
An Adaptive Data Replication Algorithm based on Star-based
Data Grids

Ming-Chang Lee
Fang-Yie Leu

Ying-ping Chen

NCLab Report No. NCL-TR-2010009
November 2010

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/

1

An Adaptive Data Replication Algorithm based on Star-based Data Grids

Ming-Chang Lee, Fang-Yie Leu, Ying-ping Chen

Abstract

In recent Grid research and development, data replication has been used to duplicate frequently

accessed data from its current location to appropriate sites so as to improve the whole system’s data

access performance and reduce bandwidth consumption for data delivery. Several data replication

algorithms have been proposed. Some were designed based on unlimited storage. However, not all

Data Grids are with unlimited storage space. Others were implemented on limited storage

environments. However, none of the algorithms developed on limited storage environments has

considered file popularity, defined as how often a file is accessed by users. In fact, file popularity

and data access patterns of a system vary with time since users sometimes change their interests

where data access patterns, defined as the distribution of access counts on files of a system, may

influence on the data access performance of the system. In other words, the file replication model of

the system might not be able to adapt to the change of users’ data access behaviors. Therefore, in

this study, we proposed an adaptive data replication algorithm, called Popular File Replication First

algorithm (PFRF for short), which is developed on a star-based Data Grid with limited storage

space. With aggregated data access information of previously job execution and user behaviors,

PFRF can predict future file popularity, and replicate potential popular files/replicas to appropriate

cluster/sites to adapt the change. We employ several types of file access behaviors, including

Uniform, Geometric, and Zipf-like distributions, to evaluate PFRF. The simulation results show that

PFRF can effectively shorten average job response time, reduce bandwidth consumption for data

delivery, and increase data availability as compared with the tested algorithms.

Keywords: star-based Data Grid, data replication algorithm, Zipf-like distribution, Geometric

distribution

2

1. Introduction

Generally, a Data Grid, a specific Grid system that very usual provides a huge amount of

storage space, often maintains a high volume of distributed data to serve users. Many recent

scientific studies [1], engineering applications [2], and commercial applications [3], e.g.,

Biomedical Informatics Research Network (BIRN) [4], the Large Hadron Collider (LHC) [5], the

DataGrid Project (EDG) [6], and physics Data Grids [7][8], have collected a huge number of data

files and performed their complex experiments and analyses on Data Grids.

In a Data Grid, according to 80/20 rules a part of files is frequently accessed and transferred. If

a system does not allow the existence of replicas, a file that a job frequently accesses is possibly

located at a remote site. The data access efficiency of the job will be then poor. Long distance data

transfer always occupies a lot of bandwidth and conducts long transmission delays. So how to

decrease data access latency, lower bandwidth consumption for data transmission, and increase data

availability have been the key research issues of Data Grids [9]. Data replication, a general and

simple approach to achieve these goals, has been widely used in many areas, such as in the Internet

and distributed databases [10][11]. A well-defined data replication method should meet the

following requirements [9][12][13][14], including being able to determine an appropriate time to

replicate files, determining which files should be replicated, and storing these replicas in

appropriate locations.

On the other hand, data access pattern analyses have been the critical steps in designing

efficient dynamic data replication schemes [15][16][17]. Several distributions have been used to

model data access patterns defined as the distribution of access counts on files of a system, and file

popularity defined as how often a file is accessed by users, i.e., how popular a file is [18][19].

Breslau et al. [18] claimed that using a Zipf-like distribution can more accurately model the

distribution of webpage accesses. Cameron et al. [19] showed that the distribution of file accesses in

Data Grids follows the Zipf-like distribution. Ranganthan and Foster [12][21] claimed that the

Geometric distribution can properly model property of temporal/geographical locality and file

3

access behaviors, and they in [22] derived file popularity by using both Zipf and Geometric

distributions under the assumption that Grid storage is unlimited or the storage is sufficient to keep

all files and their replicas. Tang et al. [13] used Zipf-like and Geometric distributions to simulate

users’ file access behaviors on a multi-tier Data Grid. Furthermore, [14][26] proposed two data

replication strategies on limited storage. But, [26] did not deal with file popularity and data access

pattern. [14] did not consider the fact that file popularity is changed with time. In fact, the change

influences the performance of the system employing the replication strategies.

Therefore, in this study, we propose an adaptive data replication algorithm, called Popular File

Replication First algorithm (PFRF for short), which is developed on a star-based Data Grid with

limited storage space. A star-based Data Grid, a cluster Data Grid with a center cluster that connects

all other clusters, is a hierarchical architecture that can significantly reduce workload of user

requests [20]. We simulate several cases in which file popularity follows Zipf-like distribution,

Geometric distribution, and Uniform distribution under the assumption that user behaviors vary

with the change of user interests. To adapt the change, PFRF aggregates file access information and

replicates popular files to suitable clusters/sites. Three metrics including response time, data

availability, and bandwidth cost ratio were employed to evaluate the tested algorithms, where

bandwidth cost ratio as a new metric will be defined later. The simulation results show that PFRF

provide users with a system that has higher data availabilities, lower data transmission delays, and

less bandwidth consumption for data access.

The rest of the paper is organized as follows. In Section 2, we introduce related work and

background of this study. Section 3 introduces architecture of a star-based Data Grid and the PFRF.

Simulation results are described and discussed in Section 4. Section 5 concludes this article and

addresses our future research.

2. Background and Related Work

In this section, we describe the architectures of Data Grids and their replication strategies and

4

algorithms.

2.1 A Data Grid Architecture

Data Grids can be classified into multi-tier Data Grids, first proposed by MONARC project

[27][13], and cluster Data Grids, initially proposed by Chang et al. [26]. Fig. 1 illustrates the

multi-tier Data Grid architecture in which a leaf node represents a user or a computation node, and

internal nodes are resource sites keeping sharable files. In this architecture, a file, held by a site, e.g.,

by site n-i shown in Fig. 1, will be also held by all the ancestor sites, i.e., sites n-i-1, n-i-2, …, 1 and

0, i=0, 1, 2, 3,…, n-1. Therefore, the root (i.e., site 0) will hold all files that the system has. When

an end user, e.g., node n, requires a file which does not exist in n, n then requests the file from its

immediate ancestor, i.e., node n-1. If node n-1 does not have the file, it requests its immediate

ancestor, i.e., node n-2, to give it the file. The process repeats until a node, e.g., node	݆, which holds

the file duplicates the file to node ݆ ൅ 1. The file will be then delivered to node n following the

reverse direction of the requests. By using the multi-tier Data Grid, file access latency can be

reduced, but files should be redundantly stored. Its maintenance cost is high.

Fig. 1. A multi-tier Data Grid architecture.

As illustrated in Fig. 2, a cluster Data Grid consists of n clusters connected by the Internet.

Files are distributed to and stored in these clusters. Each cluster has a header node (a header for

short) responsible for managing site information and exchanging file access information with other

cluster headers. A header periodically, every T time units, determines which file should be

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

n

.

.

tier 0

tier n

tier n-1

tier n-2

tier 1

.

.

.

.
.

n-3

n-2

n-1

1

0

5

replicated to which cluster. After that, the header replicates the file with the largest weight to all

clusters that need the file. Assume that in a specific T, a node, e.g., node A in cluster 1, frequently

accesses a remote file, e.g., file F, with the largest weight. F will be then replicated to cluster 1 so

that A can locally and quickly retrieve F in the next T. Comparing the two types of Data Grids, the

cluster Grid consumes less storage to hold files.

Fig. 2. A cluster Data Grid architecture.

