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Abstract

LT codes have been a popular and practical technique in the field of channel coding
since their proposal. The key component of LT codes is a degree distribution which is used
to determine the relationship between source data and codewords. Luby in his proposal
suggested a general method to construct feasible degree distributions. Such a general design
works appropriately in typical situations but not optimally in most cases. To explore the
full potential of LT codes, in this work, we make the first attempt to introduce evolutionary
algorithms to optimize the degree distribution in LT codes. Degree distributions are encoded
as real-valued vectors and evaluated by numerical simulation of LT codes. For applications
of different natures, two objectives are implemented to search good degree distributions with
different decoding behavior. Compared with the original design, the experimental results are
quite promising and demonstrate that the degree distribution can be customized for different
purposes. In addition to manually adjusting the degree distribution as the common practice,
the work presented in this paper provides an efficient alternative approach to use and adapt
LT codes for both practitioners and researchers.

1 Introduction

Digital fountain codes [1] are a popular class of erasure codes in the field of communication. The
concept of fountain codes was first introduced by Byers et al. [2] in 1998. Firstly, source data
are divided into several pieces with an identical length. The length of each piece can be any bits
or even several bytes. Sender generates encoded packets, or called encoded symbols when the
packet length is one bit, by certain particular encoding operation. The encoding and sending
procedure may repeat independently and unlimitedly. Infinite encoded packets are sent out
continuously like a fountain, which is an important property of fountain codes called rateless. If
a receiver is interested in receiving the data, it can receive the packet flow any time and collect
the packets with any combination. Once sufficient packets, of which the amount is usually
slightly more than that of the source data, are obtained, the source data can be fully recovered.
During the process, no further communication is required between sender and receiver. Encoding
information can be embedded in each packet. As a result, digital fountain codes are especially
useful in broadcast or other situations in which back channel are unavailable. Moreover, because
source data can be reconstructed no matter which packets are received, fountain codes are also
considered reliable to handle the problem of packet loss.

Luby Transform (LT) codes [3] proposed by Luby in 2002 is the first practical framework and
implementation of fountain codes. A novel coding mechanism based on a specifically designed
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degree distribution is proposed in the introduction of LT codes. The performance of LT codes
totally depends on the adopted degree distribution. In his proposal, Luby deigned a general
method to construct an appropriate degree distribution to be used in LT codes, and the degree
distribution was named soliton distribution. Via theoretical analyses, the feasibility of soliton
distribution was proven in the literature [4]. Recently, researchers started to optimize the degree
distribution in order to improve the performance of LT codes [5, 6], but the obtained improve-
ment is quite limited. In these studies, only the parameters of soliton distribution were tuned
and considered as decision variables, while in the present work, we directly consider the degree
distribution itself as our decision variables.

Base on LT codes, an improved framework call Raptor codes [7, 8] was proposed by Shokrol-
lahi. Shokrollahi integrated LT codes with a pre-coding layer. Compared with pure LT codes,
the design of Raptor codes requires a degree distribution, called weakened LT, with some very
different behavior and properties. Several instances were given in [9] for certain particular sizes
of source symbols, but there is no existing guidelines regarding how to construct suitable de-
gree distributions for the other sizes. For this regard, we demonstrate the use of optimization
techniques proposed in evolutionary computation for obtaining degree distributions of different,
desired properties.

In this paper, according to our limited knowledge, we make the first attempt to utilize evo-
lutionary computation techniques to optimize the degree distribution for LT codes and demon-
strate the feasibility of customizing degree distributions for different purposes. Particularly, we
adopt the covariance matrix adaptation evolution strategy (CMA-ES) [10] to directly optimize
degree distribution for two goals: reducing the overhead and lowering the failure rate. The
experimental results are remarkably promising and show that significantly reduced overheads
and lower failure rates can be achieved for LT codes with the obtained degree distribution for a
wide range of source symbol sizes.

The remainder of this paper is organized as follows. Section 2 describes the detailed opera-
tions of LT codes include the coding process and soliton distribution proposed by Luby. Section 3
introduces the evolutionary algorithm used in this paper. Experiments and results are given in
section 4. Finally, section 5 concludes this paper.

