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在 XCS 分類系統中導入位元遮蔽機制以進行資料探勘 

學生：林佳慧                                指導教授：陳穎平 

國立交通大學資訊科學與工程研究所 

摘    要 

    在本篇論文中提出了一種改進 XCS 以達到減少規則(Classifier)

數量的方式。XCS 是學習型分類系統(Learning Classifier System)中的

一個分支，已經被證明能夠提供精確而又最具一般性規則集合的分類

系統。但是，它通常會產生過多的規則，而降低分類模型的可讀性。

也就是說，人們可能無法自模型中獲得所需的知識或有用的信息。為

了解決這個問題，提出一個位元遮蔽機制加入 XCS 系統(XCS with Bit 

Mask)，以達到減少規則數量的目的，從而提高生成的分類模型的可

讀性。 

    我們做了一系列來研究該方法，針對布爾(Boolean) 輸入，利用

N 位元的多工器(N-bit multiplexer)進行實驗，包括 6 位元、11 位元和

20 位元。對於整數輸入，利用兩個人造的資料集合 ─ Random Data2

和 Random Data2 來比較 XCS 和加入此方法的 XCS 系統。此外，也

引入現實世界的數據進行實驗。根據實驗結果，驗證該方法可以達到

減少規則數量並提升精度高的目的。 

 

 

關鍵字：XCS 分類系統、學習型分類系統、群體數量、位元遮蔽機

制、資料探勘 
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ABSTRACT 

 

In this paper, an adapted XCS is proposed to reduce the numbers of the rules. 

The XCS is a branch of learning classifier systems which has been proven finding 

accurate maximal generalizations and has good performance on difficult problems. 

However, it usually produces too much rules to lower readability of the classification 

model. That is, people may not be able to get the needed knowledge or useful 

information out of the model. To solve this problem, a new mutation called Bit mask 

is devised in order to reduce the number of classification rules and therefore to 

improve the readability of the generated prediction model.  

We did a series of N-multiplexer experiments, including 6-bit, 11-bit, and 20-bit 

multiplexers to examine the performance of the proposed method. For the integer 

inputs, two synthetic oblique datasets, “Random-Data2” and “Random-Data9” are 

used to compare the performance of XCS and the proposed method. Moreover, the 

real world data is also used in the experience. According to the experimental results, 

the proposed method is verified that it has the capacity to reduce the classification 

rules with high prediction accuracy on the test problems. 

 

Index Terms — XCS, Learning classifier systems, Population size, Bit mask, 

Data mining. 
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Chapter 1 Introduction 

 

1.1  Motivation 

A learning classifier system [1] (LCS) is a machine learning systems that are 

designed for combining reinforcement learning, evolutionary computing and other 

heuristics to produce adaptive systems efficiently. These rule-based machine learning 

algorithms originated and have evolved in the cradle of evolutionary biology and 

artificial intelligence.  

There have been many studies on the architecture and performance of LCS. In 

recent years, a branch of LCS, the XCS [2] has become one of the most important 

branches since XCS was shown to be able to solve real-world classification problems 

with high accuracy. XCS is designed to evolve a representation of the best solution 

for all possible problem instances and to evolve a complete and accurate payoff map 

of all possible solutions for all possible problem instances. That is, XCS evolves rules 

that improve its ability to obtain the environmental reward and mines the environment 

for the prediction pattern, which is expressed in the form of classifiers. Then, the 

repeatedly refined prediction pattern allows the XCS system to make better decisions 

for action.  

However, some shortcomings still exist in the XCS. For the real-world 

application, frequent pattern mining [6] often incurs numerous frequent item sets and 

rules, which decreases the effectiveness of data mining since users have to go through 

a large number of mined rules in order to find useful ones. The large number of 

classification rules are generated which lowers the readability of the classification 

model in real-world applications.  
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1.2  Research Objective 

Since the XCS will produces a lot of redundant rules in mutation and crossover 

operators, in this study, XCS with Bit Mask is proposed to solve such a problem. The 

adopted Bit Mask is used to detect the stable building blocks in classifiers and to 

prevent crossover and/or mutation operators from unnecessarily altering them. 

Consequently, the resultant classification model needs fewer rules than that evolved 

by the original XCS to achieve the same level of accuracy. A series of N-multiplexer 

experiments, including 6-bit, 11-bit, and 20-bit multiplexers are exploited to examine 

the performance of the proposed method. For the integer inputs, two synthetic oblique 

datasets [11] called “Random-Data2” and “Random-Data9” are used to compare the 

performance of XCS and that of the proposed method. Finally, the Wisconsin Breast 

Cancer (WBC) [13] dataset is also used in the experience for the real world data. 

According to the experimental results, the proposed method is verified that it has the 

capacity to reduce the classification rules with high prediction accuracy on the test 

problems. 

 

1.3  Organization of the Thesis 

There are five chapters in this thesis. The organization of this thesis is as the 

following: 

 Chapter 1: Discussion of the background of this research and describe the 

framework of XCS Bit Mask 

 Chapter 2: Presentation of a brief review of XCS framework and the related 

studies of this thesis. 

