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Abstract

In this paper, we analyze the convergence time of particle swarm optimization (PSO) on
the facet of particle interaction. We firstly introduce a statistical interpretation of social-only
PSO in order to capture the essence of particle interaction, which is one of the key mechanisms
of PSO. We then use the statistical model to obtain theoretical results on the convergence
time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of
on common models in practice, to verify the validity of our results, numerical experiments
are executed on benchmark functions with a regular PSO program.

1 Introduction

Particle swarm optimizer (PSO), introduced by Kennedy and Eberhart in 1995 [1, 2], is a
stochastic, population-based algorithm for solving continuous optimization problems. As shown
in [3] and by lots of real-world applications, PSO is an efficient and effective optimization
framework. Although PSO has been widely applied in many fields [4, 5, 6, 7], understanding
of PSO from the theoretical point of view is still quite limited. Most of previous theoretical
results [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] are derived under the system that assumes a fixed
attractor or a swarm consisting of one single particle. In these studies, particle interaction, one
of the key mechanisms of PSO, are obviously not taken into consideration.

Due to the lack of theoretical analysis on PSO particle interaction, in this paper, we will
make an attempt to analyze the convergence time for PSO on the facet of particle interaction.
In particular, we will firstly introduce a statistical interpretation of PSO, proposed in [19], to
capture the essence of particle interaction. We will then analyze the convergence time based on
the statistical model. Finally, numerical experiments will be conducted to confirm the validity
of our theoretical results obtained on simplified PSO, the social-only model, in a normal PSO
configuration.

In the next section, we will briefly introduce the algorithm of PSO and the statistical inter-
pretation of social-only PSO. In section 3, we will analyze the convergence time of PSO based on
the statistical model. The experimental results are presented in section 4, followed by section 5
which concludes this work.
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procedure PSO(Objective function F : Rn → R)
Initialize m particles
while the stopping criterion is not satisfied do

for i = 1, 2, . . . ,m do
if F(Xi) < F(Pbi) then

Pbi ← Xi

if F(Pbi) < F(Nb) then
Nb← Pbi

end if
end if

end for
for i = 1, 2, . . . ,m do

Vi ← wVi + Cp(Pbi −Xi) + Cn(Nb−Xi)
Xi ← Xi + Vi

end for
end while

end procedure

Figure 1: Standard PSO

2 Particle swarm optimization and the statistical interpretation

The standard PSO can be described as pseudo code shown in Figure 1. In this paper, we will
use boldface for vectors, e.g., Xi, Vi. Without loss of generality, we assume that the goal is to
minimize the objective function.

According to Figure 1, in the beginning, m particles are initialized, where m is the swarm
size, an algorithmic parameter of PSO. Each particle contains three types of information: its
location (Xi), velocity(Vi), and personal best position (Pbi). At each generation, each particle
updates its personal best position (Pbi) and neighborhood best position (Nb) according to its
objective value. After updating the personal and neighborhood best positions, each particle
updates the velocity according to Pbi and Nb. In the velocity update formula, w is the weight
of inertia which is usually a constant. Cp and Cn are random values sampled from uniform
distributions U(0, cp) and U(0, cn), where cp and cn are called acceleration coefficients. Finally,
each particle updates its position according to the velocity and then go to next generation.

From the aforementioned brief description, we can already see that particle interaction is a
crucial mechanism in the design of PSO. Although there have been previous studies on particle
interaction and the PSO behavior, most of these studies were totally based on the assumption
of fixed attractors, a false condition for PSO in action. In order to take particle interaction
into consideration, we use an alternative view of PSO that regards the whole swarm as a unity.
Instead of tracking the movement of each particle, we consider the overall swarm behavior and we
conceptually transform the state of an entire swarm into a statistical abstraction. Furthermore,
in order to concentrate on particle interaction, we adopt the social-only model of PSO [20] which
does not consider personal best positions.

The statistical interpretation of PSO, proposed in [19], is summarized in Figure 2. In the
statistical model, the exact particle locations are not traced but modeled as a distribution θ
over Rn. Velocities are viewed as random vectors V ∈ Rn. The swarm size m is considered as
the number of samples from distribution θ, since the geographic knowledge is embodied in the
distribution, the neighborhood attractor can be viewed as the best of the m samples.
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procedure Statistical interpretation of PSO(Objective function F : Rn → R)
Initialize:σ ← σ0,µ← µ0

while the stopping criterion is not satisfied do
for i = 1, 2, . . . ,m do

for j = 1, 2, . . . , n do
Pij ∼ N(µj , σ

2
j )

end for
end for
Pa = minPi

{F(Pi)}
for i = 1, 2, . . . ,m do

P′
i ← Pi + C(Pa −Pi)

end for
µ← (

∑m
i=1 P′

i)/m
σ2 ← MLE(P′

1,P′
2, . . . ,P′

m)
end while

end procedure

Figure 2: Statistical model of PSO. Distribution θ is represented by µ = (µ1, µ2, . . . , µn) and
σ = (σ1, σ2, . . . , σn). Acceleration coefficient C ∼ U(0, c).