2 LT codes

Luby introduced a new fountain code framework and gave the detail of coding operation in
2002 [3]. Similar to other fountain codes, source symbols are randomly chosen to be encoded
into codewords (encoded symbols). The encoding operation is achieved by a simple boolean
operator, XOR. The relation between source data and encoded symbols can be modeled as a
sparse bipartite graph. A critical change in LT codes is to decide the degree of each vertex in the
bipartite graph with a probability distribution. The connectivity can be recorded as a encoding
matrix and each column represents an encoded symbol. Originally, k source symbols can be fully
decoding by Gaussian elimination if there exist k linearly independent columns. However, Gaus-
sian elimination is prohibitively expensive for its computational complexity of O(k3). Therefore,
the belief propagation (BP) algorithm [11] is introduced to replace the expensive Gaussian elim-
ination in the LT decoding phase. Overhead of coding is used to trade computing time because
belief propagation is more efficient but more encoded symbols are needed for successful decod-
ing. Moreover, the performance of LT codes is very sensitive to the degree distribution. A good
degree distribution is necessary to co-operate with belief propagation. Luby suggested soliton
distributions for LT framework in his proposal of LT codes. According to the mathematical
verification, the properties of soliton distribution have been confirmed. In this section, details
of coding operations and soliton distributions are described.
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2.1 Encoding and decoding

Given the source data, we suppose that the source data can be cut in k source symbols with
the same length of ` bits. Before every codeword is generated, a degree d is chosen at random
according to the adopted degree distribution ρ(d), where 1 ≤ d ≤ k and

∑k
d=1 ρ(d) = 1. The

degree d decides the how many distinct source symbols will be chosen to compose an encoded
symbol. d source symbols, called neighbors, are chosen uniformly randomly and accumulated
by XOR. In the design of LT codes, random numbers play an essential role during the encoding
process. The approach employed by LT codes for a sender to inform receivers of all encoding
information is achieved by synchronizing a random number generator with the specified random
number seed.

At the receiver side, when K encoded symbols were arrived which is usually slightly larger
than k, belief propagation is used to reconstruct the source data step by step. All encoded
symbols are initially covered in the beginning. For the first step, all encoded symbols with
only one neighbor can be directly released to recover their unique neighbor. When a source
symbol has been recovered but not processed, it is called a ripple and will be stored in a queue.
At each subsequent step, ripples are popped as a processing target one by one. A ripple is
removed from all encoded symbols which have it as neighbor. If an encoded symbols has only
one remaining neighbor after the removing, the releasing action repeats and may produce new
ripples to maintain a stable size of the queue. Maintaining the size of the ripple queue is
important because the deciding process fails when the ripple queue is empty and some source
symbols remain uncovered. In other words, more encoded symbols are required in the decoding
process. Ideally, the process succeeds if all source symbols are recovered at the end of the
decoding process.

2.2 Soliton distribution

The behavior of LT codes is completely determined by the degree distribution, ρ(d), and the
number of encoded symbols received, K, by a receiver. The overhead ε = K/k denotes the
performance of LT codes, and ε depends on a given degree distribution. Based on his theoretical
analysis, Luby proposed the ideal soliton distribution of which the overhead is 1, the best
performance, in the ideal case.
Ideal soliton distribution ρ(d):

ρ(d) =
{ 1

k for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (1)

Ideal soliton distribution guarantees that all the release probabilities are identical to 1/k at each
subsequent step. Hence, there is an expected ripple generated at each processing step when the
encoded symbol size is k. After k processing step, the source data can be ideally recovered.
Fig. 1(a) shows an example of Ideal soliton distribution for k = 30.

