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Abstract

Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms that
capture the likely structure of promising solutions by explicitly building a probabilistic model
and utilize the built model to guide the further search. It is presumed that EDAs can de-
tect the structure of the problem by recognizing the regularities of the promising solutions.
However, in certain situations, EDAs are unable to discover the entire structure of the prob-
lem because the set of promising solutions on which the model is built contains insufficient
information for some parts of the problem and renders EDAs incapable of accurate model
building. In this work, we firstly propose a general concept that the effectiveness of proba-
bilistic models should be evaluated and verified in EDAs. Based on the concept, we design a
practical approach which utilizes a reserved set of individuals to inspect the built model for
the fragments that may be inconsistent with the actual problem structure. Furthermore, we
provide an implementation of the designed approach on the extended compact genetic algo-
rithm (ECGA) and conduct numerical experiments. The results indicate that the proposed
concept can significantly assist ECGA to handle problems of different scalings.

1 Introduction

Genetic algorithms (GAs) are search methods based on the paradigm of natural evolution, in
which, species of creatures tend to adapt to their living environments by mutation and inheri-
tance of useful traits. Genetic algorithms mimic this mechanism by introducing artificial selec-
tions and operators to identify and recombine partial solutions. By properly growing and mixing
good partial solutions, which are often referred to as building blocks (BBs), GAs are capable of
solving problems efficiently. The ability to implicitly process a large number of partial solutions
has been recognized as an important computational power source. According to the Schema
theorem [1], short, low-order, and highly fit substrings increase their share to be combined, and
also as stated in the building block hypothesis [2], GAs implicitly decompose a problem into
sub-problems by processing building blocks. The decompositional bias is a good strategy for
tackling many real-world problems, because many real-world problems can be reliably solved by
combining the pieces of promising solutions in the form of problem decomposition.

However, proper growth and mixing of building blocks are not always achieved. GA in its
simplest form employing fixed representations and problem-independent recombination opera-
tors often breaks the promising partial solutions while performing crossovers. Such a situation
leads to the vanishing of crucial building blocks and thus the converging to local optima. In order
to overcome the building block disruption problem, various techniques have been proposed. In
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this study, we focus on one line of such efforts which are often called the estimation of distribu-
tion algorithms (EDAs) [3]. These methods construct probabilistic models of promising solutions
and utilize the built models to generate new solutions. Early EDAs, such as the population-
based incremental learning (PBIL) [4] and the compact genetic algorithm (cGA) [5], assume no
interaction between variables. Subsequent studies start from capturing pairwise interactions,
such as mutual-information-maximizing input clustering (MIMIC) [6], Baluja’s dependency tree
approach [7], and the bivariate marginal distribution algorithm (BMDA) [8], to modeling multi-
variate interactions, such as the extended compact genetic algorithm (ECGA) [9], the Bayesian
optimization algorithm (BOA) [10], the estimation of Bayesian network algorithm (EBNA) [11],
the factorized distribution algorithm (FDA) [12], and the learning version of FDA (LFDA) [13].
With the reasoning of dependencies among variables by building probabilistic models, these
approaches can capture the problem structure and thus avoid the disruption of partial solutions.

While EDAs can provide good performance on problem optimization, most of the studies
focus on the problems composed of subproblems of equal importance. For the real-world ap-
plications, it is often the case that some parts of the problem are more important than other
parts. This situation poses two types of difficulties. Firstly, because the population processing is
statistical in nature, the disparate scaling can cause inaccurate processing of less salient building
blocks [14, 15]. Moreover, because the low salience oftentimes causes the given building block to
be processed at a later time compared to those of higher salience, the delay on the timeline may
result in the allele drifting. Some other previous studies on this topic include the explicit role of
scale in a systematic experimental setting [16], a theoretical model on convergence behavior of
exponentially scaled problems [17], and an extension to larger building blocks [18]. In this study,
we make a further attempt to enhance the flexibility and applicability of EDAs such that EDAs
can perform well on problems of different scalings. Particularly, we propose a general concept
to evaluate and verify the effectiveness of built probabilistic models, design a practical approach
to inspect the built model for inconsistent parts, and implement the proposed approach on the
extended compact genetic algorithm.