2.2 Data Replication Algorithms/Strategies

Least Frequently Used (LFU) [28] and Most Frequently Used (MFU) [28] are two simple

dynamic replication strategies widely used in many areas, such as disk and cache memory

duplication. If a storage device has insufficient space to hold a new file, LFU (MFU) will be

invoked to choose the files that have been least (most) frequently used as the victims to make room

for the new one. However, MFU’s characteristic contradicts our replication strategy. So, only LFU

is involved in the following experiments.

On a multi-tier Data Grid, Ranganathan and Foster [12] presented six replication/caching

strategies: No Replication or Caching, Best Client, Cascading Replication, Plain Caching, Caching

plus Cascading Replication and Fast Spread, among which the experimental results showed that the

Fast Spread’s and Cascading Replication’s performance is better and file access latency is shorter

A
. . .

. . .

. . .

. . .

. . .

. . .

. . .

cluster 2

cluster ncluster 3

cluster 1

Internet

header

. . .

headerheader

header
. . .

6

than those of the other four. However, the six strategies cannot avoid the multi-tier Data Grid’s

disadvantages stated above (recall a file is often redundantly stored in tiers). In fact, the storage

space and access latency is a trade-off [26].

Tang et al. [13] introduced Simple Bottom-Up (SBU) and Aggregate Bottom-Up (ABU)

algorithms to reduce the average data access response time for a Data Grid. However, SBU does not

consider historical access records for files, whereas a node in ABU sends the aggregated historical

records to the upper tiers. The upper tiers do the same until these records reach the root. Due to the

aggregation capability, ABU’s job response time is shorter and its bandwidth consumption is less

than those of the SBU. However, ABU and SBU were developed on multi-tier Data Grids.

Schintke et al. [24] and Ranganathan et al. [23] individually proposed one data replication

algorithms to improve data availability. Files are arbitrarily replicated as needs, even though users

only access these files for just once, thus wasting too much storage space to keep useless replicas.

Kunszt et al. [25] also introduced a file-based replication method to manage a Grid middleware,

with which file access/transfer time can be then reduced. However, the three algorithms were all

developed on unlimited storage space and multi-tier Data Grids.

Chang et al. presented Latest Access Largest Weight (LALW) dynamic replication strategy in

[14] and Hierarchical Replication Strategy (HRS) in [26]. The LALW utilizes the half-life concept

to weigh files. A file with a higher access frequency has a larger weight. With the weight, the

LALW outperformed LFU and no replication data replication strategies [12] in bandwidth

utilization. However, they did not consider the fact that file popularity is changed with time, and

only the most popular file is replicated in each time interval. The HRS, a dynamic replication

strategy for a cluster Data Grid, replicates a locally needed file to the local site from an appropriate

site so as to reduce future-file-access communication costs. However, the HRS did not consider file

popularity and data access pattern.

3. System Framework

7

The proposed star-based Data Grid architecture as shown in Fig. 3 consists of a global replica

controller (GRC) and several clusters connected to the GRC through the Internet. Each cluster

comprises sites connected by a LAN or LANs, and a local replica controller (LRC) which maintains

a local replica table (ܴܶܮ) to record file access information, including filename, file location, access

count, file weight, and master file information. In this study, a master file is an original file that

cannot be deleted from the Data Grid. Files are stored in sites of different clusters. The GRC, a

centralized server located on the Internet, is responsible for aggregating file access records for all

clusters and determining which files should be replicated to which clusters. To achieve these, it

maintains a global replica table (ܴܶܩ) to collect the information recorded in ܴܶܮs, e.g., the first

record of ܴܶܩ shown in Fig. 4 indicates that the information of the file Fଵ is kept in both ܴܮ ଵܶ

and ܴܮ ଷܶ. ܴܮ ଵܶ shows that Fଵ as a master file with current weight 1 is now stored in site 1 and

has been accessed for 5 times. When the GRC determines to replicate files to a cluster, e.g., cluster

i, it records the location of the new replicas in ܴܶܩ so that it can reply the location of files/replicas

requested by LRCs. ܴܮ ௜ܶ of course will record information of the replicas.

Fig. 5 illustrates the replica catalog structure of the star-based Data Grid, in which GRC is the

root. When site 1 needs a file, it checks LRCଵ to see whether the file exists in cluster 1 or not. If

not, LRCଵ requests GRC to provide the file location. Then, the LRCଵ replies site 1 with the file

location.

Fig. 3. The star-based Data Grid architecture.

Cluster 2 Cluster 1

Cluster 3 Cluster n

Internet

. . .

. . .

. . .

. . .

: GRC

: site

 : LRCn

8

Fig. 4. An example of ܴܶܩ and ݏܴܶܮ.

Fig. 5. The hierarchical replica catalog topology of a star-based Data Grid.

3.1 Zipf-like distribution and Geometric distribution

To achieve a better file access performance, we need to keep track of the changing behaviors

for users’ file accesses so that we can accurately predict which files will be accessed frequently in

the near future. The prediction is a main task of the data replication algorithm/strategy based on the

assumption that a popular one will be accessed more frequently than unpopular files will [13]. This

Location

Weight

.

.

.

.

.

.

Access Count

LRTn

LocationFilename

site n-1F2 4

site n-2F4 3

site nF9 6

.

Weight

0.9

0.8

1.1

.

No

Yes

No

Master File

Master File

LRT2

LocationFilename Access Count

 site 3F2 2

site 4F4 4

site 3F9 5

.

0.7

0.9

1

.

No

No

Yes

LRT1

Filename Access Count

F1

 site 2F9 4

.

.

Weight

1

0.9

. . .

.
. . .

Master File

Yes

No

Master FileWeight

LRT3

LocationFilename Access Count

site 5F1 7

site 5F2 5

site 5F9 4

.

1.2

1

0.9

.

Yes

No

No

GRT

LRT1 , LRT3

...
F9

F4

F2

F1

. . .
LRT1 , LRT2 , LRT3 , LRTn

LRT2 , LRTn

LRT2 , LRT3 , LRTn

Filename Location

 site 1 5

GRC

. . .

. . .

LRC1 LRC2 LRC3
LRCn

. . .

.
.

.
. . .

site 1

site 2
site n-2

site 3

site n-1
site 4

site n

site 5

: User

: Computer

cluster ncluster 3cluster 2cluster 1

9

assumption is called temporal locality [12]. Breslau et al. [18] as stated above showed that the

webpage requests follow a Zipf-like distribution [19][29], which is derived from Zipf’s law [30]

and in which the access probability of the ݅-th most popular file, denoted by ܲሺ ௜݂ሻ, is

ܲሺ ௜݂ሻ ൌ 1/݅α																																ሺ1ሻ

where ݅=1, 2,…, n and α is a factor to determine the file access distribution, 0 ൑ α ൏ 1.

Ranganathan and Foster [21][22] adopted Geometric distribution to simulate the file popularity

in which the access probability of the ݅-th most popular file, denoted by ܲሺ݅ሻ, is

ܲሺ݅ሻ ൌ ሺ1 െ ሻ௜ିଵ݌ ∙ ሺ2ሻ																				݌

where ݅=1, 2,…, n and 0 ൏ ݌ ൏ 1. A larger value of ݌ represents that a smaller portion of files

has been frequently accessed. In this study, we assume that the users’ access behaviors follow both

Zipf-like distribution or Geometric distribution with different parameters, with which PFRF is

developed.