Each particle Pi is considered as a random vector sampled from θ, and the velocity Vi is
sampled from V. The neighborhood attractor can then be defined as

Pa := min
Pi

{F(P1),F(P2), . . . ,F(Pm)} .

At each generation, Pi is updated as Pi + wVi + C(Pa−Pi). The next distribution is thus the
statistical characterization denoted by functions of the observed values:

θ ← Tp(P1, . . . ,Pm),
V ← Tv(P1, . . . ,Pm,V1, . . . ,Vm).

Since w is a constant, distribution V can be removed because given two random vectors X ∼ θ
and V ∼ V, we can simply let θ′ be the distribution of X′ := X + wV.

For simplicity, in this paper, we consider the positions of each dimension of a particle is
independently sampled from distribution θi. Consider the random variable X ∼ θi and let
E[X] = µ. If we divide the support of θi into s disjoint regions R1, . . . , Rs such that Prob[X ∈
Ri] = 1/s for i = 1, 2, . . . , s, and each region is associated with a random variable of velocity
Vi ∼ Vi. By picking xi ∈ Ri for each region, when s is sufficiently large, the swarm can be
characterized as

s∑
i=1

1
s
(xi + Vi) =

s∑
i=1

xi

s
+

s∑
i=1

Vi

s
≈ µ +

s∑
i=1

Vi

s
.

Each component of
∑s

i=1 Vi/s can be approximated with a normal distribution by the central
limit theorem. As a consequence, normal distributions are a reasonable choice for describing the
behavior of the entire swarm. We let the distribution of i-th dimension, θi, be N(µi, σ

2
i ), where

N(µi, σ
2
i ) is the normal distribution with mean µi and variance σ2

i . The update of distribution
becomes simply calculate the mean and the variance.

The mean can be calculated by taking the average of updated positions, and the variance is
calculated by using the maximum likelihood estimation (MLE). Let σt

2
i and µt

2
i be the variance

and mean of the i-th dimension at the t-th generation. Let yj = Pji and y′j = P′
ji

for j =
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1, 2, . . . ,m and let ya = Pai, y = (1/m)
∑m

j=1 y′j . To estimate the variance of the i-th dimension
at the t + 1-th generation, we use the maximum likelihood estimation (MLE). The likelihood
function L(σt

2
i ) is defined as the joint probability

L(σt
2
i ) :=

m∏
j=1

(
1√

2πσt+1
2
i

) exp(
−(y′j − y)2

2σt+1
2
i

) = (
1√

2πσt+1
2
i

)m exp(
−

∑m
j=1(y

′
j − y)2

2σt+1
2
i

) .

To find σt+1
2
i that maximizes L(σt

2
i ), we differentiate L(σt

2
i ) with respect to σt+1

2
i :

L′(σt
2
i ) = −(

m

2
)(

1√
2π

)mσt+1
−m−2
i · exp(

−
∑m

j=1(y
′
j − y)2

2σt+1
2
i

)

+ (
1√
2π

)m ·
∑m

j=1(y
′
j − y)2

2
σt+1

−m−4
i · exp(

−
∑m

j=1(y
′
j − y)2

2σt+1
2
i

) ,

the value of σt+1
2
i that maximizes L(σt

2
i ) is

∑m
j=1(y

′
j−y)2/m. As a result, in our model of PSO,

the results of MLE is σt+1
2
i =

∑m
j=1(y

′
j − y)2/m for i = 1, 2, . . . , n.

3 Convergence time analysis

In this section, we will analyze the PSO convergence time based on the aforementioned statistical
interpretation of the social-only model. As the first step, we must define the state of convergence.
Since in this work, we regard the entire swarm as a distribution, the state of convergence is then
referred to the variance of the distribution. We define the state of convergence as the variance
for every dimension is less than a given value ε > 0. By using this definition, we can now start
our analysis of PSO convergence time. To estimate the variance after distribution update, we
need following lemma from [21]:

Lemma 1. Let X1, X2, . . . , Xm ∼ N(µ, σ2). Define S =
∑m

i=1(Xi − X)2/(m − 1), where
X =

∑m
i=1 Xi/m. We have (m− 1)S ∼ σ2χ2

m−1, where χ2
m−1 is the chi-square distribution with

m− 1 degrees of freedom.