In the next section, we will explore the interaction between the scaling difficulties and the
probabilistic model building. More specifically, we will take a look at how scaling difficulties
shadow the ability of EDAs to recognize building blocks and propose the concept and approach
to resolve such a situation. In section 3, an implementation of the proposed concept on the
extended compact genetic algorithm is described in detail. Section 4 presents the empirical
results, followed by the discussion and observations on the results in Section 5. Finally, section 6
concludes this paper.

2 Effective Distributions

The primary ability of EDAs in dealing with the building block disruption problem comes from
the explicitly modeling of promising solutions by building probabilistic models. The model con-
struction algorithms, though differ in their representative power, capture the likely structures of
good solutions by processing the population-wise statistics collected from the selected solutions.
By reasoning the dependencies among different parts of the problem and the possible forma-
tions of good solutions, reliable mixing and growing of building blocks can be achieved. As noted
in [9], learning a good probability distribution is equivalent to learning linkage, where linkage
refers to the dependencies among variables or equivalently the decomposition of the problem.

It is presumed that EDAs can detect linkage by recognizing building blocks. However, in
this study, we argue that in some cases, accurate and complete linkage information can not be
acquired by distribution estimation because the selected set of solutions on which the model
is built contains insufficient information on the less salient parts of the problem. For example,
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Generation Marginal Product Model Effective Partial Model
1 [1 2 3 4] [6 11 14] [5 8 12] [7 9 13] [10 15 16] [1 2 3 4]
2 ///[1]////[2] ////[3] ///[4] [5 6 7 8] [9 12 13] [10 15 16] [11] [14] [5 6 7 8]
3 ///[1]////[2] ////[3] ///[4] ////[5] ///[6] ///[7] ////[8] [9 10 11 12] [13 15 16] [14] [9 10 11 12]
4 ///[1]////[2] ////[3] ///[4] ////[5] ///[6] ///[7] ////[8] ///[9]//////[10] /////[11] /////[12] [13 14 15 16] [13 14 15 16]

Table 1: Marginal product models built by ECGA in solving an exponentially scaled problem.
The variables are denoted by their index numbers. Each group of variables represents a model
in which a marginal distribution resides. The variables with converged alleles are crossed out.

consider a k-bit trap function,

ftrapk
(s1s2 · · · sk) = trapk(u) , where u =

k∑
i=1

si

=
{

k, if u = k ,
k − 1− u, otherwise.

,

where u is the number of ones in the string s1s2 · · · sk. Suppose that we are handling a 16-bit
maximization problem,

f(s1s2 · · · s16) =
3∑

i=0

(
103−iftrap4(s4i+1s4i+2s4i+3s4i+4)

)
,

where s1s2 · · · s16 is a solution string. We choose ECGA [9], which uses a class of multivariate
probabilistic models called marginal product models (MPMs), to tackle this problem. By ob-
serving subsequent generations of the optimization process, a series of models built by ECGA
can be shown in Table 1. The variables are denoted by their index numbers. Each group of
variables represents a marginal model in which a marginal distribution resides. The variables
with converged alleles are crossed out.

It can be observed that the models shown in Table 1 are only partially correct. More
specifically, at each generation, only the most salient building block of which the alleles have
not converged is modeled correctly. The phenomenon is caused by the fact that some parts of
the problem contribute much more than all others in combine do. If a part of the problem is
significantly more important than others, this part of the solution solely determines the chance
whether or not the solution will be selected. As a consequence, only the most salient building
block can provide sufficient information to be modeled correctly since the model searching is
performed based on the selected solutions. The rest parts of the model are simply the result of
less salient partial solutions “hitchhiking” on those more salient building blocks.