3.2 Popular File Replication First (PFRF) algorithm

The PFRF algorithm as illustrated in Fig. 6 is performed by GRC at the end of a round where

a round is a dynamic period of time ௗܶ in which at least a fixed number of jobs, e.g., x jobs (e.g.,

10 or 20 jobs), is submitted by each cluster. ௗܶ has its maximum value ܶ. If some clusters do not

generate at least x jobs in ܶ, ܶ will be treated as a round. The algorithm comprises four phases:

file access aggregate phase, file popularity calculation phase, file selection phase, and file

replication phase.

1. File access aggregate phase: Between lines 2 and 5 of the algorithm, PFRF aggregates the

access count for each file, e.g., file ௜݂ in cluster c, at a round, e.g., round ݎ, denoted by

Aୡ௥ሺ ௜݂ሻ, sorts all the files on Aୡ௥ሺ ௜݂ሻs in a descending order and stores the sorted result into a

set S. After that, PFRF calculates the total number of files having been accessed by all sites in

cluster c at round ݎ, denoted by TNFୡ௥, based on the information stored in LRCୡ.

2. File popularity calculation phase: At line 6, PFRF calculates popularity weight for file ௜݂,

10

denoted by ܲ ୡܹ
௥ሺ ௜݂ሻ, where ݅ ൌ 1,2, … and

ܲ ୡܹ
௥ሺ ௜݂ሻ ൌ ൜

ܲ ୡܹ
௥ିଵሺ ௜݂ሻ ൅ Aୡ௥ሺ ௜݂ሻ ∙ a				if		Aୡ௥ሺ ௜݂ሻ ൐ 0

ܲ ୡܹ
௥ିଵሺ ௜݂ሻ െ b																								otherwise

ݎ			,	 ൒ 1, c ൒ 1, ݅ ൒ 1.						ሺ3ሻ

in which a and b are constants and a ൏ b. We will discuss why a ൏ b later. If Aୡ௥ሺ ௜݂ሻ ൐ 0,

i.e., ௜݂ 	has been accessed by users in round ݎ, PFRF increases ܲ ୡܹ
௥ିଵሺ ௜݂ሻ by Aୡ௥ሺ ௜݂ሻ ∙ a.

Otherwise, it decreases ܲ ୡܹ
௥ିଵሺ ௜݂ሻ by b. Basically, a higher ܲ ୡܹ

௥ሺ ௜݂ሻ implies that ௜݂ is

more popular. In this study, we assume that at round 0 all files follow binomial distribution,

i.e., ܲ ୡܹ
଴ሺ ௜݂ሻ ൌ 0.5, indicating the initial probability that ௜݂ is accessed is 0.5, and the

minimum value of each ܲ ୡܹ
௥ିଵሺ ௜݂ሻ is 0. From previous access records of ௜݂, PFRF can

derive the variation of the popularity of ௜݂ and predict the popularity of ௜݂ for the next round.

For instance, if ଷ݂ has been accessed 5 times by cluster 2 in round 1, ܲ ଶܹ
ଵሺ ଷ݂ሻ ൌ 	0.5 ൅ 5 ∙ a.

The average popularity of ௜݂ in all clusters, denoted by ܲ ୟܹ୴୥
௥ ሺ ௜݂ሻ, is

ܲ ୟܹ୴୥
௥ ሺ ௜݂ሻ ൌ

∑ ܲ ୡܹ
௥ሺ ௜݂ሻ

ேౙ
୩ୀଵ

ୡܰ
																ሺ4ሻ

where ୡܰ is the total number of clusters having ௜݂ in the concerned Data Grid.

3. File selection phase: Between lines 7 and 10, PFRF sorts the set S on the average popular

weights in a decreasing order, calculates ௙ܰ which is the number of files that might be

replicated, and selects the first ௙ܰ files as cluster c’s duplication candidates from S, where

௙ܰ ൌ TNFୡ௥ہ ൈ ሺ1 െ ሺ5ሻ																									ۂሻݔ

 in which ݔ is a constant, 0 ൏ ݔ ൏ 1.

4. File replication phase: The replication phase, between lines 11 and 30 in Figure 6, first checks

to see whether each file, e.g., file ௜݂, in cluster c’s replication candidates is in cluster c or not.

If yes, PFRF does nothing. Otherwise, it further checks to see whether there is a site in cluster

c that has sufficient storage space to accommodate ௝݂ or not. If yes, PFRF duplicates ௝݂ to

the site from a nearest cluster having ௝݂. Otherwise, PFRF deletes ݒ files ሺݒ ൒ 1ሻ that are

less popular than ௝݂ from a site of cluster c, leaving enough storage space to keep ௝݂.

11

From the algorithm we can realize that files and the users may be located at different sites in

the same cluster or different clusters. But PFRF tries to localize files since inter-cluster access is

much more time-consuming than intra-cluster access is [14].

PFRF data replication algorithm

Input: The total access count of ௜݂ , ݅ ൌ 1,2, … , ௞ܰ, where ௞ܰ is the number of files in cluster c

 in round ݎ;

Output: Duplicating the files that should be replicated to cluster c denoted by
 Fୡ ൌ ሼ ଵ݂, ଶ݂, … , ே݂೑ሽ to cluster c;

1: for each cluster c, c ൌ 1,2, … , ୡܰ{ /* ୡܰ is the number of cluster that the concerned Data Grid has*/

2: Aggregate Aୡ௥ሺ ௜݂ሻ, ݅ ൌ 1,2, … , ௞ܰ; /* ௞ܰ is the number of files that cluster c has*/

3: Sort all the files according to Aୡ௥ሺ ௜݂ሻ in a descending order;

4: Store the sorting result into set S;

5: Calculate TNFୡ௥ for LRCୡ;
6: Calculate ܲ ୡܹ

௥ሺ ௜݂ሻ and ܲ ୟܹ୴୥
௥ ሺ ௜݂ሻ, ݅ ൌ 1,2, … , ௞ܰ; /* equations (3) and (4)*/

7: Sort the set S according to the average popular weights;

8: Set the value of ݔ ൌ 0.8, 0 ൏ ݔ ൏ 1; /*according to 80/20 rules*/

9: Calculate ௙ܰ with equation (5); /* ௙ܰ derived from equation (5) on x=0.8 is the number of

popular files. */

10: Select the first ௙ܰ files from S and put them into the set S′; /* S′: the set of replication

candidates*/

11: for each file ௝݂ 	in S′{

12: check LRCୡ to see whether cluster c has ௝݂;

13: if cluster c does not have ௝݂{

14: if any site of cluster c has sufficient storage to save ௝݂

15: replicate ௝݂ to the site from a nearest cluster which has ௝݂;

16: else if{ for each site ܻ in cluster c { /* check storage space of each site ܻ in cluster c*/

17: for each file ௞݂ kept in site ܻ;

18: compare ܲ ୟܹ୴୥
௥ ሺ ௞݂ሻ with ܲ ୟܹ୴୥

௥ ൫ ௝݂൯;

19: if there are v files that are less popular than ௝݂ and the total size of these

20: v files plus the remaining storage space of site ܻ is sufficient to keep ௝݂

21: { PFRF deletes these v files and replicates ௝݂ to ܻ;

22: break;}

23: }

24: }

25: else /*The total size of all files that are less popular than ௝݂ plus the remaining storage

12

space is not enough to hold ௝݂*/

26: { print (“no sites in cluster c can keep ௝݂”);

27: PFRF will not replicate ௝݂;

28: }

29: }

30: }

31:}

Fig. 6. PFRF data replication algorithm.

