XCS with Bit Mask in Data Mining

Jia-Huei Lin

NCLab Report No. NCL-TR~2010008
June 2010

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road
HsinChu City 300, TATWAN
http://nclab.tw/

A
Eg{_l'lll
K2
W
B
Wi
=3
et
;In_{

e XCS A sk B Mo Ao iE i 4
M iE R

XCS with Bit-Mask in-Data Mining

o4 HREE

hEFAE D REE Fe

FTEREBE Lt RAEFEAKNA

B XCS A8 ko si? B i v 7 AR I

XCS with Bit Mask in Data Mining

FoyoA i HEE Student : Jia-Huei Lin
I g Advisor : Yi-Ping Chen
Bz o2« F
FACUE Sl O N A S
N
AThesis

Submitted to Institute of Computer-Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2010

Hsinchu, Taiwan, Republic of China

PERRAY L4 ES

B XCS A% % 3d P g e 17 TR E
B2 2~ B FIAE B e g

i 4 &

AAEHmY R - 7}@ stk XCS i 38 > B (Classifier)
He® 0 5V o XCS #.8 ¥ 4]+ #¢ % ti(Learning Classifier System)® =
- BAaLo e SHREP AR B R X BE - BPERAE E DL
Lo e § o vl ¥ £ A2 WE AP oA R e A T e
A AP E R p AT BE AR et g F ehin L e

TR A BN A - B A R 4] b ~ XCS i B (XCS with Bit
Mask) » 12 iE T P BcE P ene g A Gk B 2 S e ST v
Hi e

NPT - AR S E D EHT ;3'5 (Boolean) @?J S U
N == % 1 % (N-bit multiplexer):g =598 > & #£ 6 =~ ~11 =~ qr
20 =~ o%%?i;fﬁdi%]/\ I AR A eE 4 & — Random Data2
fr Random Data2 * vt g XCS frte » gt > ;2 9 XCS k5o gt oh >
SIrBFE R PBBEFTHR - NHRTREF HRFEZ S E 7 1d 7
BOARMEE S RAMHR G P Do

o\

‘\‘M

I
o

ﬁ,

BT D XCS A4 k5~ B Y A L5 HER e
> TR

ABSTRACT

In this paper, an adapted XCS is proposed to reduce the numbers of the rules.
The XCS is a branch of learning classifier systems which has been proven finding
accurate maximal generalizations and has good performance on difficult problems.
However, it usually produces too much rules to lower readability of the classification
model. That is, people may not be able to get the needed knowledge or useful
information out of the model. To solve this problem, a new mutation called Bit mask
is devised in order to reduce the number of classification rules and therefore to
improve the readability of the generated prediction model.

We did a series of N-multiplexer‘experiments, including 6-bit, 11-bit, and 20-bit
multiplexers to examine the performance of the proposed method. For the integer
inputs, two synthetic oblique datasets, “Random-Data2” and “Random-Data9” are
used to compare the performance of XCS and the proposed method. Moreover, the
real world data is also used in the experience. According to the experimental results,
the proposed method is verified that it has the capacity to reduce the classification

rules with high prediction accuracy on the test problems.

Index Terms — XCS, Learning classifier systems, Population size, Bit mask,

Data mining.

=4 i‘é‘j’

Pl\} ¥

FlEaRGE IR F 2 TR A KRG - S HREEIL

2
.

BRI 2 WLRFF G L hiogo 4 2300 AR EIE -

AP FIEEPE o § A% - PR AGRARN AT R d R do
MAT FL AR T TICRE BT o

P ER O R I H FML i SR

)2

BT RO S R AR 2 RA S 2 F S AR

§es e & RPRA S 8 LS R s p AR 2 Rt 2 R

’ 2

BER L - Ay 4 Fa gk swj-&umgm;\“ o

27—

féf@ st %‘LZ‘ éj:)]ﬁ“' ’gi\‘ «é:-/ﬁ; f-_l'_‘b Bp 0 &@? {r,‘ ,“:'_ B

(7 > > e

T A e B SR)

CONTENTS

ABSTRACT ..ttt 1\
CONT ENT Sttt ere e s n e ne e s nreene e Vi
LIST OF FIGURES ... oo IX
LIST OF TABLES ... Xi
Chapter 1 INtrOdUCTIONocviiiecc e 1
1.1 IMOLIVALION ..t 1

1.2 ReSearch ODJECLIVE ...l it it 2

1.3 Organization Of the TheSISceiriiii ittt 2
Chapter2 ABrief Review 0f XCS i i it 4
2.1 X CS e e e et re e 4
2.1.1 RePreSENtatiONcceciiiie et 4

2.1.2 PerfOrMANCE.....c.eiiiiiiiitete s 5

2.1.3 ReINFOICEMENTcueiiiiiieisi e 6

N B T 1~ o{0 1V = o 2SS SRSR 7

2.1.5 MaACIOCIASSITIEIS.c.eiviiiiiiiiiecieee e 8

2.1.6 Covering and SUDSUMPLIONcovieiieiiiieiic e 8

2.1.7 FIOW OF XCS..oie et 9

2.2 XS 10

vi

2.3 REIALEA WOTK ...ttt e e e e 10

Chapter3 XCS With Bit MasK........ccccoiiiiiiiiiiiece e 12
3.1 Introduction t0 Bit MasK.........cccoceieiiiiinicice s 12

3.2 REPIESENTALION.....ecviiieiie ettt b e sreeae e 12

3.3 Algorithm of XCS with Bit MasK..........cccccceviveiiiiiiiiieccseee e 13

3.4 Framework of XCS With Bit MasKccccooireiiiininiineeee e 16
Chapter4 Experimental RESUILScccooviiiiiiiic e 18
4.1 Experimental Data SetS........ccccoveiuiiiieiieie e 18

4.2 Result in Boolean MUIPIEXEF i umiatin . iuitieniee e 20
4.2.1 6-bit MUIIPIEXEE et ittt 20

4.2.2 11-Dit MURTPIEXEE. . o eeieiiiiirciunas b et et 22

4.2.3 20-bit MURIPIEXET . .o e 24

4.3 Resultin Integer Test FUNCHONcccooiiiiiii e 26
4.3 1 2 AIMENSIONS ...ttt 26

4.3.2 G AIMENSIONS ..ottt 29

4.4 Results in Wisconsin Breast CancCercccoviiiiniiieiieiesesc e 31

4.5 DISCUSSION ...ttt nn bbb 34
Chapter’ 5 CONCIUSIONSooiiiciiicee et 35
5.1 SUMMAIY oottt e e srae e e nne e e 35

vii

B.2 CONTIIDULIONS. ... ettt et e e e e e e e e eeeeeens
B3 FULUIE WOTK oottt a e
REFERENQ E ... et e e e e e e e et e e e et e e e e et eeeaeaees

viii

Figure 2-1:

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Figure 4-6:

Figure 4-7:

Figure 4-8:

Figure 4-9:

Figure 4-10:

Figure 4-11.:

Figure 4-12:

Figure 4-13:

Figure 4-14:

LIST OF FIGURES

The framework of XCS.......ccooiiiiiiiiee e 6
Find Stable Building BIOCKScccoiiiiiiiciiese e 14
SEEBIt IMASKc.veiiiiieiieiee s 15
Framework of XCS with Bit MaskKccccoviiiiiniiiiiee e 16
Performance of experimental results for 6-bit multiplexer....................... 21
Population size of experimental results for 6-bit multiplexer................... 21
Error rate of experimental results for 6-bit multiplexer..........c.ccccoceenee. 22
Performance of .experimental results for 11-bit multiplexer.................... 23
Population size-of experimental results for 11-bit multiplexer-................. 23
Error rate of experimental results for 11-bit multiplexer............c..ccoc...... 24
Performance of experimental results for 20-bit multiplexer..................... 25
Population size of experimental results for 20-bit multiplexer................. 25
Error rate of experimental results for 20-bit multiplexer...............c.......... 26

Performance of experimental results for 2 dimensions...............ccccoc.... 27

Population size of experimental results for 2 dimensions.............c.c....... 28

Error rate size of experimental results for 2 dimensions 28

Performance of experimental results for 9 dimensions...............ccccue..... 29

Population size of experimental results for 9 dimensions 30

file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758682
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758683
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758684
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758685
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758686
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758687
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758688
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758689
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758690
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758691
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758692
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758693
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758694
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758695
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758696
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758697
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758698
file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758699

Figure 4-15:

Figure 4-16:

Figure 4-17:

Figure 4-18:

Error rate of experimental results for 9 dimensions............cccccccevevvvennene. 30

Performance of experimental results for WBC............ccccocevveveiieiiennns 32
Population size of experimental results for WBC............cccocveveiieiieennnn, 33
Error rate of experimental results for WBC.........c.cccccoovieiece e, 33

file:///C:/Documents%20and%20Settings/restutw/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining-1%20(1).docx%23_Toc262758700

LIST OF TABLES

Table 3-1: Example of a bit mask data Set.cccccvevveiiiiieni e 13

Table 4-1: Result of stratified tenfold cross-valuation test on WBC dataset. 31

Xi

file:///C:/Documents%20and%20Settings/Administrator/桌面/XCS%20with%20Bit%20Mask%20in%20Data%20Mining.docx%23_Toc263979231

Chapter 1 Introduction

1.1 Motivation

A learning classifier system [1] (LCS) is a machine learning systems that are
designed for combining reinforcement learning, evolutionary computing and other
heuristics to produce adaptive systems efficiently. These rule-based machine learning
algorithms originated and have evolved in the cradle of evolutionary biology and
artificial intelligence.

There have been many studies on the architecture and performance of LCS. In
recent years, a branch of LCS, the.XCS [2] has:become one of the most important
branches since XCS was shown 10 be-able to solve real-world classification problems
with high accuracy. XCS is-designed to evolve a representation of the best solution
for all possible problem instances and to evolve a complete and accurate payoff map
of all possible solutions for all possible problem instances. That is, XCS evolves rules
that improve its ability to obtain the environmental reward and mines the environment
for the prediction pattern, which is expressed in the form of classifiers. Then, the
repeatedly refined prediction pattern allows the XCS system to make better decisions
for action.

However, some shortcomings still exist in the XCS. For the real-world
application, frequent pattern mining [6] often incurs numerous frequent item sets and
rules, which decreases the effectiveness of data mining since users have to go through
a large number of mined rules in order to find useful ones. The large number of
classification rules are generated which lowers the readability of the classification

model in real-world applications.

1.2 Research Objective

Since the XCS will produces a lot of redundant rules in mutation and crossover
operators, in this study, XCS with Bit Mask is proposed to solve such a problem. The
adopted Bit Mask is used to detect the stable building blocks in classifiers and to
prevent crossover and/or mutation operators from unnecessarily altering them.
Consequently, the resultant classification model needs fewer rules than that evolved
by the original XCS to achieve the same level of accuracy. A series of N-multiplexer
experiments, including 6-bit, 11-bit, and 20-bit multiplexers are exploited to examine
the performance of the proposed method. For the integer inputs, two synthetic oblique
datasets [11] called “Random-Data2” and “Random-Data9” are used to compare the
performance of XCS and that of the proposed-method. Finally, the Wisconsin Breast
Cancer (WBC) [13] dataset is also-used-in-the experience for the real world data.
According to the experimental results, the proposed method is verified that it has the
capacity to reduce the classification rules with high prediction accuracy on the test

problems.

1.3 Organization of the Thesis

There are five chapters in this thesis. The organization of this thesis is as the
following:
e Chapter 1: Discussion of the background of this research and describe the
framework of XCS Bit Mask
e Chapter 2: Presentation of a brief review of XCS framework and the related
studies of this thesis.
e Chapter 3: Introduction of the representation, the algorithm the framework

of the XCS Bit Mask.

Chapter 4: Report and compares the results on the experiments of
N-multiplexers, synthetic oblique datasets and WBC dataset.
Chapter 5: Summarize this study, interpret its practical meanings and

discuss the possible future work.

Chapter 2 A Brief Review of XCS

In this chapter, we first describe the framework of XCS, followed by an
introduction of XCSI which is an adaptation of XCS for some problems. Finally, we

discuss the related work of this research.

2.1 XCS

XCS, introduced by Wilson in 1995, is an important branch of LCS. XCS has
become known as the most reliable learning classifier system for solving typical data
mining and machine learning problems.

In this section, we give an overview of.the important components of XCS,
including the representation, the performance - component, the reinforcement
component, the discovery component, the macroclassifiers, and the covering and

subsumption deletion.

2.1.1 Representation

XCS evolves a set of condition-action rules which are called population of
classifiers. The condition-action rule is the representation the knowledge from the
environment. Each classifier consists of five main components and several additional
estimates.

e Condition: The condition part C checks if the classifier matches the environment
event.

e Action: The action part A specifies the decided action when the condition
matches the environment event.

* Payoff prediction: The payoff prediction p estimates the average payoff after

executing the action in response to the environment event.

* Prediction error: The prediction error e estimates the average error of the payoff
prediction.

* Fitness: The fitness F reflects the scaled average relative accuracy of the

classifier.