From the example, we can see that not all building blocks can be detected from a given set of
selected solutions by probabilistic model building. Model building algorithms cannot “see” the
entire structure of the problem from the selected set of solutions when disparate scalings among
different building blocks prevents the complete linkage information from being included in the
selected individuals. In this work, we will refer this concept as linkage sensibility, and those
problem structures that can be identified properly using the given set of solutions are called
sensible linkage. Based on the notion, we can re-examine EDAs on the building block disruption
problem. It is clear that building block disruption still exists in the insensible portion because
that part of the problem cannot be modeled properly. Although the example in Table 1 is an
extreme case that each subproblem is exponentially scaled, in real-world problems, it is often the
case that the subproblems are weighted differently and the linkage might be partially sensible. In
addition to building block disruption, the random drifting of the less salient parts of the problem
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makes the situation worse. Whereas the problems with these difficulties are often handled with
EDAs by increasing population sizes, in this study, we propose the idea that it is possible to
distinguish sensible linkage from insensible linkage instead of using larger populations.

The idea of sensible linkage can be closely mapped into another notion called effective distri-
butions. By effective distributions, we mean that the solution quality can be reliably advanced
by sampling the distributions. The essential condition for effective distributions is the consis-
tency with building blocks. If it is possible to extract effective distributions from the entire built
probabilistic model, we can perform partial sampling based on only the effective distributions
and leave the rest parts of the solutions unchanged. As a result, the diversity is maintained,
and we are free from building block disruption and random drifting. For the aforementioned
example of the 16-bit problem, if it is possible to identify the partial models which are really
built on the sensible linkage, such as [1 2 3 4] at the first generation and [5 6 7 8] at the second
generation (Table 1), we can sample only the corresponding, effect marginal distributions. More
specifically, at the first generation, for each solution string, we re-sample only s1s2s3s4 accord-
ing to the marginal distribution and keep s5s6 · · · s16 unchanged. At the second generation, we
re-sample only s5s6s7s8 according to the marginal distribution and keep s9s10 · · · s16 unchanged,
where s1s2s3s4 are converged. In this way, the EDA users do not have to resort to increasing
population sizes for the difficulties caused by disparate scalings.

The thought leaves us one complication: the identification of effective distributions. Direct
identification of effective distributions may not be an easy task if not impossible. If there
exists a good way to identify effective distributions, we can just employ it in the model building
process, and all the difficulties disappear. Therefore, it may be wise to adopt the complementary
approach—to identify the distributions that are not likely to be effective. If we can identify
the ineffective distributions, we can bypass them and sample only the other distributions to
approximate the effect of identifying effective distributions. The basic idea is that we split the
entire population into two populations and use only one population for building the probabilistic
model. We use the other population to collect statistics for possible indications of ineffectiveness
of the partial distributions in the probabilistic model built upon the first population. With
certain appropriate criteria, we can prune the likely ineffective portions of the model.

In the next section, we provide a reference implementation of the proposed mechanism on
ECGA with a judging criterion for deciding whether or not each distribution in a given marginal
product model is ineffective.

3 Model Pruning for ECGA

This section starts by reviewing the essential part of the extended compact genetic algorithm
(ECGA). Based on the proposed mechanism of detecting the inconsistency of statistics gath-
ered from the two populations, a technique is devised to identify the ineffective parts of the
probabilistic model. Finally, an optimization algorithm incorporating the proposed technique is
described in detail.

3.1 Extended Compact Genetic Algorithm

ECGA [9] uses a product of marginal distributions on a partition of variables. This type of dis-
tributions belongs to a class of probabilistic models known as marginal product models (MPMs).
In such a model, subsets of variables are modeled jointly, and each subset is considered inde-
pendent of others. In this work, the conventional notation is adopted that variable subsets are
enclosed in brackets.

In ECGA, both the structure and the parameters of the model are searched and optimized
using a greedy approach to fit the statistics of the selected set of promising solutions. The
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measure of a good MPM is quantified based on the minimum description length (MDL) prin-
ciple [19], which assumes that given all things are equal, simpler distributions are better than
complex ones. The MDL principle penalizes inaccurate as well as complex models, thereby,
leading to a near-optimal distribution. Specifically, the measure is the complexity of the MPM
which is quantified as the sum of the model complexity, Cm, and the compressed population
complexity, Cp.