4. Simulation and Performance Comparison

To evaluate the proposed scheme, a Grid testbed or a Grid simulator is required. However, the

maintenance cost of a real testbed is high and our TigerGrid [31] is not organized as a star topology.

In fact, the cost of reconfiguring the TigerGrid to a star topology is also high. Thus, we choose a

Grid simulator as the simulation tool. Many Grid simulators have been introduced, such as

MicroGrid [32], OptorSim [33], SimGrid [34], MONARC [35], ChicSim [36], and GridSim [20], in

which GridSim due to providing a flexible and extensible simulation environment and allowing

researchers to increase new components/functions is chosen to construct our test platform. The

compared algorithms include LFU and No Replication (NR) data replication algorithms.

4.1 Experimental Environment and Parameters

The test environment illustrated in Fig. 8 consists of a GRC and four clusters. Each cluster has

a LRC. The specifications of all resources and job parameters are listed in Table 1. Each site

comprises six computers, and each computer has four processors, i.e., each cluster has 24

processors. A processor’s processor rating is 1,600 MIPS. Therefore, the total processor rating of a

cluster is 38,400 (=24ൈ1,600) MIPS. Each cluster has 50GB storage space to accommodate files,

and the file size of a master file is 1GB. Fig. 9 illustrates that job execution is divided into rounds

based on the definition defined above. We assume that ௗܶ=800 seconds and in each round at least

10 jobs are submitted by users in each cluster, i.e., at least 40 jobs are submitted, and each job

requests 5 to 10 files. Fig. 10 shows an example of job execution in cluster c in which the

13

durations of different rounds may be different. Each simulation is performed twenty rounds, and we

assume that users in cluster c in the first round cannot locally access files Fଵ, Fସ, and Fଽ, so it

needs more time to duplicate these files from remote clusters. Thus, uses can locally retrieve the

three files in the second round. Theoretically, the duration of a later round is shorter than any

previous rounds if users do not change their file access behaviors. The phenomenon will be shown

in the following simulation.

Fig. 8. The simulation Topology.

Table 1 Resources and Job parameters

Resources Value

Number of clusters 4

Storage available in a cluster 50GB

Single processor rating (MIPS) 1,600

Number of processors in a cluster 24

Processor rating of a cluster 38,400 (=24ൈ1600)

Inter-router bandwidth 10Gb/s

Router-to-site bandwidth 2.5Gb/s

User-to-router bandwidth 100Mb/s

GRC-to-router bandwidth 2.5Gb/s

LRC-to-router bandwidth 1Gb/s

Job parameters Value

Number of master files 100

10Gb/s

10Gb/s

10Gb/s

10Gb/s

2.5Gb/s

2.5Gb/s

2.5Gb/s

2.5Gb/s

2.5Gb/s

100Mb/s

100Mb/s

100Mb/s

100Mb/s

GRC

. . .

. . .

100Mb/s

site 2

cluster 1

LRC2

1Gb/s

site 1

100Mb/s. . .
. . .

LRC1

1Gb/s

site 3

100Mb/s . . .

. . .

LRC3

1Gb/s

100Mb/s

. . .
. . .

site 4

LRC4

1Gb/s

cluster 2

cluster 3 cluster 4

14

Minimum number of jobs performed by

users in each cluster in a round

10

The minimum number of jobs performed

in each round

40 (at least 4ൈ10 jobs)

Size of a master file 1GB

Number of files accessed by a job 5~10

The longest duration of a round (ௗܶ) 800 seconds

Fig. 9. Job execution in a cluster in different rounds.

Fig. 10. Files accessed by jobs of cluster c in different rounds.

To compare PFRF and LFU algorithms, 100 master files are randomly distributed to the four

clusters (see Table 2). With NR algorithm, there are two cases. The first, denoted by NR case1, is

Job1, 1

arrives
Job1, 2
arrives

Job1, 3
arrives

Job1, n
arrives

. . .

. . .Job1, 1 Job1, 2 Job1, 3

Job1, 1

departs
Job1, 2

departs
Job1, 3

departs

. . .

LRC

Round 1

Sites

Job2, 1

arrives
Job2, 2
arrives

. . .

Round 2

. . .

Job2, 1

departs
Job2, 2

departs

. . .

. . .

. . .

Round p

. . .
Jobp, 1

arrives
Jobp, 2
arrives

. . .

. . .

. . . Jobp, 1

departs
Jobp, 2

departs

. . .

Job2, m
arrives

Job2, 1

Job3, 1

arrives

F2F5 F13

F9

F6

F8 F7

F1

F1

F9

F1

F2

F2 F2

F2

F3

F4

F4

F5

F5

F5

F6

F7

F8

F10

F9

Job1, 1

Job1, 2

Job1, 3

Job1, 4

Job1, 10

F7

F11

Round 1

F11

F8

F8

F11 F12

F12

F6F3

F10

F1

Round 2 Round 20. . .

Job2, 4

Job2, 10

Job2, 2

Job2, 3

.

.

.

Job20, 1

Job20, 4

Job20, 2

Job20, 3

F1 F5. . .

F12 F6. . .

F9 F4
. . .

F11 F12. . .

. . .

. . .

. . .

. . .

. . .

. . .
F9 F10

F4

F1

F1

F6

F8 F7

F2 F5

F5

F13

: access file from remote clusters
: access file from local cluster

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

Job20, 10

Job2, 1

15

that 100 masters files are all stored in GRC, and the other, denoted by NR case2, is that the 100 files

are randomly distributed to the four LRCs. Neither cases replicate files. In NR case1, a cluster does

not locally hold a file. Hence, a job has to remotely access GRC to acquire the files. In NR case2,

some accessed files are local and some are remote. So if users would like to access a non-local file,

they have to remotely retrieve it from other cluster, instead of from GRC.

Table 2 Master files settings for PFRF, LFU, NR case1, and NR case2 algorithms
Data replication algorithm Setting
PFRF 100 master files are randomly distributed to the four clusters
LFU 100 master files are randomly distributed to the four clusters
NR case1 100 master files are all stored in GRC
NR case2 100 master files are randomly distributed to the four LRCs

4.2 Access Patterns

Ten access patterns listed in Table 3 are employed to simulate user file access behaviors. File

popularity is calculated as stated above under the assumption that file accesses follow Zipf-like,

Geometric, and Uniform distributions where Uniform distribution (Uniform for short) represents

that the probability of accessing a file by each user is the same. JRR, standing for job repeating rate,

is the probability of accessing the files that were accessed in the previous round, 0 ൑ JRR ൑ 1, and

α and ݌ are the parameters respectively used when employing Zipf-Like distribution and

Geometric distribution.

