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Abstract

In genetic and evolutionary algorithms, the goal of linkage identification is to detect
strong relationships among the decision variables of the objective function. If such relations
can be identified, the crossover operator can accordingly mix and recombine the identified
sub-solutions without destroying them. In our previous study, we have proposed a linkage
identification technique, called inductive linkage identification (ILI), which integrates the
mechanisms of perturbation and decision tree induction. With the proposed technique,
linkage information of the objective function can be acquired via constructing an ID3 decision
tree to model the mapping from solution strings to their corresponding fitness changes caused
by perturbations and then inspecting the constructed decision tree for the decision variables
exhibiting strong interdependencies with one another. In this study, we observe the behavior
of ILI on decomposable problems of different subproblem complexities and make an attempt
to understand the population requirement of the proposed linkage identification technique.
The experimental results demonstrate that the population size required by ILI to correctly
learn linkage grows sub-linearly with the problem size while grows exponentially with the
complexity of constituting subproblems.

1 Introduction

The encoding scheme adopted in genetic and evolutionary algorithms is crucial to successful
applications. If the decision variables bearing strong relationship are loosely coded in the
representation, unless carefully designed mechanisms are adopted for compensation, problem-
independent crossover operators tend to disrupt promising sub-solutions, which are often referred
to as building blocks (BBs), rather than to properly mix them. However, problem-specific do-
main knowledge to avoid this pitfall is not always available. For the situations with insufficient
linkage information, specifically devised methods are needed to detect the problem structure
and to identify the dependencies among variables.

To tackle the building block disruption problem, a variety of methods have been proposed
in the literature. These methods can be roughly classified into three categories:

1. Evolving representations and/or operators;

2. Building probabilistic models on promising solutions;

3. Perturbing variables and analyzing fitness changes.
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The goal of the techniques in the first class is to adapt the representation during the search
process such that the promising sub-solutions are less likely to be separated by crossover. In
this line of research, the messy GA (mGA) [1] and its more efficient descendant—the fast messy
GA (fmGA) [2]—detect linkage by exploiting building blocks. One of the major issue of these
techniques is that the reordering mechanism often acts too slow and loses the race against
selection, resulting in premature convergence. Another technique in this category, the linkage
learning GA (LLGA) [3], employs a two-point crossover over a circular representation of strings
to maintain tight linkage. While LLGA works well on exponentially scaled problems, it is
inefficient in handling uniformly scaled problems [3] [4].

The approaches in the second class are often referred to as estimation of distribution al-
gorithms (EDAs) [5]. These methods build probabilistic models on selected individuals and
sample the built model to generate offspring individuals. Early EDAs, such as the population-
based incremental learning (PBIL) [6] and the compact genetic algorithm (cGA) [7], assume
no interaction between variables. Subsequent studies start from modeling pairwise interactions,
such as mutual-information-maximizing input clustering (MIMIC) [8], Baluja’s dependency tree
approach [9], and the bivariate marginal distribution algorithm (BMDA) [10], to capturing multi-
variate interactions, such as the extended compact genetic algorithm (ECGA) [11], the Bayesian
optimization algorithm (BOA) [12], the factorized distribution algorithm (FDA) [13], and the
learning version of FDA (LFDA) [14]. The model building process usually requires no additional
function evaluations. Thus, these methods can perform effectively especially for the situations
in which the performance are bounded by fitness function evaluations. However, it is difficult
for them to correctly model low salience building blocks [15].

In the third category, the methods analyze the fitness differences caused by perturbing the
variables to detect dependencies. For example, the gene expression messy GA (GEMGA) [16]
detects the sets of tightly linked variables represented by weights assigned to each solution
with perturbation. Linkage identification by nonlinearity check (LINC) [17] detects nonlinearity
by using pairwise perturbations to capture the linkage information. The descendant of LINC,
linkage identification by non-monotonicity detection (LIMD) [18], uses non-monotonicity instead
of nonlinearity and detects linkage by checking the monotonicity condition violations. Combining
the ideas of EDAs and perturbation methods, dependency detection for distribution derived from
fitness differences (D5) [15] detects the variable dependencies by estimating the distributions of
strings clustered with fitness differences. Although perturbation methods require extra function
evaluations, they have the advantage of being able to identify low salience building blocks.