The model complexity, Cm, quantifies the model representation in terms of the number of
bits required to store all the marginal distributions. Suppose that the given problem is of length
` with binary coding, and the variables are partitioned into m subsets with each of size ki,
i = 1 . . .m, such that ` =

∑m
i=1 ki. The marginal distribution corresponding to the ith variable

subset requires 2ki − 1 frequency counts to be completely specified. Taking into account that
each frequency count is of length log2(n + 1) bits, where n is the population size, the model
complexity can be given as

Cm = log2(n + 1)
m∑

i=1

(
2ki − 1

)
.

The compressed population complexity, Cp, quantifies the suitability of the model in terms
of the number of bits required to store the entire selected population (the set of promising
solutions selected by the selection operator) with an ideal compression scheme applied. The
compression scheme is based on the partition of the variables. Each subset of the variables
specifies an independent “compression block” on which the corresponding partial solutions are
compressed. Theoretically, the optimal compression method encodes a message of probability
pi using − log2 pi bits. Thus, taking into account all possible messages, the expected length of
a compressed message is

∑
i−pi log2 pi bits, which is optimal. In the information theory [20],

the quantity − log2 pi is called the information of that message and
∑

i−pi log2 pi is called the
entropy of the distribution. Based on the definition, the compressed population complexity can
be derived as

Cp = log2 n

m∑
i=1

2ki∑
j=1

−pij log2 pij ,

where pij is the frequency of the jth partial solution to the ith variable subset observed in the
selected population.

In the calculation of Cp, it is assumed that the jth possible partial solution to the ith
variable subset is encoded by using − log2 pij bits. This assumption is fundamental to our
proposed technique to identify the likely ineffective distributions built by ECGA. More precisely,
the information of the partial solutions, − log2 pij , is a good indicator of inconsistency of the
statistics gathered from the two populations.

3.2 Model Pruning

We propose a technique for ECGA to identify the possibly ineffective parts of a marginal product
model based on the notion that ECGA uses the compression performance to quantify the suit-
ability of a probabilistic model for the given set of solutions. The degree of compression can be
considered as a representative metric for the fitness of modeling, because all good compression
methods are based on capturing and utilizing the relationships among sampled data. Thus, if
the compression scheme of the MPM built on one set of solutions is incapable of compressing
another set of solutions sampled in the same condition, it is likely that the MPM is partially
incorrect. With this property, we can systematically check a given MPM for ineffective portions.

Suppose that the population of solutions, P , is split into two populations S and T . The
model building process is performed on S′, the set of promising solutions selected from S, and
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builds the model M . We use the statistics collected from T ′, the set of solutions selected from
T , to examine the built probabilistic model, M . Since marginal models functions independently,
they can be inspected separately. Recall that a variable subset, which specifies a marginal
model, is viewed as a “compression block” that encodes each possible partial solution according
to the distribution. The jth possible partial solution to the ith variable subset is encoded using
− log2 pij bits, where pij is the frequency of the jth possible partial solution to the ith variable
subset observed in S′. Assume that the given problem is of length ` with binary coding, and
there are m variable subsets with each of size ki, i = 1 . . .m, in the built model M . For the ith
marginal model, i = 1 . . .m, we can check whether or not

2ki∑
j=1

(− log2 pij)qij > ki , (1)

where qij is the frequency of the jth possible partial solution to the ith variable subset collected
from T ′. If Equation (1) holds, the compression scheme employed in the ith marginal model
is considered inappropriate for compressing the corresponding partial solutions in T ′, because
ki-bit partial solutions are encoded with strings of expected lengths more than ki bits. Such a
condition indicates that the model is probably ineffective because T ′ does not agree on this part
of the built model. Otherwise, it should be able to compress the partial solutions in T ′.

From the machine learning perspective [21], a good model should generalize well to unseen
instances. Otherwise, it captures coincidental regularities among the training data. If the model
building is performed on the portion where linkage is not sensible from the given set of solutions,
it will “overfit” these partial solutions which are not subject to the proper selection pressure.
Consequently, the regularities captured by this part of the model tend to be inconsistent with the
actual problem structure. Furthermore, the partial solutions which are not subject to the proper
selection pressure appear to be random with a high probability, and it leads to the phenomena
of random drifting mentioned in section 1. Drifting is random by nature, and two different
populations tend to drift in different directions. Thus, we can use the statistical inconsistency
between S′ and T ′ to recognize the drifting portions of the solutions and identify the probably
ineffective parts of the model. By removing these ineffective parts, we can forge an effective
partial model.