Table 3 Different access patterns employed

No. File Popularity α/݌ JRR (%) ሺ݌ ௜݂ሻ/݌ሺ݅ሻ

1 Zipf-like 0.8 0 1 ݅଴.଼⁄

2 Zipf-like 0.8 25 1 ݅଴.଼⁄

3 Zipf-like 0.6 0 1 ݅଴.଺⁄

4 Zipf-like 0.6 25 1 ݅଴.଺⁄

5 Geometric 0.2 0 ሺ1 െ 0.2ሻ௜ିଵ ∙ 0.2

6 Geometric 0.2 25 ሺ1 െ 0.2ሻ௜ିଵ ∙ 0.2

7 Geometric 0.5 0 ሺ1 െ 0.5ሻ௜ିଵ ∙ 0.5

8 Geometric 0.5 25 ሺ1 െ 0.5ሻ௜ିଵ ∙ 0.5

9 Uniform none 0 none

16

10 Uniform none 25 none

To effectively analyze the proposed system, we evenly partition the popularities of the 100

master files into 10 levels, and divide consecutive twenty rounds into three phases. As listed in

Table 4, the first phase includes rounds 1 to 7. The second and the third respectively contain rounds

8 to 14 and rounds 15 to 20. In the first phase, we assume that File0 to File9 are the most popular

files, i.e., belonging to the first popularity level. File10 to File19 are the second popular files, hence

they are the second popularity level, and so on. In the second phase, we swap the files of the first

two popularity levels, i.e., File10 to File19 become the most popular, File0 to File9 become the

second, to simulate file popularity change, and other files’ popularities remain unchanged. In the

third phase, File20 to File29 are the most popular, File10 to File19 the second, and File0 to File9 the

third. Other levels’ file popularities remain unchanged. With the settings listed in Table 4, we

conduct the following experiments to evaluate whether PFRF on LFU, NR case1, and NR case2 can

adapt themselves to the change of file popularities or not.

In the following experiments, 1000 jobs, instead of 40 jobs, were submitted in each phase. The

experimental results are illustrated in Figs. 11 to 15, in which Figs. 11a to 15a show users’ file

access behaviors in the first phase; Figs. 11b to 15b (Figs. 11c to 15c) plot those in the second (the

third) phase. Taking ZipfL-0.8 (see Fig. 11) as an example, the access count (AC) of each most

popular file in all the three phases (figures) is about 215, and unpopular files, i.e., File30 to File99,

are accessed less and less. In the case of ZipfL-0.6 (see Fig. 12), the AC of each most popular file in

all the three phases is about 170. However, the ACs of the other popularity levels, i.e., between

levels 4 and 10, in the three phases are not evidently different, like a Uniform distribution. When

Geo-0.2 is invoked (see Fig. 13), the AC of each most popular file is about 175, and the ACs decline

sharply when file IDs increase. In the Geo-0.5 case (see Fig. 14), the difference between/among the

most popular files’ ACs and those of the second and the third popular files in each of the three

phases is significant. Generally, the ACs of the first three popularity levels on all access patterns are

clearly dif

frequently

popularity

P

1

2

3

1

(a) p

(a) phas

fferent from

accessed, w

levels on th

Table

Popularity lev

1 (File0~File9

2 (File10~File

3 (File20~File

…

10 (File90~Fil

phase 1

Fig.

se 1

Fig.

m those of

while File7

he Uniform

4 The file pop

Phases

el (Files)

9)

e19)

e29)

le99)

11. Distributi

12. Distributi

f the other

70 to File99

as shown in

pularities in th

Ph

(Roun

1st P

2nd

3rd P

10th

ions of file req

ions of file req

17

popularity

9 are rare.

n Fig. 15 is

he three phase

hase 1

nds 1~7)

Popular

Popular

Popular

…

Popular

(b) phase 2

quests in the s

(b) phase 2

quests in the s

levels, im

The differe

not signific

es (Rounds 1~

Phase 2

(Rounds 8~

2nd Popul

1st Popula

3rd Popul

…

10th Popu

simulation pro

simulation pro

mplying tha

ence among

cant.

7, 8~14, and 1

~14) (Ro

lar 3

ar 2

ar 1

lar 1

ocess on ZipfL

ocess on ZipfL

at File0 to

g the ACs o

15~20)

Phase 3

ounds 15~20)

3rd Popular

2nd Popular

1st Popular

…

0th Popular

(c) ph

L-0.8.

(c)

L-0.6.

File29 are

of different

ase 3

) phase 3

e

t

(a) phase

(a) phase 1

(a) phase 1

4.3 Simula

The te

the perform

the time in

1

Fig

1

Fig

1

Fig.

ation results

ested algori

mance. Seve

nterval from

. 13. Distribut

. 14. Distribut

. 15. Distribut

s

ithms are ru

eral test met

m the time p

tions of file re

tions of file re

tions of file re

un on the sa

trics are use

point when
18

(b) phase 2

equests in the

(b) phase 2

equests in the

(b) phase 2

equests in the

ame experim

ed. The first

a job send

simulation pro

simulation pro

simulation pro

mental envir

t is Job resp

ds a file requ

ocess on Geo-

ocess on Geo-

ocess on Unifo

ronment so

ponse time (

uest to its

(

-0.2.

(

-0.5.

(

form.

we can fair

(in seconds)

LRC to the

(c) phase 3

(c) phase 3

(c) phase 3

rly compare

) defined as

e time point

e

s

t

19

when the requested files are successfully delivered. The second is Data availability which proposed

by GridSim [20] for a job, e.g., Job௫, to access ௫ܰ files stored in cluster y, denoted by ݈݅ܽݒܣ௫௬, is

formally defined as

௫௬݈݅ܽݒܣ ൌ
௫௬ݐ
௫ܰ
																																						ሺ6ሻ

where ݐ௫௬ is the time that Job௫ consumes to acquire the ௫ܰ files from cluster ݕ. The average

data availability over all jobs, e.g., Jobs௬ submitted to ݕ, denoted by ݈ܽ݅ܽݒܣ݃ݒ௬, in a round is

defined as

௬݈݅ܽݒܣ݃ݒܽ ൌ
∑ ௫௬௫∈୎୭ୠୱ೤݈݅ܽݒܣ

หJobs௬ห
.																														ሺ7ሻ

The bandwidth cost ratio of cluster c in a round, denoted by ܴܥܤ௖, is defined as

௖ܴܥܤ ൌ
௖ܥܮ ∙ ௖ܣܨܮ ൅ ௖ܥܴ ∙ ௖ܣܨܴ

௕௔௦௘௟௜௡௘ܥ ∙ ௖ܣܨܣ
ൌ 		

௖ܥܮ ∙ ௖ܣܨܮ ൅ ௖ܥܴ ∙ ௖ܣܨܴ
௕௔௦௘௟௜௡௘ܥ ∙ ሺܣܨܮ௖ ൅ ௖ሻܣܨܴ

					ሺ8ሻ

where ܣܨܮ௖	ሺܴܣܨ௖ሻ is the number of files that cluster c can locally (should remotely) accessed,

௖ܣܨܣ ൌ ௖ܣܨܮ ൅ ௖ is the cost of fileܥܴ ,௖ is the cost of file access inside cluster cܥܮ ,௖ܣܨܴ

access between cluster c and a remote cluster and ܥ௕௔௦௘௟௜௡௘ is the access cost when the file

request issued by a cluster c job is in a remote cluster. We further assume that all file have the

same size, i.e., 1 GB. So formula (8) only involves number of files and neglects file sizes. The

Average Bandwidth Cost Ratio (ABCR) defined as

ܴܥܤܣ ൌ
∑ ௖ܴܥܤ
ேౙ
௨ୀଵ

ୡܰ
																		ሺ9ሻ

is to determine whether a data replication algorithm could accurately predict popular files or not

where ୡܰ is the number of clusters the concerned Data Grid has. If ܣܨܮ௖ is larger than ܴܣܨ௖,

that means the concerned data replication algorithm can more accurately predict user file access

behaviors. Otherwise, the algorithm due to inaccurate prediction would consume a lot of network

resources to remotely deliver files required by jobs. In other words, a data replication algorithm that

produce a smaller ABCR value will result in better Grid performance.

In Section 4.3.1 and 4.3.2, each simulation is performed fifteen times.