However, ideal soliton distribution works poorly in practice. Belief propagation may be
suspended by a small variance of the stochastic encoding/decoding situation in which no ripple
exists, because the expected ripple size is only one at any moment. According to the theory
of random walk, the probability that a random walk of length k deviates from its mean by
more than ln(k/δ)

√
k is at most δ. It is a baseline of ripple sizes which must be maintained to

complete the decoding process. Hence, in the same paper by Luby, a modified version called
Robust soliton distribution, µ(d), was also proposed.
Robust soliton distribution:

R = c · ln(k/δ)
√

k
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τ(d) =


R/ik for d = 1, ..., k/R− 1
R ln(R/δ)/k for d = k/R
0 for d = k/R + 1, ..., k

. (2)

c and δ are two parameters for tuning Robust soliton distribution. c controls the mean of the
degree distribution. Smaller value of c increases the probability of low degrees and larger one
decreases it. δ estimates that there are ln(k/δ)

√
k expected ripple size as described. Fig. 1(b) is

an example of robust soliton distribution with c = 0.1 and δ = 0.1. Robust soliton distribution
can ensure that only K = k+O(ln2(k/δ)

√
k) encoded symbols are required to recover the source

data with the successful probability at least 1-δ.
Robust soliton distribution is not only viable but also practical. The analysis of robust soliton

distribution based on probability and statistics is sound if k is infinite. However, in practice,
source data cannot be divided into infinite pieces, and as a consequence, the behavior of LT
codes will not exactly match the mathematical analysis, especially when k is small. Furthermore,
robust soliton distribution is a general purpose design. It provides a convenient way to construct
a distribution works well but not optimally. In this work, we try to customize the degree
distribution by using optimization tools proposed in the field of evolutionary computation.

3 Optimization Method

Evolution strategies (ES) are a major branch of evolutionary computation and have been devel-
oped since early 1960s. The key idea of ES is to evolve strategic parameters as well as decision
variables. ES is well-known quite capable of dealing with continuous optimization problems.
One of the simplest ES is (1+1)-ES where only one child is produced by Gaussian mutation to
compete with its parent in each generation, and the other is (1, 1)-ES which is equivalent to
random walk. Current general versions of ES are denoted as (µ+

, λ)-ES. The covariance matrix
adaptation evolution strategy (CMA-ES) [10] was firstly introduced by Hansen in 1996 and
is one of the most popular real-parameter optimization methods in evolutionary computation.
There are some variants of CMA-ES proposed in the literature [12, 13, 14]. The search ability of
CMA-ES has been theoretically analyzed and empirically verified on certain classic optimization
problems, such as Ackley’s function, Griewank’s function, and Rastrigin’s function. In CMA-ES,
only a few algorithmic parameters need to be decided because CMA-ES inherits the mechanism
to adapt strategic parameters during the evolutionary process. In this work, CMA-ES is utilized
to optimize the degree distribution in LT framework for a wide range of k, the size of source
symbols. In the remainder of this section, the way to adopt CMA-ES to handle the optimization
of degree distributions are presented in detail.

3.1 Decision Variables

The first step to use an evolutionary algorithm is to encode the decision variables of the op-
timization problem. It is not difficult in this study because a degree distribution can directly
form a real-number vector. In the evaluation phase, a real-number vector of arbitrary values
can be interpreted as a probability distribution, i.e., a degree distribution, with normalization.
Such an operation does not change the feasibility, although the problem complexity may be
slightly increased. The definition of degree distributions tells us that d ≤ k. For a specific
source symbol size k, obviously the problem dimensions is at most k. However, according to the
LT encoding/decoding operations, we usually do not need non-zero probabilities on every single
degree. Observing the soliton distributions and considering the belief propagation algorithm,
there is no necessary degree except 1, which ensures the start of belief propagation. As a result,
we optimize a selected subset of degrees in the present work. We choose some degrees called tags
to form the vector v(i) of decision variables according to the Fibonacci numbers smaller than

4



0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Degree

D
is

tr
ib

u
ti

o
n

(a) Ideal soliton distribution
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(b) Robust soliton distribution

Figure 1: Example of soliton distributions (k = 30)
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half of k. A degree distribution used in this paper hence can be represented as the following
formula.
Optimized degree distribution ω(d):

ω(d) =
{

v(i) d = the i-th Fibonacci number, d < k/2
0 otherwise

. (3)