 Chapter 3: Introduction of the representation, the algorithm the framework 

of the XCS Bit Mask. 
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 Chapter 4: Report and compares the results on the experiments of 

N-multiplexers, synthetic oblique datasets and WBC dataset. 

 Chapter 5: Summarize this study, interpret its practical meanings and 

discuss the possible future work. 
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Chapter 2 A Brief Review of XCS 

 

In this chapter, we first describe the framework of XCS, followed by an 

introduction of XCSI which is an adaptation of XCS for some problems. Finally, we 

discuss the related work of this research. 

 

2.1  XCS 

XCS, introduced by Wilson in 1995, is an important branch of LCS. XCS has 

become known as the most reliable learning classifier system for solving typical data 

mining and machine learning problems. 

In this section, we give an overview of the important components of XCS, 

including the representation, the performance component, the reinforcement 

component, the discovery component, the macroclassifiers, and the covering and 

subsumption deletion. 

 

2.1.1 Representation 

XCS evolves a set of condition-action rules which are called population of 

classifiers. The condition-action rule is the representation the knowledge from the 

environment. Each classifier consists of five main components and several additional 

estimates. 

 Condition: The condition part C checks if the classifier matches the environment 

event. 

 Action: The action part A specifies the decided action when the condition 

matches the environment event. 

 Payoff prediction: The payoff prediction p estimates the average payoff after 
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executing the action in response to the environment event. 

 Prediction error: The prediction error e estimates the average error of the payoff 

prediction. 

 Fitness: The fitness F reflects the scaled average relative accuracy of the 

classifier. 

 

In the binary case, C is coded in the alphabet C           given a problem of l 

attributes. The symbol # represents the “don’t care” condition. Action part A defines a 

possible action or classification when the condition matches the environment event. 

Payoff prediction p updates the results in a moving average measure of encountered 

payoff iteratively. Similarly, the payoff prediction error estimates the moving average 

of the absolute error of the payoff prediction. Fitness estimates the average of the 

accuracy of the payoff prediction of a classifier relative to other classifiers that were 

applicable at the same time.  

 

2.1.2 Performance 

The performance component presents the overall XCS framework, shown in 

Figure 2-1. The population of XCS starts with randomly generated classifiers or no 

classifiers. When an event occurs, XCS forms a match set [M] of classifiers which 

match the event in the whole population [P]. Then, the system prediction is measured 

for each action. The system prediction for each action is placed in the prediction array 

for action selection. If no classifiers match, a covering mechanism is applied to create 

classifiers that match each of the possible actions and place them in [M]. The system 

selects an action from the prediction array and forms an action set [A]. Finally, the 

chosen action is executed, and an environmental payoff may be returned. 
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2.1.3 Reinforcement 

In this component, the parameters of classifiers in the action set [A] to achieve 

higher accuracy and to complete mappings of the problem space. The procedure for 

updating the parameters is as following: 

 The errors are updated:                   .  

 The predictions are updated:                .  

 The accuracy of a classifier    is measured:                          

   .  

 A relative accuracy   
  of each classifier is determined:   

          .  

 The Fitness    are updated by:               .  

 

And the definition of variables is: 

  : The fall of rate in the fitness evaluation. 

Figure 2-1 :  The framework of XCS 

Environment 

Event 

Detections 

Population [P] 

Match Set [M] Prediction Array 

Action Set [A] 

Effectors 

Action 

Genetic 
Algorithm 
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  : Learning rate for updating fitness, prediction, prediction error, and action set 

size estimate in XCS classifiers. 

  : Environment return payoff. 

   : Prediction error of classifier j. 

   : Prediction of classifier j. 

   : Accuracy of classifier j. 

   : Fitness of classifier j. 

 

Butz [7] indicated that operation will become faster in simple problems if the 

prediction update comes before the error update, but this may create some problem for 

complex tasks. Butz and Wilson [8] proposed that it seems to work better to put the 

error update before the prediction update. 

 

2.1.4 Discovery 

The discovery component is exploited to generate new classifiers in the system. 

XCS executes genetic algorithm (GA) in the current action set [A] when the average 

time exceeds a threshold    . GA usually uses one-point crossover and bitwise 

mutation on the rule set to generate new rules. Two classifiers are selected with a 

probability proportional to their fitness values first. After reproducing, crossing, and 

mutation the parent classifier, two offspring classifiers are generated. And the 

resulting offspring is inserted into the population [P]. If the size of population [P] is at 

its maximum value, a proposed method by Kovacs [9] can be adopted to determine 

the probability of a deletion of a classifier and to remove the low-fitness classifier.  
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2.1.5 Macroclassifiers  

The macroclassifiers are a type of classifiers with the numerosity parameter num 

in XCS. A macroclassifier is used to speed processing and provide a more 

perspicuous view of population contents. Whenever XCS generates a new classifier, 

at the initialization step or at later stages, the population [P] is scanned to examine 

whether the new classifier has the same condition and action as any existing 

macroclassifier does. If so, the new classifier is not actually inserted into the 

population and is therefore deleted, and the numerosity of the existing macroclassifier 

is incremented by one. Otherwise, the new classifier is added to the population [P] 

with its own numerosity field set to one. Similarly, when the macroclassifier suffers a 

deletion, its numerosity is decremented by one, instead of being actually deleted. If 

the numerosity of a macroclassifier becomes zero, the system removes the 

macroclassifier from the population. 