An issue in practice of the Equation (1) calculation is that there might be possible partial
solutions which do not exist in the set of selected solutions, and − log2 pij is left undefined
because pij = 0. When such a situation occurs, pij ’s of which the values are zero are assigned a
constant less than 1/n, and all pij ’ are normalized such that the sum is 1.

3.3 ECGA with Model Pruning

In this section, the optimization procedure incorporating ECGA and the proposed technique is
described. This integration assists ECGA to achieve better performance when disparate scalings
exist in the problem.

The procedure is presented in Algorithm 1 and starts at initializing a population of solutions.
After initialization, the fitness values of solutions are evaluated, and the entire population is
randomly split into two populations. Selection is performed on the two populations separately
with the same selection pressure. Model building is performed on the first population. The
other population is used to prune the built model by utilizing the proposed technique. Finally,
all the solutions in the population are altered by sampling the remaining marginal distributions.
These steps are repeated until the stopping criteria are met.

A prominent difference between the procedure in Algorithm 1 and common EDAs is that the
sampling may not include all decision variables. The solutions are altered by sampling only on
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Algorithm 1 ECGA with Model Pruning
Initialize a population P with n individuals of length `.
while the stopping criteria are not met do

Evaluate individuals in P .
Split P into S and T at random.
S′ ← apply t-wise tournament selection on S.
T ′ ← apply t-wise tournament selection on T .
M ← build the MPM model on S′.
M ′ ← prune M based on the inconsistency with T ′.
for each marginal distribution D in M ′ do

for each individual s = s1s2 · · · s` in P do
Change the alleles in s partially by sampling D.

end for
end for

end while

the marginal distributions survived pruning. Thus, a solution string may not be modified entirely
in an iteration. The technique hence assists the EDAs to avoid random drifting and inaccurate
processing of less salient building blocks by postponing the process until the linkage becomes
sensible. In this way, better performance can be achieved in terms of function evaluations.

4 Experiments

The experiments are designed for observing the behavior of the proposed technique on problem
sets with different scalings. Furthermore, different selection pressures are taken into considera-
tions to make more thorough observations. In this study, three scaling models [22] are considered:
exponential, power-law, and uniform, and three sets of test functions, Equations (2), (3), and
(4), are constructed with ftrap4 as elementary functions. For simplicity, the splitting of popula-
tion is performed in the way that the two resulting populations are disjoint and equally large.
The stopping criterion is set such that a run is terminated when all solutions in the population
converge to the same fitness value.

Exponential:
m−1∑
i=0

5iftrap4(s4i+1s4i+2 · · · s4i+4) (2)

Power-law:
m−1∑
i=0

(i + 1)3ftrap4(s4i+1s4i+2 · · · s4i+4) (3)

Uniform:
m−1∑
i=0

ftrap4(s4i+1s4i+2 · · · s4i+4) (4)

4.1 Impact on Population Requirements

This section describes the experimental settings and results of the proposed method, ECGA
with model pruning, compared to that of the original ECGA. The problem size ranges from
40 to 80 bits (m = 10 . . . 20) with different scaling difficulties. For each problem instance, the
required minimum population size is determined by a bisection method such that m−1 building
blocks converge to the correct values on average in 50 runs. Two selection pressures are adopted
by setting tournament size t as 8 and 16.
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The empirical results on exponentially scaled problems are shown in Figure 1. The minimum
population sizes required by the proposed method are lower than that needed by the original
ECGA. Furthermore, with a higher selection pressure, the population sizes needed by the pro-
posed method grows very slowly. The same situation is observed in the function evaluations
that the proposed method works remarkably well when t = 16.

Figure 2 shows the results on power-law scaled problems. The results on the required popu-
lation size are similar to that of the previous experiment set. The proposed method uses fewer
function evaluations, but the difference reduces.

The empirical results on uniformly scaled problems are presented in Figure 3. As expected,
the proposed method requires larger population sizes than that needed by the original ECGA.
The function evaluations used by the proposed method are about twice as many as that spent
by the original ECGA under the same selection pressure.