3.2 Objectives

We try to use two indicators to evaluate degree distributions for LT codes in this paper. The
first one is the efficiency of the LT code with the optimized degree distribution which has been
discussed in section 2.2. ε denotes the expected rate of overhead to transmit data. For example,
ε = 1.2 means that in addition to the size of source data, 20% extra data are needed to recover
the complete source data. This objective is to obtain some degree distribution for a specific k
with the smallest ε. LT codes are rateless, and the coding process depends on randomness and
probability. Source data recovered by a fixed amount of encoded symbols cannot be guaranteed.
Therefore, in order to evaluate ε, we provide infinite encoded symbols, in the form of a stream
of encoded symbols, to simulate the decoding process until all source data are recovered. The
average of required encoded symbols per simulation is the fitness value of degree distributions.

The second indicator is the number of source symbols that cannot be recovered when a con-
stant ratio of encoded symbols are received. In raptor codes, Low-density-parity-check (LDPC)
[15] is introduced as a second layer pre-coding into LT codes. LDPC is a kind of forward error
correction codes, and more information can be found in [16, 17]. It can fix errors of data without
extra information as long as the errors rate is lower than certain restriction. In such a condition,
the mission of LT codes is no longer to achieve full decoding. Instead, most of source symbols
can be recovered with a small overhead is sufficient. For this purpose, we try to minimize the
number of un-recovered source symbols given a constant overhead ε.

4 Experiments and results

Two series of experiments are implemented for the two different objectives as described in
the previous section. In each experiment, tags are determined by Fibonacci numbers and the
specified source symbols size k. Tags are encoded as an individual, v(i), and represent that only
these degrees have non-zero probabilities. Initial values of tags are set as 1/|v| uniformly and
then CMA-ES is applied without any customization or modification. After a new individual
is created, it is normalized to be a valid probability distribution and evaluated for the fitness
value by simulating the LT coding process. One hundred independent runs of simulation are
conducted for each function evaluation. In the first series of experiments, we minimize the
expected number of encoded symbols for full decoding. In the second, the average number of
source symbols that cannot be recovered for a constant ε = 1.1 is considered. We call the second
indicator as failure rate. The default parameter settings given in the source code of CMA-ES
are adopted in this study except for λ = 10.

4.1 Overhead

In the first set of experiments, we try to minimize the overhead ε for different k’s. Fig. 2 presents
the improvement throughout the generations during the evolutionary process. The initial value
of an individual a uniform distribution. It is expected that overheads are quite high in the
beginning and the curves descend quickly after around 100 function evaluations. Finally, the
fitness almost converges after 200 function evaluations. Fig. 3 shows the comparison of ε between
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Table 1: The best individuals for the optimization of overhead

Degree k=100 k = 400 k = 400 k = 1000
1 0.091397 0.116375 0.16058 0.129707
2 0.310884 0.255701 0.148543 0.266133
3 0.367223 0.34174 0.412275 0.321489
5 0.042648 0.112072 0.119163 0.077045
8 0.053247 0.071726 0.052843 0.124503
13 0.048949 0.028076 0.024701 0.000258
21 0.011876 0.013169 0.035112 0.019594
34 0.073776 0.030397 0.017738 0.033607
55 0 0.000264 0.002094 0.01543
89 0 0.01109 0.009837 0.00095
144 0 0.01939 0.002946 0.000143
233 0 0 0.014167 0.00075
377 0 0 0 0.010391

the robust soliton distribution and optimized distributions. The expected overhead of robust
soliton distribution is given as:

k + O(ln2(k/δ)
√

k)
k

= 1 + O(
ln2(k/δ)√

k
) .

The value becomes smaller when k increases, and that is why the trend of Fig. 3 shows a
declination. The values of overhead are reduced at least 10% for all k’s with the optimized
degree distributions. Some distributions of the best individuals are given in Table 1. Fig. 4
illustrates each distribution and shows the histogram of successful rate in 1000 simulation runs
on the right side. Compared with similar simulation results of robust soliton distribution in
Fig. 5, the improvement is obvious.