 

2.1.6 Covering and Subsumption  

Covering and Subsumption are two important components of XCS. Covering is 

another method to introduce new classifiers into the population. When an 

environment event occurs and the match set does not contain all possible actions 

defined for the environment, the covering operation will generate classifiers to match 

this event for improving the accuracy. The condition of the new classifier created 

through covering is made to match the current system input, and it is given an action 

chosen at random. Each attribute in the condition is mutated to don’t care (#) with a 

probability. Finally, the system puts the newly generated classifier into the population.  

In addition to introducing new classifiers into the population, we also have to 

deal with rules with the same meaning in XCS’s framework. The subsumption 
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operation is designed to make a rule that absorb other rules if it is more general than 

other rules and to improve the generalization capability of XCS. There are two forms 

of subsumption, GA-subsumption and Action-subsumption. In GA-subsumption, 

when new classifiers are generated, they are examined to see whether their conditions 

are subsumed by their parent classifiers or not. If the parent classifiers are more 

general than the new classifiers, the new classifiers are subsumed by the parents. The 

new classifiers will not be added to the population but numerosity of the parent 

classifiers is incremented. Otherwise, the system puts the new classifiers into the 

population. Action-subsumption is different from GA subsumption. Each action set is 

searched the most general classifier R. Then, all other classifiers in the set are 

compared to R to see whether R subsumes them. The subsumed classifiers are deleted 

from the population. 

 

2.1.7 Flow of XCS  

At first, XCS initializes the rule set with zero reward randomly. There are four 

steps for the rule evaluation cycle. The steps are show as following:  

1. The state of the environment is detected by detectors.  

2. The system examines the condition part of each rule to determine the match set.  

3. The match set will be grouped into different sets based on their own actions, and 

the prediction payoff for each action is calculated to determinate the action set.  

4. Effectors implement the action in the environment, get the reward, and distribute 

it to the rules in the action set. 

After a specified period of time, GA is executed to generate new rules and delete 

unfit rules in the rule discovery cycle. Wilson [2] indicated that they can find the 

classification rules with high accuracy with this framework. 
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2.2  XCSI 

Since in XCS, many problems involve integer attributes, an adaptation of it, the 

XCSI [11], for the integer domain is adopted. Different from XCS, XCSI is modified 

in its input interface, mutation, covering and subsumption. 

XCSI changes the classifier condition from a string of {0,1,#} to a concatenation 

of the interval predicates,             , where    and    are integers and denote 

the lower bound and the upper bound. A classifier matches an input   with attributes 

   if and only if          for all   .  

The mutation operator in XCSI is different from XCS. Wilson indicates that the 

best method to mutate an allele by adding a value          , where     is a fixed 

integer,      picks an integer randomly from        , and the sign is selected 

equiprobably.  

The covering occurs if there is no classifier matches  . In XCSI, the new 

condition has components                 , where each                  and 

each                . The value     is a fixed integer and       picks an integer 

randomly from       . 

An interval predicate   subsumes another predicate   if       and      . 

The subsumption of a classifier by another is defined if every interval predicate in the 

first classifier’s condition subsumes the predicate in the second classifier’s condition.  

 

2.3  Related Work 

Learning Classifier Systems (LCS) are rule-based classifiers that learn the best 

action of the given inputs. LCS was first described by Holland [1], who proposed a 

framework that included the condition sensor, reinforcement learning, internal 

memory, and rule generation by using a genetic algorithm (GA).  
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To solve the shortcomings of the LCS such as overgeneralization and the 

difficulty to implement a comprehensive system, Wilson proposed a minimalist 

version LCS, called Zeroth-Level Classifier System (ZCS) [10] in 1994. ZCS keeps 

the framework of LCS but simplifies it to increase understandability and performance. 

But there are still some problems in ZCS, such as path habits and recombination rules 

from entirely different niches. A path habit is that ZCS may converge onto suboptimal 

rules and recombining rules from different niches will generate some useless rules.  

Recognizing these drawbacks, Wilson proposed XCS, which is currently the 

most widely used classifier system, and has shown good results on data mining tasks 

[3, 4]. The accuracy is used by XCS to determine its fitness to avoid the path habit 

problem and applies recombination to the action set for making meaningful rules. 

Although XCS has both good performance and knowledge visibility in many 

problems, the binary inputs of XCS that are unsuitable for many inference problems 

with integer attribute.  

Wilson proposed an adaptation of XCS for integer input called XCSI [11]. XCSI 

is recently applied to the Wisconsin Breast Cancer (WBC) dataset with the 

performance results exceeding to other machine learning methods. However, it 

usually produces a large number of rules which will lower the readability of the 

classification model. In this study, a new mutation called Bit Mask is devised to 

reduce the number of classification rules and therefore to improve the readability of 

the generated prediction model. 