A common phenomena appears in all the three experiment sets that the proposed method
needs more generations than the original ECGA does under the same selection pressure. In the
next section, we will further explore this phenomena using sets of experiments that augment the
population size.

4.2 Insensitivity of Population Sizes

This section describes the experiment sets that reveal the behavior of the proposed method when
the population size is increased and presents the results to illustrate the interaction between
population sizes and generations for the proposed method. In these experiments, the 60-bit
problems (m = 15) are adopted, and the population sizes are augmented proportionally to the
minimum population sizes.

As presented in Figure 4, only slight decreases in generations are achieved by increasing
population sizes on the exponentially scaled problems. The proposed method with t = 16 gives
the most reduction. With no prominent reductions in generations, the function evaluations grow
up as expected in all four settings.

Figure 5 shows the results on the power-law scaled problems. In this case, obvious reductions
in generations are observed in the proposed method. However, despite the presence of generation
reduction, the function evaluations still grow up with the increasing population size.

The most significant generation reduction is observed on the uniformly scaled problems
as presented in Figure 6. With tournament size 16, the proposed method needs only about
50% of generations when using a double sized population. It can be observed that nearly
constant function evaluations are needed in this case as long as the population size is sufficiently
large. This phenomenon might be further investigated to relieve the burden of users for setting
appropriate population sizes.

5 Discussion

The proposed method improves ECGA on problems with disparate scalings among building
blocks. As illustrated in Figures 1(c) and 2(c), prominent reductions in function evaluations are
achieved. Moreover, for the uniformly scaled problems where the linkage sets are completely
sensible, it seems that the proposed method uses just nearly twice as many function evaluations
as the original ECGA.

An extraordinary behavior of the proposed method can be observed that when a confined
population size is given, it tends to perform a time-space trading in which more generations are
spent on overcoming the problem. The most noticeable case is the uniformly scaled problem
shown in Figure 6. In this case, the proposed method with appropriate selection pressure reduces
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Figure 1: Empirical results of the proposed method compared to the original ECGA on expo-
nentially scaled problems. Two tournament sizes t = 8 and t = 16 are adopted to observe the
behavior under different selection pressures.
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Figure 2: Empirical results of the proposed method compared to the original ECGA on power-
law scaled problems. Two tournament sizes t = 8 and t = 16 are adopted to observe the behavior
under different selection pressures.
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Figure 3: Empirical results of the proposed method compared to the original ECGA on uniformly
scaled problems. Two tournament sizes t = 8 and t = 16 are adopted to observe the behavior
under different selection pressures.
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Figure 4: Results of increasing population size in solving the exponentially scaled 60-bit problem.
The population sizes are increased proportionally to the minimum required population sizes.
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Figure 5: Results of increasing population size in solving the power-law scaled 60-bit problem.
The population sizes are increased proportionally to the minimum required population sizes.
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Figure 6: Results of increasing population size in solving the uniformly scaled 60-bit problem.
The population sizes are increased proportionally to the minimum required population sizes.

the generations aggressively when a larger population size is available and keeps the growth of
function evaluations from increasing.

6 Summary and Conclusions

This paper started at reviewing previous studies on EDAs and scaling difficulties and then
illustrated how scaling difficulties shadows the ability of EDAs in recognizing building blocks.
Based on the proposed concepts of linkage sensibility and sensible linkage, the effectiveness of
distributions estimated by probabilistic model building was defined and a general idea to achieve
a more effective modeling was proposed. Finally, an implementation of the proposed technique
on ECGA was provided and experimented on the test functions with different scaling difficulties.

EDAs are undoubtedly promising optimization techniques in evolutionary computation.
Whereas most studies focus on adopting different probabilistic models, tuning algorithmic pa-
rameters, building accurate models on the given population, and applying EDAs on optimization
problems, in this study, we attempt to revisit the way EDAs operate and to resolve an impor-
tant issue which is rarely addressed: what if the information contained in the given population
is inevitably insufficient? The approach to solve this problem was proposed and successfully
implemented for ECGA. It may be adapted and carried over to other EDAs such that more
flexible and robust EDAs can be developed.
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