In the binary case, C is coded in the alphabet C € {0, 1, #}* given a problem of |
attributes. The symbol # represents the “don’t care” condition. Action part A defines a
possible action or classification when the condition matches the environment event.
Payoff prediction p updates the results in a moving average measure of encountered
payoff iteratively. Similarly, the payoff prediction error estimates the moving average
of the absolute error of the payoff prediction. Fitness estimates the average of the
accuracy of the payoff prediction of a classifier relative to other classifiers that were

applicable at the same time.

2.1.2 Performance

The performance component presents the overall XCS framework, shown in
Figure 2-1. The population of XCS starts with randomly generated classifiers or no
classifiers. When an event occurs, XCS forms a match set [M] of classifiers which
match the event in the whole population [P]. Then, the system prediction is measured
for each action. The system prediction for each action is placed in the prediction array
for action selection. If no classifiers match, a covering mechanism is applied to create
classifiers that match each of the possible actions and place them in [M]. The system
selects an action from the prediction array and forms an action set [A]. Finally, the

chosen action is executed, and an environmental payoff may be returned.

Environment

Event Action
A
A\ 4
Detections Effectors
7y
\ 4
Population [P] Action Set [A]

A

A 4 |

Match Set [M] Prediction Array _
7'y Genetic
Algorithm

Figure 2-1: The framework of XCS

2.1.3 Reinforcement

In this component, the parameters of classifiers in the action set [A] to achieve
higher accuracy and to complete mappings of the problem space. The procedure for
updating the parameters is as following:

« Theerrors are updated: € « € + B(|P —pj| — ¢).
* The predictions are updated: p; < p; + B(|P — p;|).
* Theaccuracy of a classifier k; is measured: k; < exp [(Ina)(€¢; — €y)/€;] X

0.1.

Arelative accuracy k; of each classifier is determined: k; « k;/ X k(A).

* TheFitness F; are updated by: F; < F; + B(k; — F}).

And the definition of variables is:

. a: The fall of rate in the fitness evaluation.

B Learning rate for updating fitness, prediction, prediction error, and action set
size estimate in XCS classifiers.

e P: Environment return payoff.

* ¢ Prediction error of classifier j.

* pj: Prediction of classifier j.

* k;: Accuracy of classifier j.

* F;: Fitness of classifier j.

Butz [7] indicated that operation will become faster in simple problems if the
prediction update comes before the error update, but this may create some problem for
complex tasks. Butz and Wilson [8] proposed that it seems to work better to put the

error update before the prediction update.

2.1.4 Discovery

The discovery component is exploited to-generate new classifiers in the system.
XCS executes genetic algorithm (GA) in the current action set [A] when the average
time exceeds a threshold 6,,. GA usually uses one-point crossover and bitwise
mutation on the rule set to generate new rules. Two classifiers are selected with a
probability proportional to their fitness values first. After reproducing, crossing, and
mutation the parent classifier, two offspring classifiers are generated. And the
resulting offspring is inserted into the population [P]. If the size of population [P] is at
its maximum value, a proposed method by Kovacs [9] can be adopted to determine

the probability of a deletion of a classifier and to remove the low-fitness classifier.

2.1.5 Macroclassifiers

The macroclassifiers are a type of classifiers with the numerosity parameter num
in XCS. A macroclassifier is used to speed processing and provide a more
perspicuous view of population contents. Whenever XCS generates a new classifier,
at the initialization step or at later stages, the population [P] is scanned to examine
whether the new classifier has the same condition and action as any existing
macroclassifier does. If so, the new classifier is not actually inserted into the
population and is therefore deleted, and the numerosity of the existing macroclassifier
is incremented by one. Otherwise, the new classifier is added to the population [P]
with its own numerosity field set to one. Similarly, when the macroclassifier suffers a
deletion, its numerosity is decremented by one, instead of being actually deleted. If
the numerosity of a macroclassifier becomes. zero, the system removes the

macroclassifier from the population.

2.1.6 Covering and Subsumption

Covering and Subsumption are two important components of XCS. Covering is
another method to introduce new classifiers into the population. When an
environment event occurs and the match set does not contain all possible actions
defined for the environment, the covering operation will generate classifiers to match
this event for improving the accuracy. The condition of the new classifier created
through covering is made to match the current system input, and it is given an action
chosen at random. Each attribute in the condition is mutated to don’t care (#) with a
probability. Finally, the system puts the newly generated classifier into the population.

In addition to introducing new classifiers into the population, we also have to

deal with rules with the same meaning in XCS’s framework. The subsumption

operation is designed to make a rule that absorb other rules if it is more general than
other rules and to improve the generalization capability of XCS. There are two forms
of subsumption, GA-subsumption and Action-subsumption. In GA-subsumption,
when new classifiers are generated, they are examined to see whether their conditions
are subsumed by their parent classifiers or not. If the parent classifiers are more
general than the new classifiers, the new classifiers are subsumed by the parents. The
new classifiers will not be added to the population but numerosity of the parent
classifiers is incremented. Otherwise, the system puts the new classifiers into the
population. Action-subsumption is different from GA subsumption. Each action set is
searched the most general classifier R. Then, all other classifiers in the set are
compared to R to see whether R subsumes them: The subsumed classifiers are deleted

from the population.

2.1.7 Flow of XCS

At first, XCS initializes the rule set with zero reward randomly. There are four
steps for the rule evaluation cycle. The stepsare show as following:
1. The state of the environment is detected by detectors.
2. The system examines the condition part of each rule to determine the match set.
3. The match set will be grouped into different sets based on their own actions, and
the prediction payoff for each action is calculated to determinate the action set.
4. Effectors implement the action in the environment, get the reward, and distribute
it to the rules in the action set.
After a specified period of time, GA is executed to generate new rules and delete
unfit rules in the rule discovery cycle. Wilson [2] indicated that they can find the

classification rules with high accuracy with this framework.

2.2 XCSI

Since in XCS, many problems involve integer attributes, an adaptation of it, the
XCSI [11], for the integer domain is adopted. Different from XCS, XCSI is modified
in its input interface, mutation, covering and subsumption.

XCSI changes the classifier condition from a string of {0,1,#} to a concatenation
of the interval predicates, int; = (I;,u;), where [; and w; are integers and denote
the lower bound and the upper bound. A classifier matches an input x with attributes
x; ifandonlyif [; < x; < w; forall x;.

The mutation operator in XCSI is different from XCS. Wilson indicates that the
best method to mutate an allele by adding a value +rand(m,), where m, is a fixed
integer, rand picks an integer.randomly from (0, my], and the sign is selected
equiprobably.