 

 



12 
 

Chapter 3 XCS with Bit Mask 

 

3.1  Introduction to Bit Mask 

As describe above, XCS is a promising methodology because of its versatility 

and capability. However, it is known to generate a lot of rules, which lower the 

readability of the resultant classification model. That is, People may not be able to get 

the needed knowledge or useful information out of the model.  

XCS with bit-mask is proposed to solve such a problem. The adopted bit-mask is 

used to detect the stable building blocks in classifiers and to prevent crossover and 

mutation operators from unnecessarily altering them. Consequently, the resultant 

classification model needs fewer rules than that evolved by the original XCS to 

achieve the same level of accuracy. 

In this chapter, we will first present the concept and mechanism of bit-mask into 

XCS. Then, we discuss where bit-mask can be implemented. And we channel how 

bit-mask applied to different environments. 

 

3.2  Representation 

In order to apply Bit Mask to XCS classifiers, the representation of XCS rules is 

modified to make them capable of finding a set of stable building blocks and 

unnecessarily altering attributes. For this purpose, a parameter called bit mask (BM) is 

added into the classifier representation as: 

< Classifier >::= < Condition >:< Action >:< BM >: 

< Payoff prediction >:< Payoff error >: 

< Fitness > 

BM indicates how many condition attributes unnecessarily altered in mutation and in 
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crossover operators. Rules with BM will be more stable than the standard XCS rules 

and will result in fewer classifiers when the mutation and crossover operation is 

triggered. For example, if the rules of the condition and the action are set as Table 1, 

the attribute B and D are determined as stable building blocks in BM. Different from 

the standard XCS, when the mutation and crossover operation occur, the condition 

attributes in BM will not be altered to avoid generating redundant rules.  

 

Table 3-1:  Example of a bit mask data set. 

 A B C D E Class 

Event 1 0 1 0 1 2 

Rule1 1 0 1 0 1 2 

Rule2 # 0 1 0 1 2 

Rule3 1 0 # 0 1 2 

Rule4 1 0 1 0 # 2 

For the binary alphabet of {0,1}, # stands for “don’t care”. 

 

The purpose of BM is to prevent unnecessary altering. The rules generated by 

mutation and crossover operations in the standard XCS may not match the original 

event and some redundant rules might occur. Through the bit mask mechanism, the 

rule with BM can prevent altering stable building blocks. The collection of rules will 

strongly support the original event, and may cover more subset of cases. 

 

3.3  Algorithm of XCS with Bit Mask 

In XCS, each rule contains one condition and one action, and the condition 

contains n attributes. Because of the relation between conditions and actions, the 

attributes also have influence on the actions. That is, when one attribute is changed, it 

may produce a different action. The connection between attributes and actions is the 

main idea of bit-mask. Given an environmental state, a match set will be formed in 
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the usual way [10], and its action is chosen by the system. Once an action is chosen, 

the system forms an action set which consists of the classifiers in match sets 

advocating the chosen action. If the chosen action is the same as the environmental 

action, each attribute of the classifiers in action set will be scanned. If all the n
th

 

attribute of classifiers in action set is same as the n
th

 attribute of the environmental 

input, the n
th

 attribute will be set as a stable building block. The definition of variables 

and the pseudo code for Find Stable Building Blocks are shown in Figure 3-1. 

 

// clset: the action set of current trial 

Procedure Find Stable Building Blocks (clset) 

  For i = 1
st
 to N

th
 condition attribute in classifier 

   Boolean isStable = true; 

   For j = 1
st
 to N

th
 classifier in clset 

  If the i
th

 attribute of the j
th

 classifier != the i
th

 attribute of input  

    isStable = false; 

  EndIf 

   End For 

   If isStable is true 

  The i
th

 attribute is a stable building block; 

   Else 

  The i
th

 attribute is not a stable building block; 

   EndIf 

 End For 

End Procedure Find Stable Building Blocks 

 

 
 

 

The set of stable building blocks called bit mask (BM). The current BM will be 

set if the classifier has no BM. However, the current BM can’t be set directly if a BM 

already exists in the classifier. The current BM has to be compared with the BM of 

the classifier. If the current n
th

 building block is also in the stable building block set of 

the classifier, the n
th

 building block will be remained. Otherwise, the n
th

 building 

Figure 3-1 :  Find Stable Building Blocks 
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block will be removed, and the new BM will be set on the classifier. The definition of 

variables and the pseudo code for Set Stable Building Blocks are shown in Figure 3-2. 