With this lemma, we can obtain

Lemma 2. Given the swarm size m, acceleration coefficient c, and variance of the i-th dimension
at the t-th generation σt

2
i , we have E[σt+1

2
i ] = [13c2 − c + 1][(m− 1)/m]σt

2
i .

Proof. We know σt+1
2
i =

∑m
j=1(y

′
j − y)2/m. The expected value is

E[
1
m

m∑
j=1

(y′j −
∑m

k=1 y′k
m

)2] =
1
m

E[
m∑

j=1

(yj + C(ya − yj)−
∑m

k=1 yk + C(ya − yk)
m

)2]

=
1
m

E[
m∑

j=1

(
m(1− C)yj − (1− C)

∑m
k=1 yk

m
)2]

=
1

m3
E[(1− C)2

m∑
j=1

(myj −
m∑

k=1

yk)2]

=
1
m

E[(1− C)2]E[
m∑

j=1

(yj −
1
m

m∑
k=1

yk)2] .
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Let S =
∑m

j=1(yj− 1
m

∑m
k=1 yk)2. Since yj ∼ N(µt+1i, σt+1

2
i ) for j = 1, 2, . . . ,m and y1, y2, . . . , ym

are i.i.d., by Lemma 1, S ∼ σt
2
i χ

2
m−1, and E[S] = (m− 1)σt

2
i . Then, we can obtain

E[σt+1
2
i ] =

1
m

E[(1− C)2]E[
m∑

j=1

(yj −
1
m

m∑
k=1

yk)2]

=
1
m

E[1− 2C + C2]E[S]

=
1
m

(
1
3
c2 − c + 1)(m− 1)σt

2
i

=(
1
3
c2 − c + 1)

m− 1
m

σt
2
i .

Lemma 2 is derived under the condition that σt
2
i is given. The following lemma will derive

the relationship between E[σt
2
i ] and E[σt+1

2
i ].

Lemma 3. E[σt+1
2
i ] = (1

3c2 − c + 1)m−1
m E[σt

2
i ].

Proof.

E[σt
2
i ] =

∫
σ2∈R+

E[σt+1
2
i |σt

2
i = σ2]Prob{σt

2
i = σ2}dσ2

=
∫

σ2∈R+

(
1
3
c2 − c + 1)

m− 1
m

σ2Prob{σt
2
i = σ2}dσ2(by lemma 2)

=(
1
3
c2 − c + 1)

m− 1
m

E[σt
2
i ] .

Now, we can obtain the relationship of convergence time and algorithmic parameters of PSO:

Theorem 4. Given swarm size m, acceleration coefficient c, ε, and σ0. Let h = maxi{σ0
2
i }. we

have E[σt
2
i ] < ε for i = 1, 2, . . . , n when [13c2−c+1][(m−1)/m] < 1 and t > log(ε/σ0

2
h)/ log([13c2−

c + 1][(m− 1)/m]).

Proof. From Lemma 3, we know

E[σt
2
i ] = (

1
3
c2 − c + 1)t(

m− 1
m

)tE[σ0
2
i ] = (

1
3
c2 − c + 1)t(

m− 1
m

)tσ0
2
i .

Since [13c2 − c + 1][(m− 1)/m] < 1, we have

E[σt
2
i ] = (

1
3
c2 − c + 1)t(

m− 1
m

)tσ0
2
i < (

1
3
c2 − c + 1)t(

m− 1
m

)tσ0
2
h < ε .

The last inequality holds because

log
(

(
1
3
c2 − c + 1)t(

m− 1
m

)tσ0
2
h

)
= t log

(
(
1
3
c2 − c + 1)(

m− 1
m

)
)

+ log σ0
2
h

< log(ε/σ0
2
h) + log σ0

2
h = log ε .

We have two corollaries immediately from Theorem 4:
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Corollary 5. Given swarm size m, acceleration coefficient c, and level of convergence ε such that
[13c2− c+1][(m− 1)/m] < 1 and ε < 1, we have E[σt

2
i ] < ε for i = 1, 2, . . . , n for t = O(− log ε).

Corollary 6. Given swarm size m, c, and ε such that [13c2 − c + 1][(m− 1)/m] < 1 and ε < 1,
there exists a constant c′ < 1 such that for t = O(−1/ log c′(1− 1/m)), we have E[σt

2
i ] < ε for

i = 1, 2, . . . , n.

Corollary 5 reveals the linear relationship between the level of convergence and the conver-
gence time, and the interpretation of Corollary 6 is that when the swarm size is sufficiently large,
the effect of enlarging swarm size on the convergence time is not important. In the next section,
we will empirically examine the two corollaries with a common, practical PSO configuration.