The covering occurs if there is no classifier matches x. In XCSI, the new
condition has components {ly, ug, .., ln, Uy },- Where ‘each [; = x; — rand;(r,) and
each u; = x; + rand;(r,). The value ry.is a fixed integer and rand; picks an integer
randomly from [0, r].

An interval predicate i subsumes another predicate j if [; <[; and w; = u;.
The subsumption of a classifier by another is defined if every interval predicate in the

first classifier’s condition subsumes the predicate in the second classifier’s condition.

2.3 Related Work

Learning Classifier Systems (LCS) are rule-based classifiers that learn the best
action of the given inputs. LCS was first described by Holland [1], who proposed a
framework that included the condition sensor, reinforcement learning, internal

memory, and rule generation by using a genetic algorithm (GA).

10

To solve the shortcomings of the LCS such as overgeneralization and the
difficulty to implement a comprehensive system, Wilson proposed a minimalist
version LCS, called Zeroth-Level Classifier System (ZCS) [10] in 1994. ZCS keeps
the framework of LCS but simplifies it to increase understandability and performance.
But there are still some problems in ZCS, such as path habits and recombination rules
from entirely different niches. A path habit is that ZCS may converge onto suboptimal
rules and recombining rules from different niches will generate some useless rules.

Recognizing these drawbacks, Wilson proposed XCS, which is currently the
most widely used classifier system, and has shown good results on data mining tasks
[3, 4]. The accuracy is used by XCS to determine its fitness to avoid the path habit
problem and applies recombination to the action set for making meaningful rules.
Although XCS has both good performance and knowledge visibility in many
problems, the binary inputs of XCS that are unsuitable for many inference problems
with integer attribute.

Wilson proposed an adaptation.of XCS for integer input called XCSI [11]. XCSI
is recently applied to the Wisconsin® Breast Cancer (WBC) dataset with the
performance results exceeding to other machine learning methods. However, it
usually produces a large number of rules which will lower the readability of the
classification model. In this study, a new mutation called Bit Mask is devised to
reduce the number of classification rules and therefore to improve the readability of

the generated prediction model.

11

Chapter 3 XCS with Bit Mask

3.1 Introduction to Bit Mask

As describe above, XCS is a promising methodology because of its versatility
and capability. However, it is known to generate a lot of rules, which lower the
readability of the resultant classification model. That is, People may not be able to get
the needed knowledge or useful information out of the model.

XCS with bit-mask is proposed to solve such a problem. The adopted bit-mask is
used to detect the stable building blocks in classifiers and to prevent crossover and
mutation operators from unnecessarily altering them. Consequently, the resultant
classification model needs fewer: rules than-that evolved by the original XCS to
achieve the same level of accuracy.

In this chapter, we will first present the concept and-mechanism of bit-mask into
XCS. Then, we discuss where hit-mask can be -implemented. And we channel how

bit-mask applied to different environments.

3.2 Representation

In order to apply Bit Mask to XCS classifiers, the representation of XCS rules is
modified to make them capable of finding a set of stable building blocks and
unnecessarily altering attributes. For this purpose, a parameter called bit mask (BM) is
added into the classifier representation as:

< Classifier >::= < Condition >:< Action >:< BM >:
< Payoff prediction >:< Payoff error >:
< Fitness >

BM indicates how many condition attributes unnecessarily altered in mutation and in

12

crossover operators. Rules with BM will be more stable than the standard XCS rules
and will result in fewer classifiers when the mutation and crossover operation is
triggered. For example, if the rules of the condition and the action are set as Table 1,
the attribute B and D are determined as stable building blocks in BM. Different from
the standard XCS, when the mutation and crossover operation occur, the condition

attributes in BM will not be altered to avoid generating redundant rules.

Table 3-1: Example of a bit mask data set.

A B C D E Class
Event |1 0 1 0 1 2
Rule; |1 0 1 0 1 2
Rule, |# 0 1 0 1 2
Rules |1 0 i 0 1 2
Rule, |1 0 1 0 # 2

For the binary alphabetof {0,1}, # stands for“don’t care”.

The purpose of BM is to prevent unnecessary altering. The rules generated by
mutation and crossover operations in_the standard XCS may not match the original
event and some redundant rules might occur. Through the bit mask mechanism, the
rule with BM can prevent altering stable building blocks. The collection of rules will

strongly support the original event, and may cover more subset of cases.

3.3 Algorithm of XCS with Bit Mask

In XCS, each rule contains one condition and one action, and the condition
contains n attributes. Because of the relation between conditions and actions, the
attributes also have influence on the actions. That is, when one attribute is changed, it
may produce a different action. The connection between attributes and actions is the

main idea of bit-mask. Given an environmental state, a match set will be formed in

13

the usual way [10], and its action is chosen by the system. Once an action is chosen,
the system forms an action set which consists of the classifiers in match sets
advocating the chosen action. If the chosen action is the same as the environmental
action, each attribute of the classifiers in action set will be scanned. If all the n"
attribute of classifiers in action set is same as the n™ attribute of the environmental
input, the n™ attribute will be set as a stable building block. The definition of variables

and the pseudo code for Find Stable Building Blocks are shown in Figure 3-1.

/I clset: the action set of current trial
Procedure Find Stable Building Blocks (clset)
For i = 1% to N condition attribute in classifier
Boolean isStable = true;
For j = 1% to N™ classifier in clset
If the i™ attribute of the j™ classifier != the ™ attribute of input
isStable = false;
EndIf
End For
If isStable is true
The i attribute is a stable building block;
Else
The i™ attribute is not a stable building block;
EndIf
End For
End Procedure Find Stable Building Blocks

Figure 3-1: Find Stable Building Blocks

The set of stable building blocks called bit mask (BM). The current BM will be
set if the classifier has no BM. However, the current BM can’t be set directly if a BM
already exists in the classifier. The current BM has to be compared with the BM of
the classifier. If the current n" building block is also in the stable building block set of

the classifier, the n™ building block will be remained. Otherwise, the n building

14

block will be removed, and the new BM will be set on the classifier. The definition of

variables and the pseudo code for Set Stable Building Blocks are shown in Figure 3-2.