 

// cl: classifier 

// BM: the BM find in action set of current trial 

// cl.BM: the BM of the classifier 

//NewBM: the new BM generate from BM and cl.BM 

Procedure Set Bit Mask( cl, BM) 

 Boolean[] NewBM; 

 If the classifier is no BM 

  cl. BM = BM; 

  Else 

   For i = 1
st
 to N

th
 condition attributes 

  if cl.BM(i) is true and BM(i) is true 

    NewBM(i) is true; 

  Else 

    NewBM(i) is false 

  End if 

   End For 

   cl.BM = NewBM; 

  End If 

End Procedure Set Bit Mask 

 

 
 

After setting BM in classifiers, we changes crossover and mutation operations in 

the GA mechanism. In mutation mechanism, the condition attributes in BM are stable, 

and will not be mutated. But the other attributes will be altered same as the standard 

XCS. In crossover mechanism, if the two condition attributes are both in BMs, the 

attributes will not perform crossover. But the other attributes will perform crossover, 

and the new classifier will insert into population. If the size of classifiers is larger than 

the size of environment, the compensating deletion occurs as the standard XCS. 

 

Figure 3-2 :  Set Bit Mask 
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3.4  Framework of XCS with Bit Mask 

In this thesis, we concentrate on the classification problem for data mining. We 

model the relation between attribute and class in a rule. With this interpretation, we 

make XCS a classification system. The overall framework of XCS with bit-mask is 

shown in Figure 3-3. Different from the original XCS framework, XCS with bit-mask 

can be applied to much type of problems. It focuses on the bit mask mechanism and 

problem of classification. 

With the bit-mask capable representation and the corresponding operations, we 

now describe the flow of XCS with bit-mask. We first consider the data set of a 

classification problem as an environment. To simulate the occurrence of events, data 

items of the data set to classify are selected randomly or sequentially as the system 

input. The number of covering actions in match set is formed by the original XCS.  

Figure 3-3:  Framework of XCS with Bit Mask 

Environment 

Event 

Detections 

Population [P] 

Match Set [M] Prediction Array 

Action Set [A] 

Effectors 

Action 

Genetic 
Algorithm 

Find stable 
building blocks 
and set bit mask 

Prevent 
unnecessarily 

altering  
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Thus, the action set can be formed. The Bit Mask mechanism is applied on the action 

set to detect the stable building blocks and record stable building blocks on the 

classifier. When the genetic algorithm is triggered, it will prevent unnecessarily 

altering in mutation and crossover operators. Compare to the operations conducted in 

the standard XCS, the bit-mask mechanism may let generate fewer redundant rules. 
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Chapter 4 Experimental Results 

 

In previous chapters, we have briefly reviewed the original XCS framework, 

introduced the concept of bit-mask, and described the purpose of XCS with bit-mask 

in detail. In this chapter, we employ the XCS and XCS with bit-mask to deal with 

some experiments and compare the performances, system errors, and population sizes. 

The performance refers to the fraction of the last 50 exploit trials that were correct. 

The system error refers to the absolute difference between the system prediction for 

the chosen action and the actual external payoff, divided by the total payoff range 

(1000) and the average over the last 50 exploit trials. The population size refers to the 

number of macroclassifiers. We use the XCS system publicly on the Internet [12]. 

And the XCS system is modified to include the mechanisms described in chapter 3 to 

establish the XCS with bit-mask system for testing. Each experiment is conducted for 

200 independent runs, and the statistics averaged over the 200 runs are reported. 

 

4.1  Experimental Data Sets 

To briefly see the behavior of XCS with bit-mask behavior, we divide 

experiments to three parts to improve the bit-mask mechanism.  

 Boolean Multiplexer 

First, we employ both XCS and XCS with bit-mask to tackle the boolean 

multiplexer function of three different sizes, including 6 bits, 11 bits and 20 bits. 

Boolean multiplexer functions are defined for binary strings of length       . 

The function result is determined by treating the first k bits as an address that indexes 

into the remaining 2
k
 bits, and the value of the indexed bit, either 0 or 1, is the 

function result. 
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 Integer Test Function 

Second, we employ them to deal with integer datasets. The integer datasets are 

some synthetic oblique data sets [11]. The first dataset, “Random-Data2”, was 

constructed by random vectors (x1 , x2), with each xi a random integer from (1 , 10). 

The current outcome o for each vector was selected according to  

                                                                                        (1) 

An instance of Random-Data2 is composed by a vector and its outcome. The second 

random dataset, “Random-Data9”, was constructed like Random-Data2 as follows. 

Radom-Data9 has nine dimensions and the expression determining the outcome was 

                                                                                     (2) 

 Real World Data - Wisconsin Breast Cancer 

We use them to deal with the real world data, Wisconsin Breast Cancer (WBC) 

Database which was donated to the UCI Repository [13] by Prof. Olvi Mangasarian 

and contains 699 instances collected over time by Dr. William H. Wolberg. Each 

instance of WBC database has nine attributes which are Clump Thickness, Uniformity 

of Cell Size, Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell 

Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses. Each attribute 

has a value between 1 and 10 inclusive. Small sample of raw data is shown as follow: 

1000025,5,1,1,1,2,1,3,1,1,2 

1002945,5,4,4,5,7,10,3,2,1,2 

1015425,3,1,1,1,2,2,3,1,1,2 

1016277,6,8,8,1,3,4,3,7,1,2 

1017023,4,1,1,3,2,1,3,1,1,2 

The first number is a label, the next nine attributes are the attributes, and the last is the 

class level, 2 for Benign and 4 for Malignant. 