4 Experiments

In this section, we verify the validity of Corollaries 5 and 6 by running standard PSO. We use
two objective functions in our experiments:

• Sphere function [22]: f1(x) =
∑D

i=1 x2
i , where x ∈ [−100, 100]D.

• Schwefel’s problem 1.2 [22]: f2(x) =
∑D

i=1

(∑i
j=1 x2

j

)
, where x ∈ [−100, 100]D.

We have D = 10 for both f1(x) and f2(x) in the following experiments.
We firstly examine Corollary 5. The PSO algorithmic parameters are given as cp = 1, cn = 1,

w = 1/(2 ln 2), and swarm size = 50. The value of ε is varied from 10−1 to 10−10. For each
value of ε, we perform 100 independent runs. For each run, we count the number of generations
from initialization to the state in which variances for all dimensions are smaller than ε, and we
calculate the mean number of generations for the 100 runs.

The comparison of these experimental results and our theoretical results is shown in Figures 3
and 4. From Figure 3, we can see that the experimental results of f1(x) are very close to
−4.6 log ε + 43 = O(− log ε), and from Figure 4, the experimental results of f2(x) are very
close to −4.7 log ε + 43.5 = O(− log ε). The experimental results agree with our estimation in
Corollary 5, in which the value of − ln ε and the PSO convergence time are linearly related.

After Corollary 5 is empirically verified with standard PSO, we now examine Corollary 6.
The parameters we used in PSO are given as cp = 1, cn = 1, w = 1/(2 ln 2), and ε = 10−6. The
swarm size ranges from 50 to 1000 with step 5. For each swarm size, we perform 100 independent
runs and record the mean as we did in last experiment. The comparison of experimental and
theoretical results is shown in Figures 5, 6,7, and 8. From Figures 5 and 6, we can see that
the convergence time is close to −64.9/ log 0.555(1− 1/m) = O(−1/ log c′(1− 1/m)), where
c′ = 0.555, and in Figures 7 and 8, the convergence time is close to −99.75/ log 0.405(1− 1/m) =
O(−1/ log c′(1− 1/m)), where c′ = 0.405. As we can observe from these figures, when the swarm
size becomes large, the increase of convergence time is insignificant, confirming our estimation
in Corollary 6.

5 Conclusions

In this paper, a statistical interpretation of a simplified model of PSO was adopted to analyze
the PSO convergence time. In order to capture the essence of particle interaction, the statistical
model adopted in this paper assumed no fixed attractors. The effect of particle interaction
were included in our analysis. Our theoretical results revealed the relationship between the
convergence time and the level of convergence as well as the relationship between the convergence
time and the swarm size. Numerical results, in the standard settings of PSO, were obtained
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Figure 3: Comparison of experimental results and theoretical results from Corollary 5 of f1(x).
The x-axis represents the value of ε, and y-axis represents the mean number of generation. The
experimental results are very close to O(− log ε).
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Figure 4: Comparison of experimental results and theoretical results from Corollary 5 of f2(x).
The x-axis represents the value of ε, and y-axis represents the mean number of generation. The
experimental results are very close to O(− log ε).
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Figure 5: Comparison of experimental results and theoretical results from Corollary 6 of f1(x).
x-axis represents the swarm size ranging from 50 to 200, and y-axis represents the mean number
of generation. The experimental results are very close to O(−1/ log c′(1− 1/m)) with c′ < 1.
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Figure 6: Comparison of experimental results and theoretical results from Corollary 6 of f1(x).
x-axis represents the swarm size ranging from 50 to 1000, and y-axis represents the mean number
of generation. The experimental results are very close to O(−1/ log c′(1− 1/m)) with c′ < 1.
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Figure 7: Comparison of experimental results and theoretical results from Corollary 6 of f2(x).
x-axis represents the swarm size ranging from 50 to 200, and y-axis represents the mean number
of generation. The experimental results are very close to O(−1/ log c′(1− 1/m)) with c′ < 1.
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Figure 8: Comparison of experimental results and theoretical results from Corollary 6 of f2(x).
x-axis represents the swarm size ranging from 50 to 1000, and y-axis represents the mean number
of generation. The experimental results are very close to O(−1/ log c′(1− 1/m)) with c′ < 1.
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to empirically verify our theoretical results derived with a simplified PSO configuration. The
agreement between the experimental and theoretical results indicated the importance of particle
interaction in PSO. Consequently, more research effort should be invested into analyzing the
working of particle interaction in order to better understand particle swarm optimization.
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