/I cl: classifier
// BM: the BM find in action set of current trial
/I cl.BM: the BM of the classifier
/INewBM: the new BM generate from BM and cl.BM
Procedure Set Bit Mask(cl, BM)
Boolean[] NewBM,;
If the classifier is no BM
cl. BM = BM,;
Else
For i = 1% to N" condition attributes
if cl.BM(i) is true and BM(i) is true
NewBM(i) is true;
Else
NewBM(i) is false
End if
End For
cl.BM = NewBM;
End If
End Procedure Set Bit Mask

Figure 3-2: Set Bit Mask

After setting BM in classifiers, we changes crossover and mutation operations in
the GA mechanism. In mutation mechanism, the condition attributes in BM are stable,
and will not be mutated. But the other attributes will be altered same as the standard
XCS. In crossover mechanism, if the two condition attributes are both in BMs, the
attributes will not perform crossover. But the other attributes will perform crossover,
and the new classifier will insert into population. If the size of classifiers is larger than

the size of environment, the compensating deletion occurs as the standard XCS.

15

Environment

*
A 4
Event Action
: 1
A Find stable
Detections g#élgé?%i?lr?%;sk Effectors
A
v
Population [P] > Action Set [A]
4&
\ 4 |
Match Set [M] Prediction Array
yy Genetic
Algorithm

Prevent
unnecessarily
altering

Figure 3-3: Framework of XCS with Bit Mask

3.4 Framework of XCS with Bit Mask

In this thesis, we concentrate on the classification problem for data mining. We
model the relation between attribute and class in a rule. With this interpretation, we
make XCS a classification system. The overall framework of XCS with bit-mask is
shown in Figure 3-3. Different from the original XCS framework, XCS with bit-mask
can be applied to much type of problems. It focuses on the bit mask mechanism and
problem of classification.

With the bit-mask capable representation and the corresponding operations, we
now describe the flow of XCS with bit-mask. We first consider the data set of a
classification problem as an environment. To simulate the occurrence of events, data
items of the data set to classify are selected randomly or sequentially as the system

input. The number of covering actions in match set is formed by the original XCS.

16

Thus, the action set can be formed. The Bit Mask mechanism is applied on the action
set to detect the stable building blocks and record stable building blocks on the
classifier. When the genetic algorithm is triggered, it will prevent unnecessarily
altering in mutation and crossover operators. Compare to the operations conducted in

the standard XCS, the bit-mask mechanism may let generate fewer redundant rules.

17

Chapter 4 Experimental Results

In previous chapters, we have briefly reviewed the original XCS framework,
introduced the concept of bit-mask, and described the purpose of XCS with bit-mask
in detail. In this chapter, we employ the XCS and XCS with bit-mask to deal with
some experiments and compare the performances, system errors, and population sizes.
The performance refers to the fraction of the last 50 exploit trials that were correct.
The system error refers to the absolute difference between the system prediction for
the chosen action and the actual external payoff, divided by the total payoff range
(1000) and the average over the last 50 exploit trials. The population size refers to the
number of macroclassifiers. We use:the XCS' system publicly on the Internet [12].
And the XCS system is modified to include the mechanisms described in chapter 3 to
establish the XCS with bit-mask'system for testing. Each. experiment is conducted for

200 independent runs, and the statistics averaged over the 200 runs are reported.

4.1 Experimental Data Sets

To briefly see the behavior of XCS with bit-mask behavior, we divide
experiments to three parts to improve the bit-mask mechanism.

* Boolean Multiplexer

First, we employ both XCS and XCS with bit-mask to tackle the boolean
multiplexer function of three different sizes, including 6 bits, 11 bits and 20 bits.
Boolean multiplexer functions are defined for binary strings of length [= k + 2.
The function result is determined by treating the first & bits as an address that indexes
into the remaining 2 bits, and the value of the indexed bit, either 0 or 1, is the

function result.

18

* Integer Test Function
Second, we employ them to deal with integer datasets. The integer datasets are
some synthetic oblique data sets [11]. The first dataset, “Random-Data2”, was
constructed by random vectors (X1, X2), with each x; a random integer from (1 , 10).
The current outcome o for each vector was selected according to
o=ifx; + x, = 11then1else0. 1)
An instance of Random-Data2 is composed by a vector and its outcome. The second
random dataset, “Random-Data9”, was constructed like Random-Data2 as follows.
Radom-Data9 has nine dimensions and the expression determining the outcome was
o=ifx; + -+ x9 = 50then1else0. (2
* Real World Data - Wisconsin Breast Cancer
We use them to deal with the real world data, Wisconsin Breast Cancer (WBC)
Database which was donated tothe UCI Repository {13] by Prof. Olvi Mangasarian
and contains 699 instances collected over time by Dr. William H. Wolberg. Each
instance of WBC database has nine attributes which-are Clump Thickness, Uniformity
of Cell Size, Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell
Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses. Each attribute
has a value between 1 and 10 inclusive. Small sample of raw data is shown as follow:
1000025,5,1,1,1,2,1,3,1,1,2 1017122,8,10,10,8,7,10,9,7,1,4
1002945,5,4,4,5,7,10,3,2,1,2 1018099,1,1,1,1,2,10,3,1,1,2
1015425,3,1,1,1,2,2,3,1,1,2 1018561,2,1,2,1,2,1,3,1,1,2
1016277,6,8,8,1,3,4,3,7,1,2 1033078,2,1,1,1,2,1,1,1,5,2
1017023,4,1,1,3,2,1,3,1,1,2 1033078,4,2,1,1,2,1,2,1,1,2
The first number is a label, the next nine attributes are the attributes, and the last is the
class level, 2 for Benign and 4 for Malignant.

The three parts of experiment described before show how XCS and XCS with

19

bit-mask classify datasets in data mining. From the classifying of the simple data set,
and boolean multiplexer function, it is shown that the XCS with bit-mask is as
feasible as the standard XCS. But the result of this experiment doesn’t directly
indicate that bit-mask mechanism is workable. We applied bit-mask mechanism to
integer domain and compared with the standard XCS. At last, the real world data set
can be viewed as a benchmark to display that the bit-mask mechanism can not only
classify dataset but also decrease the redundant rules. The experimental results are

presented in the follow sections.

4.2 Result in Boolean Multiplexer

4.2.1 6-bit Multiplexer

Figure 4-1, 4-2, 4-3 show the experimental.results for the boolean multiplexer of
6-bits. Figure 4-1 shows the performance between XCS and XCS with bit-mask,
Figure 4-2 shows the population size, and Figure 4-3 shows the system error rate. As
we can observe, XCS gets approximately 100 % performance in 4000 exploit trails,
and XCS with bit-mask gets approximately 100% performance in 4000 exploit trails,
too. For the system error, XCS gets approximately 0% system error in 6000 exploit
trails, and XCS with bit-mask gets approximately 0% system error in 6000 exploit
trails. Finally, XCS evolves the population with 29.47 classifiers, and XCS with
bit-mask evolves the population with 25.01 classifiers. Parameters of the experiment
are N =400, a =0.1, f=0.2,y = 095, 0,, =25, g, =10, x = 0.8, u = 0.04,
and P, = 0.5.