The three parts of experiment described before show how XCS and XCS with 

1017122,8,10,10,8,7,10,9,7,1,4 

1018099,1,1,1,1,2,10,3,1,1,2 

1018561,2,1,2,1,2,1,3,1,1,2 

1033078,2,1,1,1,2,1,1,1,5,2 

1033078,4,2,1,1,2,1,2,1,1,2 
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bit-mask classify datasets in data mining. From the classifying of the simple data set, 

and boolean multiplexer function, it is shown that the XCS with bit-mask is as 

feasible as the standard XCS. But the result of this experiment doesn’t directly 

indicate that bit-mask mechanism is workable. We applied bit-mask mechanism to 

integer domain and compared with the standard XCS. At last, the real world data set 

can be viewed as a benchmark to display that the bit-mask mechanism can not only 

classify dataset but also decrease the redundant rules. The experimental results are 

presented in the follow sections. 

4.2  Result in Boolean Multiplexer 

4.2.1 6-bit Multiplexer 

Figure 4-1, 4-2, 4-3 show the experimental results for the boolean multiplexer of 

6-bits. Figure 4-1 shows the performance between XCS and XCS with bit-mask, 

Figure 4-2 shows the population size, and Figure 4-3 shows the system error rate. As 

we can observe, XCS gets approximately 100 % performance in 4000 exploit trails, 

and XCS with bit-mask gets approximately 100% performance in 4000 exploit trails, 

too. For the system error, XCS gets approximately 0% system error in 6000 exploit 

trails, and XCS with bit-mask gets approximately 0% system error in 6000 exploit 

trails. Finally, XCS evolves the population with 29.47 classifiers, and XCS with 

bit-mask evolves the population with 25.01 classifiers. Parameters of the experiment 

are      ,      ,      ,      ,       ,      ,      ,       , 

and       .  

Base on the experimental results, we can find that XCS and XCS with bit-mask 

can achieve the same performance, system error rate, and population size when the 

exploit trails is appropriate. Thus, it can be shown that XCS and XCS with bit-mask 

have the same speed of convergence. However, the effect of applying bit mask into 
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XCS appears. XCS with bit-mask can save 15.13% of population size for 6-bit 

multiplexer over the 200 runs on average. 

 

  

 

 

Figure 4-2:  Population size of experimental results for 6-bit multiplexer 

Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by 

50). The results are averaged over 200 runs. 

Figure 4-1:  Performance of experimental results for 6-bit multiplexer 

Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in 

exploit trails (divided by 50). The results are averaged over 200 runs. 
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4.2.2 11-bit Multiplexer 

Figure 4-4 ~ 4-6 show the experimental results for the 11-bits boolean 

multiplexer. Figure 4-4 shows the performance between XCS and XCS with bit-mask, 

Figure 4-5 shows the population size, and Figure 4-6 shows the system error rate. 

From the figures, the performance of XCS reached approximately 100 % in 8000 

exploit trails, and the performance of XCS with bit-mask reached approximately 

100% in 8000 exploit trails, too. For the system error, the system error of XCS gets 

approximately 0% in 12000 exploit trails, and the system error of XCS with bit-mask 

gets approximately 0% in 12000 exploit trails. For the population size, the population 

size of XCS is evolved with 81.51 classifiers, and the population size of XCS with 

bit-mask is evolved with 74.85 classifiers. The experimental parameters are      , 

     ,      ,      ,       ,      ,      ,       , and       . 

From the experimental results, we can acquire that the 11-bit multiplexer has 

Figure 4-3:  Error rate of experimental results for 6-bit multiplexer 

Error rate is the fraction of total payoff range. Explore problems is in exploit trails (divided by 50). 

The results are averaged over 200 runs. 
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similar outcome to 6-bit multiplexer. In this experiment, XCS with bit-mask on 

average saves 8.1% of population size over 200 runs. 

 

 

 

Figure 4-5:  Population size of experimental results for 11-bit multiplexer 

Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by 

50). The results are averaged over 200 runs. 

Figure 4-4:  Performance of experimental results for 11-bit multiplexer 

Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in 

exploit trails (divided by 50). The results are averaged over 200 runs. 
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4.2.3 20-bit Multiplexer 

Figure 4-7 ~ 4-9 demonstrate the experimental results for the boolean 

multiplexer of 20-bits. Figure 4-7 shows the performance between XCS and XCS 

with bit-mask, Figure 4-8 shows the population size, and Figure 4-9 shows the system 

error rate. From the result, XCS gets approximately 100 % performance in 35000 

exploit trails, and XCS with bit-mask gets approximately 100% performance in 35000 

exploit trails, too. For the system error, XCS gets approximately 0% system error in 

50000 exploit trails, and XCS with bit-mask gets approximately 0% system error in 

50000 exploit trails. For the population size, XCS evolves the population with 261.52 

classifiers, and XCS with bit-mask evolves the population with 247.67 classifiers. For 

20-bit multiplexer, XCS with bit-mask saves 5.2% of the population size. The 

experiment Parameters are as follow :       ,      ,      ,       , 

      ,      ,      ,       , and       . 