20

4.3.1 Average Job Response Time (ART) and Data Availability (DA)

Figs. 16a to 20a show the experimental results of ARTs for PFRF, LFU, and NR case2 given

the ten access patterns. When ZipfL-0.8 with JRR=0% (JRR=25%) is used, after the third round

(the fourth round), as shown in Fig.16a PFRF has shorter ARTs than LFU has. Figs. 17a and 18a

show that the experimental results on ZipfL-0.6 and Geo-0.2 are similar to those of Fig. 16a.

PFRF’s and LFU’s response delays on Uniform with JRR=0% and with JRR=25% as shown in Fig.

20a are longer than those shown in Figs. 16a to 19a since the tested algorithms like that shown in

Fig. 15 cannot effectively discriminate the file popularities for files. Also, in Figs. 16a to 18a and

Fig. 20a, PFRF has shorter ARTs than those of LFU, i.e., PFRF gives the best ARTs among the

tested algorithms. Nevertheless, when the data access pattern is Geo-0.5 with JRR=0% and 25%

(see Fig. 19a), PFRF and LFU have similar ARTs since the popular files as shown in Fig. 14 can be

easily identified, and both of the two algorithms can accurately identify users’ file access behaviors.

Their ARTs are the smallest, about 460 seconds, compared with PFRF’s and LFU’s ARTs shown in

Figs. 16a, 17a, 18a, and 20a. Table 5 lists ARTs of PFRF on ZipfL-0.8 with JRR=25% in twenty

rounds. The trend is that the duration of a later round as stated above is shorter than any previous

rounds, except when the file popularities were changed in specific rounds, e.g., in rounds 8 and 15

since as listed in Table 4 we swap popular files after round 7 (the end of phase 1) and round 14 (the

end of phase 2).

With NR case1 algorithm, a job in each round spent a longer time, about 1,740 seconds (not

shown in Figs. 16a to 20a, otherwise the difference between PFRF’s and LFU’s ARTs cannot be

identified), to access files since all files are located in GRC. With NR case2, a job in each round

spent about 730 to 760 seconds (see Figs. 16a to 20a). Apparently, ARTs of both PFRF and LFU on

all access patterns are all less than those of NR case2. From these 5 figures, we can also see that the

ARTs in the first three rounds reduced quickly, and PFRF effectively adapted itself to the change of

file popularities.

Fig. 21 shows the replication delays of PFRF and LFU on ZipfL-0.8 with JRR=0% and

Fig.

JRR=25%.

But LFU’s

until storag

In fac

reason is t

Geometric

on Uniform

with JRR=

due to repl

higher than

Figs.

smaller Da

availability

similar to t

and 20. No

difference

since files

 16(a). Averag
case2 on

. Since PFR

 ARTs rema

ge of a clust

ct, the diffe

that regardl

distribution

m with JRR

=0% since w

lication algo

n that with J

16b to 20b

ata availab

y presented

the correspo

ote that NR

between PF

are all store

ge job respons
n ZipfL-0.8 w

RF learns us

arkably decl

ter is full.

erence of PF

less of whe

n. The LFU

R=25% as sh

with JRR=2

orithms dup

JRR=0%.

b illustrate

bility repres

d in formul

onding ART

R case1 is al

FRF’s and

ed in GRC.

se time for PF
with JRR=0% a

sers’ file ac

line after fir

FRF’s ART

ether JRR=2

U’s ARTs ha

hown in Fig

5%, the pro

plicating po

the Data

sents a bet

la (6), the

Ts, i.e., Fig.

lso the wors

LFU’s Data

No required

FRF, LFU, and
and 25%.

21

ccess behav

rst round sin

Ts on JRR=

25% or 0%

ave the simi

g. 20a are b

obability tha

opular files

availabilitie

tter perform

numerator

X(a) and F

st, about 0.2

a availabili

d files are lo

d NR

viors step by

nce LFU co

0% and JR

% the acces

ilar phenom

etter than P

at the 25%

to local clu

es for the

mance. Acc

௫௬ݐ ൌART

Fig. X (b) ar

235 in each

ities cannot

ocal.

Fig. 16(b). D

y step, its A

ontinuously

RR=25% is

s patterns d

menon. But

PFRF’s (LFU

of files are

uster at the e

ten access

ording to t

T so that D

e similar w

h round (not

t be identifi

Data Availabili
ZipfL-0.8 wi

ARTs reduce

replicates n

insignifican

do follow Z

PFRF’s (LF

U’s) ARTs o

 local in cu

end of a rou

patterns. A

the definiti

Data availa

where X=16,

t shown, oth

ied), in acc

ity for PFRF,
with JRR=0% a

e gradually.

needed files

nt. The key

Zipf-like or

FU’s) ARTs

on Uniform

urrent round

und will be

A relatively

ion of data

abilities are

17, 18, 19,

herwise the

essing files

LFU, and NR
and 25%.

.

s

y

r

s

m

d

e

y

a

e

,

e

s

R case2 on

Fig.

Fig. 18

Fig.

 17(a). Averag
case2 on

8(a). Average j
on G

 19(a). Averag
case2 o

ge job respons
n ZipfL-0.6 w

job response t
Geo-0.2 with J

ge job respons
on Geo-0.5 wit

se time for PF
with JRR=0% a

time for PFRF
JRR=0% and

se time for PF
th JRR=0% an

FRF, LFU, and
and 25%.

F, LFU, and N
25%.

FRF, LFU, and
nd 25%.

22

d NR

NR case2

d NR

Fig. 17(b). D

Fig. 18(b). D

Fig. 19(b). D

ata Availabili
ZipfL-0.6 wi

Data Availabil
Geo-0.2 wi

ata Availabili
Geo-0.5 wit

ity for PFRF, L
ith JRR=0% a

lity for PFRF,
ith JRR=0% a

ity for PFRF, L
th JRR=0% an

LFU, and NR
and 25%.

LFU, and NR
and 25%.

LFU, and NR
nd 25%.

R case2 on

R case2 on

R case2 on

Fig. 20

0(a). Average j
on U

Fig. 2

Round

Time (sec

Round

Time (sec

4.3.2 Av

Figs.

patterns. T

listed in Ta

ଵ

ଵ଴
,

ଵ

ଶ.ହ
, and

located in

job response t
Uniform with

21. Popular fil

Table 5 Aver

1

c.) 724.84

11

c.) 481.88

erage Band

22 to 26 ill

The bandwid

able 1 are r

d
ଵ

ଶ.ହ
. With

GRC with

time for PFRF
JRR=0% and

les retrieval ti

rage job respo

2

612.29 5

12

482.90 4

dwidth Cost

lustrate the

dths of an i

respectively

h NR case1

no replicas

F, LFU, and N
 25%.

me for PFRF

onse delays of

3 4

533.23 500

13 1

482.05 473

Ratio (ABC

ABCRs of P

inter-router

y 10, 2.5, an

௖ andܥܮ ,

௖ is eܣܨܣ .

23

NR case2

and LFU on Z

f PFRF on Zip

4 5

0.09 483.41

4 15

3.54 487.06

CR)

PFRF, LFU

r link, a rou

nd 2.5, and

௖ in foܣܨܮ

equal to ܴܨ

Fig. 20(b). D

ZipfL-0.8 dist

pfL-0.8 with JR

6

1 469.54

16

6 487.57

U, NR case1

uter-to-site l

the corresp

formula (8)

௖ iܥܴ ,௖ܣܨ

Data Availabil
Uniform w

tribution with

RR=25% in tw

7

480.15 4

17

500.12 4

, and NR c

link, and a

onding unit

are 0s sinc

is 0.5 (=
ଵ

ଵ଴
൅

lity for PFRF,
with JRR=0% a

JRR=0% and

wenty rounds

8 9

485.32 485

18 19

492.58 485

case2 on the

GRC-to-rou

t costs are r

ce all mast

൅ ଵ

ଶ.ହ
), and

, LFU, and NR
and 25%.

d 25%.