Base on the experimental results, we can find that XCS and XCS with bit-mask
can achieve the same performance, system error rate, and population size when the
exploit trails is appropriate. Thus, it can be shown that XCS and XCS with bit-mask

have the same speed of convergence. However, the effect of applying bit mask into

20

XCS appears. XCS with bit-mask can save 15.13% of population size for 6-bit

multiplexer over the 200 runs on average.

1.1 T T T T
—€— 3{CE Bit Mask Performance
—Q—XCS Performance
1k
0.9k
]
g 0.8
<
)
o
0.7k B
0.6 B
05 1 1 1 1
0 50 1o 150 200 250
Ezplore problerns

Figure 4-1: Performance of experimental results for 6-bit multiplexer
Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in

exploit trails (divided by 50). The results are averaged over 200 runs.

120 T T T T

—E&— (8 Bit Mask Population size
—&— (S Population size

30

Population size

a0 -

20
0 50 100 150 200 250

Explore problems

Figure 4-2: Population size of experimental results for 6-bit multiplexer
Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by

50). The results are averaged over 200 runs.

21

0.5 T T T

—€— (3 Bit Mask Frror Rate
—&— (S Error Rate

04t :

0.3k

Error Rate

0.2k

01F

Ezplore problems

Figure 4-3: Error rate of experimental results for 6-bit multiplexer
Error rate is the fraction of total payoff range. Explore problems is in exploit trails (divided by 50).

The results are averaged over 200 runs.

4.2.2 11-bit Multiplexer

Figure 4-4 ~ 4-6 show the experimental results for the 11-bits boolean
multiplexer. Figure 4-4 shows the performance-between XCS and XCS with bit-mask,
Figure 4-5 shows the population size, and Figure 4-6 shows the system error rate.
From the figures, the performance of XCS reached approximately 100 % in 8000
exploit trails, and the performance of XCS with bit-mask reached approximately
100% in 8000 exploit trails, too. For the system error, the system error of XCS gets
approximately 0% in 12000 exploit trails, and the system error of XCS with bit-mask
gets approximately 0% in 12000 exploit trails. For the population size, the population
size of XCS is evolved with 81.51 classifiers, and the population size of XCS with
bit-mask is evolved with 74.85 classifiers. The experimental parameters are N = 800,
a=0.1, B=02y=095, 0, =25 g =10, x=0.8, p=0.04,and P; = 0.5,

From the experimental results, we can acquire that the 11-bit multiplexer has

22

similar outcome to 6-bit multiplexer. In this experiment, XCS with bit-mask on

average saves 8.1% of population size over 200 runs.

1.1 T T T T T T T

—€— XC3 Bit Mask Performance
—&— 05 Performance

0.9

Performance
=
f=a)

0.7

0.6 -

0.5 I I I I I I I
0 50 100 150 200 250 300 350 400

Explore problems

Figure 4-4: Performance of experimental results for 11-bit multiplexer
Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in

exploit trails (divided by 50). The results are averaged over 200 runs.

350 T T T T T T T

A —©— XC8 Bit Mask Population size
500 " —— X(S Population size 4

450

[
=
=

Population size
] [3]
= o
= =

L
=

=
=

50 1 1 1 1 1 1 1
i 50 100 150 200 250 300 350 400

Ezplore problems

Figure 4-5: Population size of experimental results for 11-bit multiplexer
Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by

50). The results are averaged over 200 runs.

23

0.5 T T T T T T T

—E— (2 Bit Mask Error Rate
—— 3OS Error Rate

0.4r

Error Rate

02r

01rF

0 50 100 150 200 750 300 Tasn 400
Explore probletns

Figure 4-6: Error rate of experimental results for 11-bit multiplexer
Error rate is the fraction of total payoff range. Explore problems is in exploit trails (divided by 50).

The results are averaged over 200 runs.

4.2.3 20-bit Multiplexer

Figure 4-7 ~ 4-9 demonstrate the -experimental results for the boolean
multiplexer of 20-bits. Figure 4-7 shows_the-performance between XCS and XCS
with bit-mask, Figure 4-8 shows the population size, and Figure 4-9 shows the system
error rate. From the result, XCS gets approximately 100 % performance in 35000
exploit trails, and XCS with bit-mask gets approximately 100% performance in 35000
exploit trails, too. For the system error, XCS gets approximately 0% system error in
50000 exploit trails, and XCS with bit-mask gets approximately 0% system error in
50000 exploit trails. For the population size, XCS evolves the population with 261.52
classifiers, and XCS with bit-mask evolves the population with 247.67 classifiers. For
20-bit multiplexer, XCS with bit-mask saves 5.2% of the population size. The
experiment Parameters are as follow : N = 1600, a =0.1, f=0.2, y=0.95,

Bga = 25, €9 = 10, x = 0.8, yt = 0.04,and P, = 0.5.

24

1.1 T T T T T T T T T T T T

—E— (S Bit Mask Performance
—e— O3 Performance

0.9

Performance
=
oo

0.7

0.4

0.5 | 1 1 1 1 1 1 1 1 1 1 | 1
0 o 200 300 400 500 600 YOO E00 900 1000 1100 1200 1300 1400

Explore problems
Figure 4-7: Performance of experimental results for 20-bit multiplexer

Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in

exploit trails (divided by 50). The results are averaged over 200 runs.

1400 T T T T T T T T T T T

—&— XC3 Bit Mask Population size
—&— X8 Population size

1300

1200 L4
1100
1000

200

Population size

a00

500

400

300

1 1 1 1 1 1 1 1 1 1 1
0 o 200 3000 400 00 600 700 &00 900 1000 1100 1200 1300 1400

Ezplore problems

200

Figure 4-8: Population size of experimental results for 20-bit multiplexer
Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by

50). The results are averaged over 200 runs.

25

DS L T T T T T T T T T T T T T

—E— X8 Bit Mask Error Rate
—&— XCS Error Rate

04

Error Rate

0.2F

01

0 ! ! ! ! ! ! ! ! | G A
0 o 200 300 400 500 600 700 E00 a00 1000 1100 1200 1300 1400
Ezplore problems

Figure 4-9: Error rate of experimental results for 20-bit multiplexer
Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by

50). The results are averaged over 200 runs.