Figure 4-6:  Error rate of experimental results for 11-bit multiplexer 

Error rate is the fraction of total payoff range. Explore problems is in exploit trails (divided by 50). 

The results are averaged over 200 runs. 
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Figure 4-8:  Population size of experimental results for 20-bit multiplexer 

Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by 

50). The results are averaged over 200 runs. 

Figure 4-7:  Performance of experimental results for 20-bit multiplexer 

Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in 

exploit trails (divided by 50). The results are averaged over 200 runs. 
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4.3  Result in Integer Test Function 

4.3.1 2 dimensions 

Figure 4-10, 4-11, and 4-12 show the experimental results for the two 

dimensions of integer, Random-Data2. For the performance at figure 4-10, XCS gets 

approximately 95 % performance in 20000 exploit trails, and XCS with bit-mask gets 

approximately 95% performance in 20000 exploit trails, too. For the system error at 

figure 4-11, XCS gets approximately 10% system error in 15000 exploit trails, and 

XCS with bit-mask gets approximately 10% system error in 15000 exploit trails. For 

the population size at figure 4-12, XCS evolves the population with 51.3 classifiers, 

and XCS with bit-mask evolves the population with 32.73 classifiers. Parameters of 

the experiment are      ,      ,      ,      ,       ,      , 

     ,       , and       . 

Base on the experimental results in integer, we can find that XCS and XCS with 

Figure 4-9:  Error rate of experimental results for 20-bit multiplexer 

Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by 

50). The results are averaged over 200 runs. 
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bit-mask obtain the same performance and system error rate in the synthetic oblique 

data. But for the population size, the effect of bit mask is significant in integer. As we 

can see, XCS with bit-mask on average saves 36.21% of population size over 200 

runs. 

 

 

Figure 4-10:  Performance of experimental results for 2 dimensions 

Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in 

exploit trails (divided by 100). The results are averaged over 200 runs. 
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Figure 4-12:  Error rate size of experimental results for 2 dimensions 

Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by 

100). The results are averaged over 200 runs. 

Figure 4-11:  Population size of experimental results for 2 dimensions 

Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by 

100). The results are averaged over 200 runs. 
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4.3.2 9 dimensions 

Figure 4-13, 4-14, 4-15 demonstrate the experimental results for the nine 

dimensions of integer, Random-Data9. First, Figure 4-10 shows the performance 

between XCS and XCS with bit-mask. XCS gets approximately 90 % performance in 

28000 exploit trails, and XCS with bit-mask gets approximately 90% performance in 

28000 exploit trails, too. Second, Figure 4-11 shows the population size. XCS evolves 

the population with 542.38 classifiers, and XCS with bit-mask evolves the population 

with 356.23 classifiers. Finally, Figure 4-12 shows the system error rate. XCS gets 

approximately 20% system error in 25000 exploit trails, and XCS with bit-mask gets 

approximately 20% system error in 25000 exploit trails. Parameters are      , 

     ,      ,      ,       ,      ,      ,       , and       . 

In this experiment, the result is similar to Random-Data2. XCS with bit-mask on 

average saves 34.32% of the population size over 200 runs. 

 

Figure 4-13:  Performance of experimental results for 9 dimensions 

Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in 

exploit trails (divided by 100). The results are averaged over 200 runs. 
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Figure 4-15:  Error rate of experimental results for 9 dimensions 

Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by 

100). The results are averaged over 200 runs. 

Figure 4-14:  Population size of experimental results for 9 dimensions 

Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by 

100). The results are averaged over 200 runs. 
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4.4  Results in Wisconsin Breast Cancer 

In this section, we applied XCS and XCS with bit-mask to the WBC dataset in 

the stratified tenfold cross-valuation procedure in which the system learned on the 

part of the data and were test on the reminder. “Tenfold cross-valuation” is a standard 

way of measuring the error rate of learning scheme on particular dataset [14]. 

Described the procedure briefly, the dataset is divided into 10 parts called “fold”. The 

system is tested on each fold after being trained by the other 9 folds. Then the results 

of the 10 test fold are average to a final score. 

Figure 4-16 ~ 4-18 show the results of the performance, the population size, and 

the system error rate for WBC dataset. The performance of XCS reaches 

approximately 95% in 5000 exploit trails, and the performance of XCS with bit-mask 

gets approximately 94% in 9000 exploit trails. For system error rate, XCS gets 

approximately 6% system error in 4000 exploit trails, and XCS with bit-mask gets 

approximately 7% system error in 9000 exploit trails. For the population size, XCS 

evolves the population with 271.23 classifiers, and XCS with bit-mask evolves the 

population with 94.58 classifiers. 