4.2 Failure rate

Unlike the original LT codes, we are concerned with how many source symbols can be recovered
in the second set of experiments. The objective value is to compute the average number of
source symbols that cannot be recovered with a constant overhead ε. Optimization results are
shown in Fig. 6. More function evaluations are needed to search for good degree distributions.
The failure rate of the final results are less than 10−1 for all k’s when ε = 1.1. In other words,
90 percent of source symbols can be successfully recovered if extra 10 percent encoded symbols
are collected. Table 2 gives the best probability distributions found in the evolutionary process
for k = 100, k = 400, k = 700, and k = 1000. The simulation results of a constant overhead
are presented in Fig. 7. The red line denotes the behavior of uniform distribution which is the
initial value of optimization. Most of the source symbols are un-recovered except for those of
which the degree is one, i.e., with probability 1/k. The same situation happens to robust soliton
distributions because extra encoded symbols are not sufficient to complete the BP decoding
process. The behavior of LT process with the optimized degree distributions is totally different
and satisfies the characteristics of weakened LT.
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Figure 2: Evolutionary process during the optimization of overhead
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(b) k = 400
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(d) k = 1000

Figure 4: Left figures show the optimized degree distributions. Only tags are presented. Right
figures are the histogram and accumulated curve of successful rate in 1000 independent simula-
tion runs
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(b) k = 400
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(c) k = 700
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(d) k = 1000

Figure 5: For the comparison with same k’s, robust soliton distributions and the corresponding
performance indicators are shown similar to that in Fig. 4. Note that only parts of robust soliton
distributions are plotted for clarity
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Table 2: The best individuals for the optimization of failure rate

Degree k=100 k = 400 k = 400 k = 1000
1 0.083997 0.102892 0.116854 0.115278
2 0.573671 0.383164 0.29678 0.333564
3 0.161178 0.237312 0.31115 0.241065
5 0.08038 0.186475 0.171342 0.184027
8 0.096245 0.030706 0.033393 0.046818
13 0.001267 0.039075 0.025977 0.022223
21 0.002963 0.015193 0.023452 0.022914
34 0.000299 0.000167 0.016096 0.020526
55 0 0.001276 0.002602 0.00643
89 0 0.000303 0.000268 0.004594
144 0 0.003436 0.002072 0.001422
233 0 0 0.000015 0.000883
377 0 0 0 0.000257
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Figure 6: Evolutionary process during the optimization of failure rate

5 Conclusions

In this work, the first attempt to algorithmically optimize the degree distribution adopted in
LT codes was proposed. Evolutionary computation techniques were introduced to accomplish
the optimization task. Different from the previous studies reported in the literature, each prob-
ability of degrees were directly encoded as an individual to optimize. Promising experimental
results were obtained in both sets of experiments: One was to minimize the overhead, and the
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(c) k = 700

1 2 3 5 8 13 21 34 55 89 144 233 377
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Degree

P
ro

b
ab

ili
ty

1 1.05 1.1 1.15 1.2
10

−3

10
−2

10
−1

10
0

Overhead

F
ai

l r
at

e 
of

 s
ym

bo
ls

 

 

Uniform
Robust Soliton
Optimized

(d) k = 1000

Figure 7: The figure shows the significant difference of failure rate after optimization. Similar
to that in Fig. 4, only tags are shown in the figures
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other was to reducing the decoding failure rate. Our experiments showed that CMA-ES was
indeed capable of finding good degree distributions for different purposes without any guideline
or human intervention. Compared with the robust soliton distribution, the optimized overhead
was decreased as least 10% for every k in the experiments. The results of failure rate mini-
mization were also remarkably promising and able to support applications of different types and
requirements.

This study creates a new research topic in which the design of degree distributions in LT
codes can now be algorithmic and no longer has to be manually tuning parameters of robust
soliton distribution. We have empirically proved that directly manipulating the probability value
for each degree is viable and worth pursuing. Given a specific k and some expected overhead,
a degree distribution can be customized with existing optimization techniques. In addition, we
will extend the experiments to larger k for more kinds of potential applications in the near
future. The results empirically obtained by using evolutionary algorithms will be theoretically
analyzed, and general guidelines, like robust soliton distribution, that are able to be customized
for different goals and requirements for designing degree distributions are expected.
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