4.3 Result in Integer Test Function

4.3.1 2 dimensions

Figure 4-10, 4-11, and 4-12¢ show the" experimental results for the two
dimensions of integer, Random-Data2. For the performance at figure 4-10, XCS gets
approximately 95 % performance in 20000 exploit trails, and XCS with bit-mask gets
approximately 95% performance in 20000 exploit trails, too. For the system error at
figure 4-11, XCS gets approximately 10% system error in 15000 exploit trails, and
XCS with bit-mask gets approximately 10% system error in 15000 exploit trails. For
the population size at figure 4-12, XCS evolves the population with 51.3 classifiers,
and XCS with bit-mask evolves the population with 32.73 classifiers. Parameters of
the experiment are N =400, a =0.1, B =0.2,y =0.95, 04 =25, g =10,
x = 0.8, p=0.04,and Py = 0.5.

Base on the experimental results in integer, we can find that XCS and XCS with

26

bit-mask obtain the same performance and system error rate in the synthetic oblique
data. But for the population size, the effect of bit mask is significant in integer. As we
can see, XCS with bit-mask on average saves 36.21% of population size over 200

runs.

1.1 T T T T T T T
—&— XT3 Bit Mask Performance
—&— 308 Performance

0.9 -

Performance

08 -

0.7 L L L L L L L
0 50 100 150 200 250 300 350 400

Ezplore problems

Figure 4-10: Performance of experimental results for 2 dimensions
Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in

exploit trails (divided by 100). The results are averaged over 200 runs.

27

SD T T T T T T T
—€E— 33 Bit Mask Population size
el —&— X8 Population size n

Population size

75 I I I I I I I
i 50 10a 150 200 250 300 350 400
Explore problems

Figure 4-11: Population size of experimental results for 2 dimensions
Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by

100). The results are averaged over 200 runs.

0.5 T T T T T T T
—O— XC8 Bit Mask Error Rate
—§— XCE Error Rate
04r —
03 —
I
&
5
=
[£3]
n2r —
0 | | | | | | |
o 50 100 150 200 250 3o 350 400
Ezplore problems

Figure 4-12: Error rate size of experimental results for 2 dimensions
Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by

100). The results are averaged over 200 runs.

28

4.3.2 9 dimensions

Figure 4-13, 4-14, 4-15 demonstrate the experimental results for the nine
dimensions of integer, Random-Data9. First, Figure 4-10 shows the performance
between XCS and XCS with bit-mask. XCS gets approximately 90 % performance in
28000 exploit trails, and XCS with bit-mask gets approximately 90% performance in
28000 exploit trails, too. Second, Figure 4-11 shows the population size. XCS evolves
the population with 542.38 classifiers, and XCS with bit-mask evolves the population
with 356.23 classifiers. Finally, Figure 4-12 shows the system error rate. XCS gets
approximately 20% system error in 25000 exploit trails, and XCS with bit-mask gets
approximately 20% system error in 25000 exploit trails. Parameters are N = 800,
a=0.1, p=02y =095 6,,.=25 ¢ =10/ =08, p=004, and Py = 0.5.
In this experiment, the result.is similar to Random-Data2. XCS with bit-mask on

average saves 34.32% of the:population size over 200 runs.

11 T T T T T T T T T

—E&— (S Bit Mask Performance
—e— O3 Performance

Performance

0.6 I I I ! I ! ! I I

0 50 100 150 200 250 300 350 400 450 500
Explore problems

Figure 4-13: Performance of experimental results for 9 dimensions
Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in

exploit trails (divided by 100). The results are averaged over 200 runs.

29

750 T T T T T T T
—— ('S Bit Mask Population size
—5— XS Population size

650

600

L
wn
=

]
=
=

Population size

450

400

300 1 1 1 1 1 1
i 50 100 150 200 250 300 350 400 450 500

Ezplore problems
Figure 4-14: Population size of experimental results for 9 dimensions
Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by

100). The results are averaged over 200 runs.

T T T T T T T T T
—€— 35 Bit Mask Error Rate
—&— XC3 Error Rate

0.5+ -

=
o=

Error Rate

=
L

0.2

I I I
50 10a 150 200 250 300 350 400 450 500
Ezplore problems

0.1 I I I I I I
I

Figure 4-15: Error rate of experimental results for 9 dimensions
Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by

100). The results are averaged over 200 runs.

30

4.4 Results in Wisconsin Breast Cancer

In this section, we applied XCS and XCS with bit-mask to the WBC dataset in
the stratified tenfold cross-valuation procedure in which the system learned on the
part of the data and were test on the reminder. “Tenfold cross-valuation” is a standard
way of measuring the error rate of learning scheme on particular dataset [14].
Described the procedure briefly, the dataset is divided into 10 parts called “fold”. The
system is tested on each fold after being trained by the other 9 folds. Then the results
of the 10 test fold are average to a final score.

Figure 4-16 ~ 4-18 show the results of the performance, the population size, and
the system error rate for WBC dataset. The performance of XCS reaches
approximately 95% in 5000 exploit trails, and the performance of XCS with bit-mask
gets approximately 94% in ‘9000 exploit trails. For system error rate, XCS gets
approximately 6% system error in 4000 exploit trails, and XCS with bit-mask gets
approximately 7% system error .in 9000 exploit-trails. For the population size, XCS
evolves the population with 271.23 classifiers; and XCS with bit-mask evolves the
population with 94.58 classifiers.

Table 4-1: Result of stratified tenfold cross-valuation test on WBC dataset.

XCS XCS with bit-mask
#1 0.942 0.9
#2 0.942 0.914
#3 0.971 0.942
#4 0.914 0.928
#5 0.9 0.957
#6 0.957 0.914
#7 0.957 0.9
#8 0.9 0.914
#9 0.928 0.957
#10 0.914 0.928
Avg. 0.9325 0.9254

31

The ten test results of XCS and XCS with bit-mask are shown in Table 4-1. It
can be seen that XCS gets 93.25% of correct rate, and XCS with bit-mask also obtains
92.54% of correct rate. In this experiment, the performance of bit-mask is similar to
the original XCS. But the population size of bit-mask is smaller than the original XCS

in WBC dataset.

1.1 T T T T

T
—©— (3 Bit Mask Performance
—&— XCS Performance

Performance
=
e
T
1

0.8 B

0.7 L L L L
0 50 100 150 200 250 300

Ezplore problems

Figure 4-16: Performance of experimental results for WBC
Performance is the fraction of the last 50 exploit trials that were correct. Explore problems is in exploit
trails (divided by 100). Parameters are N =400, a = 0.1, B = 0.2,y = 0.95, 64, = 25, g, = 10,
x =08, p=0.04,and P, = 0.5.

32

300

T T
—&— (8 Bit Mask Population size

—&— 05 Population size
WO W W C

50 -

b

=

=
T

|

Population size

wn

=
T

|

IDD—g EVVVVU o0 SO0 0S D

a0 1 1 1
0 50 100 150 200 250 300

Ezplore problems

Figure 4-17: Population size'of experimental results for WBC
Population size is the number of macroclassifiers. Explore problems is in exploit trails (divided by 100).
Parameters are N = 400, a = 0.1, 8 = 0.2,y = 0.95, 04, = 25, ¢, = 10, x = 0.8, u = 0.04, and
P, = 0.5.

