTs among the 

tested algorithms. Nevertheless, when the data access pattern is Geo-0.5 with JRR=0% and 25% 

(see Fig. 19a), PFRF and LFU have similar ARTs since the popular files as shown in Fig. 14 can be 

easily identified, and both of the two algorithms can accurately identify users’ file access behaviors. 

Their ARTs are the smallest, about 460 seconds, compared with PFRF’s and LFU’s ARTs shown in 

Figs. 16a, 17a, 18a, and 20a. Table 5 lists ARTs of PFRF on ZipfL-0.8 with JRR=25% in twenty 

rounds. The trend is that the duration of a later round as stated above is shorter than any previous 

rounds, except when the file popularities were changed in specific rounds, e.g., in rounds 8 and 15 

since as listed in Table 4 we swap popular files after round 7 (the end of phase 1) and round 14 (the 

end of phase 2). 

With NR case1 algorithm, a job in each round spent a longer time, about 1,740 seconds (not 

shown in Figs. 16a to 20a, otherwise the difference between PFRF’s and LFU’s ARTs cannot be 

identified), to access files since all files are located in GRC. With NR case2, a job in each round 

spent about 730 to 760 seconds (see Figs. 16a to 20a). Apparently, ARTs of both PFRF and LFU on 

all access patterns are all less than those of NR case2. From these 5 figures, we can also see that the 

ARTs in the first three rounds reduced quickly, and PFRF effectively adapted itself to the change of 

file popularities. 

Fig. 21 shows the replication delays of PFRF and LFU on ZipfL-0.8 with JRR=0% and 
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0.6 ቀൌ ଵ

ଵ଴
൅ ଵ

ଵ଴
൅ ଵ

ଶ.ହ
ቁ.  Thus, ܴܥܤ௖	 (NR case1) ൌ ோ஼೎

஼್ೌೞ೐೗೔೙೐
ൌ 0.834 , and ABCR (NR case1) 

ൌ  .. Therefore, ABCR (NR case1)s are all 0.834 in all rounds on all access patterns	௖ܴܥܤ

 For PFRF, LFU, and NR case2, ܴܥ௖ ൌ ௕௔௦௘௟௜௡௘ܥ ൌ 0.6, and ܥܮ௖ ൌ
ଵ

ଶ.ହ
. Figs. 22 to 26 show 

PFRF’s, LFU’s, NR case1’s, and NR case2’s ABCRs on ZipfL-0.8, ZipfL-0.6, Geo-0.2, Geo-0.5, 

and Uniform, respectively. We can see that ABCRs of NR case2 in the five figures are all the worst, 

about 0.91 to 0.92. The reason is that NR case2 replicates remote files needed by jobs from remote 

clusters, even though ARTs of NR case2 are shorter than those of NR case1 (not shown in Figs 16a 

to 20a, as stated above). Due to the change of file popularities at the end of phase 1 and phase 2, we 

can see that PFRF’s ABCRs on ZipfL-0.8, ZipfL-0.6, and Geo-0.2 are lower than LFU’s ABCRs. 

PFRF’s and LFU’s ABCRs on Geo-0.5 (see Fig. 25) are similar and the smallest compared to 

PFRF’s and LFU’s ABCRs on other access patterns. In other words, Geo-0.5 is the best access 

pattern. The reason has been stated above. 

On Uniform with JRR=0% and 25% (see Fig. 26), PFRF’s and LFU’s ABCRs are similar since 

popularities of all files as shown is Fig. 15 are the same and without changing with time. According 

to formulas (8) and (9), the increase of ܴܣܨ௖s will result in higher	ܴܥܤ௖s and ABCRs. It is also the 

reason why the bandwidth cost on Uniform is higher than those on the other access patterns. 

Moreover, although PFRF’s ARTs are shorter than those of LFU on Uniform, the bandwidths 

consumed by PFRF and LFU are similar from the whole system viewpoint. 
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popularity change on LFU is higher than that on PFRF.  

Furthermore, the change of file popularity has a larger impact on LFU as compared with PFRF.  

 

LFU’s performance is generally similar to that of PFRF, but it performs replication frequently, 

consequently consuming a huge amount of storage, causing high workload and overhead for a Grid 

system. In the simulation, the average job response time does not include job replication time, so 

LFU is superficially optimal. 

 

5. Conclusions 

In this paper, we propose the PFRF data replication algorithm for a star-based Data Grid 

constrained on limited storage space to improve its file access performance. We have also 

instantiated three algorithms PFRF, LFU, and NR to create ten access patterns, and evaluate the 

performance of these algorithms on a simulation tool, GridSim. PFRF calculates popularity weights 

for files to predict which files will be frequently accessed by users in the next round. Whenever 

users request popular files that do not currently exist in local cluster, PFRF replicates these files to 

appropriate site/cluster. Nevertheless, if unpopular files which do not exist in local sites are 

requested by users, PFRF will not duplicate them to local sites, implying users have to remotely 

access them. In addition to average job response time and data availability, bandwidth cost ratio is 

also involved to evaluate the data replication algorithms. We also demonstrate that PFRF efficiently 

shortens the file access response time, increases data availability, and decreases bandwidth 

cost/consumption compared with those of LFU and NR algorithms, even though the users’ file 

access behaviors change from time to time. 

In the future, we will try to replicate files to users’ local sites, instead of to users’ current clusters. 

This can more efficiently reduce intra-cluster bandwidth consumption and unnecessary transmission 

time. Furthermore, we will develop a reliability model for sites to evaluate how many file replicas 

are required for a file so that the data reliability can fulfill the reliability requirement. We also plan 
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to validate our simulation results on real Data Grids so as to evaluate the proposed scheme on a real 

testbed. Those constitute our future research. 
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