9 10

.51 484.54

9 20

.88 476.86

e ten access

uter link as

respectively

ter files are

௕௔௦௘௟௜௡௘ܥ ൌ

R case2 on

4

6

s

s

y

e

ൌ

24

0.6 ቀൌ ଵ

ଵ଴
൅ ଵ

ଵ଴
൅ ଵ

ଶ.ହ
ቁ. Thus, ܴܥܤ௖	 (NR case1) ൌ ோ஼೎

஼್ೌೞ೐೗೔೙೐
ൌ 0.834 , and ABCR (NR case1)

ൌ .. Therefore, ABCR (NR case1)s are all 0.834 in all rounds on all access patterns	௖ܴܥܤ

 For PFRF, LFU, and NR case2, ܴܥ௖ ൌ ௕௔௦௘௟௜௡௘ܥ ൌ 0.6, and ܥܮ௖ ൌ
ଵ

ଶ.ହ
. Figs. 22 to 26 show

PFRF’s, LFU’s, NR case1’s, and NR case2’s ABCRs on ZipfL-0.8, ZipfL-0.6, Geo-0.2, Geo-0.5,

and Uniform, respectively. We can see that ABCRs of NR case2 in the five figures are all the worst,

about 0.91 to 0.92. The reason is that NR case2 replicates remote files needed by jobs from remote

clusters, even though ARTs of NR case2 are shorter than those of NR case1 (not shown in Figs 16a

to 20a, as stated above). Due to the change of file popularities at the end of phase 1 and phase 2, we

can see that PFRF’s ABCRs on ZipfL-0.8, ZipfL-0.6, and Geo-0.2 are lower than LFU’s ABCRs.

PFRF’s and LFU’s ABCRs on Geo-0.5 (see Fig. 25) are similar and the smallest compared to

PFRF’s and LFU’s ABCRs on other access patterns. In other words, Geo-0.5 is the best access

pattern. The reason has been stated above.

On Uniform with JRR=0% and 25% (see Fig. 26), PFRF’s and LFU’s ABCRs are similar since

popularities of all files as shown is Fig. 15 are the same and without changing with time. According

to formulas (8) and (9), the increase of ܴܣܨ௖s will result in higher	ܴܥܤ௖s and ABCRs. It is also the

reason why the bandwidth cost on Uniform is higher than those on the other access patterns.

Moreover, although PFRF’s ARTs are shorter than those of LFU on Uniform, the bandwidths

consumed by PFRF and LFU are similar from the whole system viewpoint.

Fig. 22

Fig. 24

2. Average Ba
and NR case

4. Average Ba
and NR cas

Fig. 26. Ave

4.3.3 Com

 The e

andwidth Cost
e2 on ZipfL-0

andwidth Cost
se2 on Geo-0.

erage Bandwid

mparison of

experimenta

t Ratios for PF
0.8 with JRR=

t Ratios for PF
2 with JRR=0

dth Cost Ratio

f PFRF para

al environme

FRF, LFU, NR
0% and 25%.

FRF, LFU, NR
0% and 25%.

os for PFRF, L

ameters a

ent used to

25

R case1, Fig

R case1, Fi

LFU, NR case

and b

evaluate th

g. 23. Averag
and NR

ig. 25. Averag
and NR

1, and NR cas

e parameter

e Bandwidth C
case2 on Zipf

ge Bandwidth
R case2 on Ge

se2 on Uniform

rs a and b

Cost Ratios fo
fL-0.6 with JR

Cost Ratios f
eo-0.5 with JR

rm with JRR=

b in formula

or PFRF, LFU
RR=0% and 2

for PFRF, LFU
RR=0% and 25

0% and 25%.

a (3) is also

U, NR case1,
5%.

U, NR case1,
5%.

o

Fig.

the topolog

change wit

for PFRF’s

0.15, b ൌ

round 15

ARTs, show

the case a	

. 27. The aver

4.3.4 Dis

From

shorten the

data replic

simulation

bandwidth

time and im

PFRF outp

accurately

replicates

gy shown in

th time and

s ARTs wh

0.1ሻ on Zi

shown in F

wing that it

൏ 	b	ሺa ൌ

rage job respo

scussion

an end use

e average re

cation algor

results, w

cost ratio

mprove data

performs L

predicts th

required f

n Fig. 8 and

each simul

hen a	 ൏ 	b	

ipfL-0.8 wi

Fig. 27. Ev

t can accura

0.1, b ൌ 0

nse time again

er viewpoin

esponse tim

rithm should

we can see

and improv

a availabilit

LFU and N

he popular f

files/replica

d the specifi

lation is per

ሺa ൌ 0.1, b

th JRR=0%

vidently, th

ately reflect

0.15ሻ is the

nst different ro

nt, the prim

me and data

d reduce ba

that PFRF

ve data ava

ty, it cannot

NR case2 o

files/replica

s to appro

26

ications liste

rformed thir

b ൌ 0.15ሻ,

%. Fig. 28 is

he case whe

t which file

en selected.

ounds.

mary goal of

availability

andwidth co

and LFU

ailability. A

t reduce ave

on the thre

as in each ro

opriate site

ed in Table

rty times. F

a ൌ 	b	ሺa ൌ

s the zoome

en a ൏ 	b	ሺ

es are more

Fig. 2

f invoking

y, and from

ost/consump

can reduce

Although NR

erage bandw

ee given p

ound based

s. Furtherm

1. But the f

ig. 27 show

ൌ 0.1, b ൌ

ed-in figure

a ൌ 0.1, b

 popular. T

28. The zoom-

a data repli

the whole

ption for G

e job respon

R case2 can

width cost ra

erformance

d on data ac

more, the

file popular

ws experime

0.1ሻ, and a

e between r

ൌ 0.15ሻ h

Therefore, in

-in figure betw
in Fig. 27.

ication algo

system vie

Grid systems

nse time a

n reduce jo

atio. In mos

e metrics s

ccess histor

influence o

rities do not

ental results

a ൐ 	b	ሺa ൌ

round 6 and

as the best

n this study

ween rounds 6

orithm is to

wpoint, the

s. From the

nd average

ob response

st situations

ince PFRF

ry, and then

of the file

t

s

ൌ

d

t

y

6 to 15

o

e

e

e

e

s,

F

n

e

27

popularity change on LFU is higher than that on PFRF.

Furthermore, the change of file popularity has a larger impact on LFU as compared with PFRF.

LFU’s performance is generally similar to that of PFRF, but it performs replication frequently,

consequently consuming a huge amount of storage, causing high workload and overhead for a Grid

system. In the simulation, the average job response time does not include job replication time, so

LFU is superficially optimal.

5. Conclusions

In this paper, we propose the PFRF data replication algorithm for a star-based Data Grid

constrained on limited storage space to improve its file access performance. We have also

instantiated three algorithms PFRF, LFU, and NR to create ten access patterns, and evaluate the

performance of these algorithms on a simulation tool, GridSim. PFRF calculates popularity weights

for files to predict which files will be frequently accessed by users in the next round. Whenever

users request popular files that do not currently exist in local cluster, PFRF replicates these files to

appropriate site/cluster. Nevertheless, if unpopular files which do not exist in local sites are

requested by users, PFRF will not duplicate them to local sites, implying users have to remotely

access them. In addition to average job response time and data availability, bandwidth cost ratio is

also involved to evaluate the data replication algorithms. We also demonstrate that PFRF efficiently

shortens the file access response time, increases data availability, and decreases bandwidth

cost/consumption compared with those of LFU and NR algorithms, even though the users’ file

access behaviors change from time to time.