0s T T T T T
—€— ('3 Bit Mask Error Rate
—&— (5 Error Rate

04k =

0.3 -

Error Rate

01E

0 50 100 150 200 250 300
Explore problems

Figure 4-18: Error rate of experimental results for WBC
Error rate is the fraction of total payoff range.. Explore problems is in exploit trails (divided by 100).
Parameters are N = 400, a = 0.1, B = 0.2,y = 0.95, 84, = 25, g, = 10, x = 0.8, u = 0.04, and
P, = 0.5.

33

4.5 Discussion

Base on the experiments of the previous sections, we discovered two interesting
points. First, the bit-mask mechanism can save the population size more in integer
domain than in boolean domain. Second, it saves more rules in WBC dataset than in
synthetic oblique dataset. As for 6-bit, 11-bit, and 20-bit multiplexer, the bit-mask
only saves less than 20% of the population size. But in integer domain, it saves
30-40% of the population size. The difference between boolean and integer is
significant. When XCS is applied in boolean multiplexer, the rule’s representation is
{0,1,#}, it’s easy to define whether the rule is accepted or not. But in Integer domain,
the rule’s representation is int; = (l;,u;), where [; and u; are integers and denote
the lower bound and the upper bound.-Arule-matches an input x with attributes x;
if and only if [; < x; < u; forall x;-"There is some elasticity in integer. According to
the conception, when using the bit-mask mechanism to-avoid altering crossover and
mutation operators, it will not-produce redundant rules. The population size of system
will be saved.

The bit-mask mechanism saves 65% rules in WBC dataset, but only saves
30-40% rules in synthetic oblique dataset. The class of the synthetic oblique dataset,
Random-Data2 and Random-Data9, is made by the sum of the attributes. If the sum of
attributes in bigger than the assigned number, the class will set to 1. Otherwise, the
class will set to 0. The outcome defined by this doesn’t model the relation between
attribute and class. There is not any directly connection between attribute and class.
Unlike the real world dataset, WBC, each of attributes may give a huge influence of
the class level. Therefore, the bit-mask mechanism works better in WBC dataset than

in synthetic oblique dataset.

34

Chapter 5 Conclusions

5.1 Summary

In this paper, we first reviewed XCS briefly, followed by the introduction of the
concept of bit mask. After applying bit mask to XCS, we described the purpose of the
mechanism bit-mask and show the framework of it in detail. Finally, we implemented
XCS with bit-mask by modifying the existing XCS system and did a series of boolean
multiplexers, integer dataset, and real world dataset for both XCS and XCS with
bit-mask. By comparing the experimental results, two interesting points are discussed.
Bit mask performed better in integer domain than in boolean domain. Because of the
concept of bit mask is the relation between attribute and class, bit mask modeled the
real world data better than thesynthetic oblique datasets. The experimental results
confirmed that bit mask can' detect the stable building blocks, avoid unnecessary

altering and save the redundant rules in data mining.

5.2 Contributions

By the experimental results show in this paper, with the bit mask mechanism, it
can be applied to data mining and make the least rules to explain the dataset. The
contributions of bit mask are as follow:

e XCS generate redundant rules in mutation and crossover operator in GA.

e XCS works poorer in integer domain than in boolean domain.

* According to the experiments, bit mask can saves the rules in XCS.

* Applying bit-mask mechanism performs better in integer domain than in boolean
domain.

e Using bit mask can help XCS to promote performance

. Bit mask can find the connection between attribute and class and save rules.

35

By bit mask mechanism, people can get the required information or knowledge
from the evolved classification model. The real world dataset can be detected more
interesting information and help people to understand the implication of data with it.

Therefore, it may be proven a useful technique for data mining application.

5.3 Future Work

Further work is needed, in a variety of environments, to increase understanding
of the technique. In particular, the bit mask not did well in simple dataset such as
boolean multiplexers, there may be other methods to limit the number of bit mask that
make it better. Besides boolean and integer dataset, real number dataset should be
looked at. As for bit mask itself,.interesting research topics and directions, including
theoretical understanding and-algorithmic improvement, are waiting to be explored.
Research along this line should be continuously pursued and conducted in order to
develop classification systems that are not only feasible in theory but also viable in

practice to further advance all the related.domains and disciplines.

36

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

REFERENCE

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of
Michigan Press. ISBN: 0-2625-8111-6.

Wilson, S. W. (1998). Generalization in the XCS classifier system. In
Proceedings of the Third Annual Conference on Genetic Programming (GP 98),
pages 665-674.

Stone, C. and Bull, L. (2003). For real! XCS with continuous-valued inputs.
Evolutionary Computation, 11(3):299-336.

Wilson, S. W. (2000b)." Mining oblique data with XCS. Lecture Notes in
Computer Science, 1996:158-176.

Pei, J., Tung, A. K. H., and Han, J., Fault-tolerant frequent pattern mining:
Problems and challenges. In Proceedings of 2001 ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery (DMKD), 2001.

Han, J. and Kamber, M. (2005). Data Mining: Concepts and Techniques.
Morgan Kaufmann. ISBN: 1558609016.

Butz, M. V., Kovacs, T., Lanzi, P. L., and Wilson, S. W. (2001). How XCS
evolves accurate classifiers. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 927-934.

Butz, M. V. and Wilson, S.W. (2000). An algorithmic description of XCS.

37

Lecture Notes in Computer Science, 1996:253-272.

[9] Kovacs, T. (1999). Deletion schemes for classifier systems. In Proceedings of

the Genetic and Evolutionary Computation Conference 1999 (GECCO0-99),

pages 329-336.

[10] Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary

Computation, 2(1):1-18.

[11] Wilson, S. W. (2000b). Mining oblique data with XCS. Lecture Notes in

Computer Science, 1996:158-176.

[12] Butz, M. V. (2000). Java implementation. of XCS.

ftp://ftp-illigal.ge.uiuc.edu/pub/src/XCSJava/XCSJaval.O.tar.Z.

[13] Blake, C. and Merz, C."(1998) UCI repository of machine learning databases.

http://www.ics.uci.edu/mlearn/MLRepository.html.

[14] Witten. I. H. and E. Frank. (2000). Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations. San Francisco, CA: Morgan

Kaufmann.

38

ftp://ftp-illigal.ge.uiuc.edu/pub/src/XCSJava/XCSJava1.0.tar.Z