 

 XCS XCS with bit-mask 

#1 0.942 0.9 

#2 0.942 0.914 

#3 0.971 0.942 

#4 0.914 0.928 

#5 0.9 0.957 

#6 0.957 0.914 

#7 0.957 0.9 

#8 0.9 0.914 

#9 0.928 0.957 

#10 0.914 0.928 

Avg. 0.9325 0.9254 

Table 4-1:  Result of stratified tenfold cross-valuation test on WBC dataset. 
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The ten test results of XCS and XCS with bit-mask are shown in Table 4-1. It 

can be seen that XCS gets 93.25% of correct rate, and XCS with bit-mask also obtains 

92.54% of correct rate. In this experiment, the performance of bit-mask is similar to 

the original XCS. But the population size of bit-mask is smaller than the original XCS 

in WBC dataset. 

  

Figure 4-16:  Performance of experimental results for WBC 

Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in exploit 

trails (divided by 100). Parameters are      ,      ,      ,      ,       ,      , 

     ,       , and       . 
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Figure 4-17:  Population size of experimental results for WBC 

Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by 100). 

Parameters are      ,      ,      ,      ,       ,      ,      ,       , and 

      .  

  

Figure 4-18:  Error rate of experimental results for WBC 

Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by 100). 

Parameters are      ,      ,      ,      ,       ,      ,      ,       , and 

      . 
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4.5  Discussion  

Base on the experiments of the previous sections, we discovered two interesting 

points. First, the bit-mask mechanism can save the population size more in integer 

domain than in boolean domain. Second, it saves more rules in WBC dataset than in 

synthetic oblique dataset. As for 6-bit, 11-bit, and 20-bit multiplexer, the bit-mask 

only saves less than 20% of the population size. But in integer domain, it saves 

30-40% of the population size. The difference between boolean and integer is 

significant. When XCS is applied in boolean multiplexer, the rule’s representation is 

{0,1,#}, it’s easy to define whether the rule is accepted or not. But in Integer domain, 

the rule’s representation is             , where    and    are integers and denote 

the lower bound and the upper bound. A rule matches an input   with attributes    

if and only if          for all   . There is some elasticity in integer. According to 

the conception, when using the bit-mask mechanism to avoid altering crossover and 

mutation operators, it will not produce redundant rules. The population size of system 

will be saved. 

The bit-mask mechanism saves 65% rules in WBC dataset, but only saves 

30-40% rules in synthetic oblique dataset. The class of the synthetic oblique dataset, 

Random-Data2 and Random-Data9, is made by the sum of the attributes. If the sum of 

attributes in bigger than the assigned number, the class will set to 1. Otherwise, the 

class will set to 0. The outcome defined by this doesn’t model the relation between 

attribute and class. There is not any directly connection between attribute and class. 

Unlike the real world dataset, WBC, each of attributes may give a huge influence of 

the class level. Therefore, the bit-mask mechanism works better in WBC dataset than 

in synthetic oblique dataset. 
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Chapter 5 Conclusions 

5.1  Summary 

In this paper, we first reviewed XCS briefly, followed by the introduction of the 

concept of bit mask. After applying bit mask to XCS, we described the purpose of the 

mechanism bit-mask and show the framework of it in detail. Finally, we implemented 

XCS with bit-mask by modifying the existing XCS system and did a series of boolean 

multiplexers, integer dataset, and real world dataset for both XCS and XCS with 

bit-mask. By comparing the experimental results, two interesting points are discussed. 

Bit mask performed better in integer domain than in boolean domain. Because of the 

concept of bit mask is the relation between attribute and class, bit mask modeled the 

real world data better than the synthetic oblique datasets. The experimental results 

confirmed that bit mask can detect the stable building blocks, avoid unnecessary 

altering and save the redundant rules in data mining. 

 

5.2  Contributions 

By the experimental results show in this paper, with the bit mask mechanism, it 

can be applied to data mining and make the least rules to explain the dataset. The 

contributions of bit mask are as follow: 

 XCS generate redundant rules in mutation and crossover operator in GA. 

 XCS works poorer in integer domain than in boolean domain. 

 According to the experiments, bit mask can saves the rules in XCS. 

 Applying bit-mask mechanism performs better in integer domain than in boolean 

domain. 

 Using bit mask can help XCS to promote performance 

 Bit mask can find the connection between attribute and class and save rules. 
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By bit mask mechanism, people can get the required information or knowledge 

from the evolved classification model. The real world dataset can be detected more 

interesting information and help people to understand the implication of data with it. 

Therefore, it may be proven a useful technique for data mining application. 

 

5.3  Future Work 

Further work is needed, in a variety of environments, to increase understanding 

of the technique. In particular, the bit mask not did well in simple dataset such as 

boolean multiplexers, there may be other methods to limit the number of bit mask that 

make it better. Besides boolean and integer dataset, real number dataset should be 

looked at. As for bit mask itself, interesting research topics and directions, including 

theoretical understanding and algorithmic improvement, are waiting to be explored. 

Research along this line should be continuously pursued and conducted in order to 

develop classification systems that are not only feasible in theory but also viable in 

practice to further advance all the related domains and disciplines. 
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