In the future, we will try to replicate files to users’ local sites, instead of to users’ current clusters.

This can more efficiently reduce intra-cluster bandwidth consumption and unnecessary transmission

time. Furthermore, we will develop a reliability model for sites to evaluate how many file replicas

are required for a file so that the data reliability can fulfill the reliability requirement. We also plan

28

to validate our simulation results on real Data Grids so as to evaluate the proposed scheme on a real

testbed. Those constitute our future research.

6. References

[1] EU Data Grid project, http://www-eu-egee.org/.

[2] Data grid, http://en.academic.ru/dic.nsf/enwiki/247172 [16 September 2010]

[3] B. Tierney, W. Johnston, J. Lee, and M. Thompson, “A Data Intensive Distributed Computing

Architecture for Grid Applications,” Future Generation Computer Systems vol. 16, no.5, pp.

473–481, 2000.

[4] BIRN, http://www.nbrin.net/.

[5] LHC accelerator project, http://www-td.fnal.gov/LHC/USLHC.html

[6] European DataGrid Project (EDG), http://www.eu-egee.org

[7] GriPhyN: The Grid physics network project, http://www.griphyn.org. [12 July 2010]

[8] PPDG, http://www.ppdg.net.

[9] M. Lei, S. V. Vrbsky, and X. Hong, “An on-line replication strategy to increase availability in

data grids,” Future Generation Computer Systems, vol. 24, no. 2, pp. 85–98, 2008.

[10] O. Wolfson, S. Jajodia, and Y. Huang, “An adaptive data replication algorithm,” ACMTrans.

Database Syst, vol. 22, no.4, pp. 255–314, 1997.

[11] M. Rabinovich, I. Rabinovich, and R. Rajaraman, “Dynamic replication on the Internet,”

Technical Report, HA6177000–980305-01-TM, AT&T Labs, March 1998.

[12] K. Ranganathan and I. Foster, “Identifying Dynamic Replication Strategies for a High

Performance Data Grid,” Proceedings of the Second International Workshop on Grid

Computing, Denver, CO, pp. 75–86, November 2001.

[13] M. Tang, B.-S. Lee, C.-K. Yeo, X. Tang, “Dynamic replication algorithms for the multi-tier

data grid,” Future Generation Computer Systems vol. 21, pp. 775–790, 2005.

[14] R. S. Chang and H. P. Chang, “A dynamic data replication strategy using access-weights in

29

data grids,” The Journal of Supercomputing, vol. 45, no. 3, pp. 277–295, 2008.

[15] S.Y. Ko, R. Morales, and I. Gupta, “New worker-centric scheduling strategies for

data-intensive grid applications,” Proc. ACM/IFIP/USENIX Int’l Conference on Middleware, pp.

121–142, 2007.

[16] L. Meyer, J. Annis, M. Wilde, M. Mattoso, and I. Foster, “Planning spatial workflows to

optimize grid performance,” Proc. ACM Symp. Applied Computing, pp. 786 –790, 2006.

[17] A. R. Abdurrab and T. Xie, “FIRE: A File Reunion Based Data Replication Strategy for Data

Grids,” 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,

pp.215–223, 2010.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching and Zipf-like

Distributions: Evidence and Implications,” In INFOCOM no.1, New York, USA, pages 126–134,

21–25 March 1999.

[19] D.G. Cameron, R. Carvajal-Schiaffino, A. Paul Millar, C. Nicholson, K. Stockinger, and F.

Zini, “Evaluating scheduling and replica optimisation strategies in OptorSim,” 4th International

Workshop on Grid Computing (Grid2003), Phoenix, Arizona, November 17, IEEE Computer

Society Press, 2003.

[20] A. Sulistio, U.Cibej, S. Venugopal, B. Robic, and R. Buyya. “A Toolkit for Modelling and

Simulating Data Grids: An Extension to GridSim,” Concurrency & Computation: Practice and

Experience, Wiley Press, New York, USA, 2008.

[21] K. Ranganathan and I. Foster, “Decoupling Computation and Data Scheduling in Distributed

Data Intensive Applications,” International Symposium for High Performance Distributed

Computing (HPDC-11), Edinburgh, 2002.

[22] K. Ranganathan and I. Foster, “Simulation studies of computation and data scheduling

algorithms for data grids,” J. Grid Comput. vol. 1, pp. 53–62, 2003.

[23] K. Ranganathan, A. Iamnitchi, I. Foster, “Improving data availability through dynamic

model-driven replication in large peer-to-peer communities,” in: Proceedings of the Workshop

30

on Global and Peer-to-Peer Computing on Large Scale Distributed Systems, Berlin, May 2002.

[24] F. Schintke, A. Reinefeld, Modeling replica availability in large Data Grids, Journal of Grid

Computing, vol.1, no. 2, 2003.

[25] Peter Kunszt, Erwin Laure, Heinz Stockinger, Kurt Stockinger, “File-based replica

management,” Future Generation Computer Systems Journal, vol. 21, pp.115–123. 2005.

[26] R. S. Chang, J. S. Chang, and S. Y. Lin, “Job scheduling and data replication on data grids,”

Future Generation Computer Systems, vol. 23, no. 7, pp. 846-860, 2007.

[27] The MONARC project, http://monarc.web.cern.ch/MONARC/.

[28] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 7 ed.: Wiley, 2004.

[29] D. G. Cameron, R. C. Schiaffino, J. Ferguson, P. Millar, C. Nicholson, K. Stockinger, and F.

Zini, “OptorSim v2.0 Installation and User Guide,” November 2004.

http://edgwp2.web.cern.ch/edg-wp2/optimization/optorsim.html

[30] George Kingsley Zipf. Relative frequency as a determinant of phonetic change. Reprinted from

the Harvard Studies in Clasical Philiology, Volume XL, 1929.

[31] C. T. Yang, T. F. Han, W. C. Shih, W. C. Chiang, and C. H. Chang, “Metropolitan-Scale Grid

Environment: The Implementation and Applications of TIGER Grid,” Paper presented at the

Frontiers of High Performance Computing and Networking – ISPA 2006 Workshops, Sorrento,

Italy, Dec. 4–6, 2006.

[32] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien, “The

MicroGrid: A scienti_c tool for modeling computational grids,” Proc. of IEEE Supercomputing

Conference, Dallas, USA, November 4–10 2000.

[33] W. Bell, D. Cameron, L. Capozza, P. Millar, K. Stockinger, and F. Zini, “Simulation of

Dynamic Grid Replication Strategies in OptorSim,” Proc. of the 3rd International Workshop on

Grid Computing (GRID), Baltimore, USA, 18 November, 2002.

[34] A. Legrand, L. Marchal, and H. Casanova, “Scheduling distributed applications: The SimGrid

simulation framework,” Proc. of the 3rd International Symposium on Cluster Computing and

31

the Grid, Tokyo, Japan, May 12–15 2003.

[35] C. Mihai Dobre and C. Stratan, “Monarc simulation framework,” Proc. of the RoEduNet

International Conference,” Timisoara, Romania, May 27–28 2004.

[36] ChicSim - the Chicago Grid Simulator, http://people.cs.uchicago.edu/_krangana/ChicSim.html,

5 October 2007.