In our previous work, a new linkage identification technique based on perturbation, called
inductive linkage identification (ILI), was proposed [19], in which ID3 [20], a supervised learning
method well-established in the field of machine learning, was adopted to construct a decision tree
to predict the fitness changes. The advantages of ILI include requiring fewer function evaluations
than other perturbation methods and no need for setting the problem complexity parameter.
In this paper, we make further attempts to inspect the behavior and the characteristics of
ILI. In particular, we perform controlled experiments using problems with different subproblem
complexities and observe the growth of required population sizes for correctly identifying the
underlying problem structure.

The rest of this paper is organized as follows. In section 2, the background of the linkage in
GAs and the decomposability of problems is briefly introduced. Section 3 describes ILI in detail
with an illustrative example. Section 4 shows the empirical results, followed by the summary
and conclusions in section 5.
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2 Linkage and Building Blocks

In this section, we briefly review the definitions used in the remainder of this paper. As stated
in [21], “two variables in a problem are interdependent if the fitness contribution or optimal
setting for one variable depends on the setting of the other variable,” and such relationship among
variables is often referred to as linkage. In order to obtain the complete linkage information of one
variable pair, the fitness contribution or optimal setting of the two variables shall be examined
on all possible value combinations of the other variables. Although in general, obtaining the
complete linkage information is computationally expensive, linkage should be estimated with a
reasonable amount of efforts if the problem is decomposable.

According to the Schema theorem [22], short, low-order, and highly fit sub-solutions increase
their market share to be combined. Also stated in the building block hypothesis, genetic algo-
rithms implicitly decompose a problem into sub-problems by processing building blocks. It is
considered that combining sub-solutions is essential for genetic algorithms as well as consistent
with human innovation [23]. Such a condition leads to the proposal of a problem model, called
the additively decomposable function (ADF), written as a sum of low-order sub-functions.

Let a string s of length ` represent a solution string, where s = s1s2 · · · s`. We assume
that s = s1s2 · · · s` is a permutation of the decision variables x = x1x2 · · ·x` determined by the
encoding scheme in use. The fitness of solution string s is defined as

f(s) =
m∑

i=1

fi(svi) ,

where m is the number of sub-functions, fi is the i-th sub-function, and svi is the substring for fi.
Each vi is a vector specifying the substring svi . For example, if vi = (1, 2, 4, 8), svi = s1s2s4s8.
If fi is also a sum of other sub-functions, it can be replaced by those sub-functions. Thus, each
sub-function fi can be considered as a non-linear function and we refer the number of variables
to a particular sub-function as the complexity of that sub-function.

By eliminating the ordering property of vi , we can obtain a set Vi containing the elements
in vi. The variables from the same set of Vi should be interdependent because fi is non-linear.
Thus, we refer to Vi as a linkage set. A related term, building blocks (BBs), is referred to as
the candidate sub-solutions to some sub-function. In this paper, only a subclass of the ADFs is
considered, and we concentrate on non-overlapping sub-functions. More precisely, Vi ∩ Vj = ∅ if
i 6= j. In addition, we consider the binary alphabet, and the strings are assumed to be composed
of binary variables.

3 Inductive Linkage Identification

In this section, we will introduce the idea of inductive linkage identification (ILI), proposed in
our previous study [19], with an illustrative example. Following that, the detailed description
of ILI will be provided.

Let’s consider a trap function [24, 25] of size k:

ftrapk
(s1s2 · · · sk) = trapk(u)

=
{

k, if u = k;
k − 1− u, otherwise.

,

where u is the number of ones in the string s1s2 · · · sk. Figure 1 visualizes such a function.
Now, suppose that we are dealing with an eight-bit problem

f(s1s2 · · · s8) = ftrap3(s1s2s3) + ftrap5(s4s5s6s7s8) ,

3



0 k−1 k

0

k−1

k

Unitation

F
un

ct
io

n 
V

al
ue

 

 
trap

k

Figure 1: Trap function of size k.

where s1s2 · · · s8 is an individual. The goal here is to identify the two linkage sets V1 = {1, 2, 3}
and V2 = {4, 5, 6, 7, 8}.

In the beginning, a population of individuals is randomly generated as listed in Table 1(a).
The first column lists the individuals, and the second column lists the corresponding fitness
values. As an arbitrary choice, we perturb variable s1 (0 → 1 or 1 → 0) for all the individuals
in order to identify the linkage set in which the variables are related to s1 (that is, V1). The
fitness differences caused by perturbations at variable s1, df1, are recorded in the third column
of Table 1(a).

Then, an ID3 decision tree [20] is constructed by using the population of individuals as the
training instances. Each decision variable in s1s2 · · · s8 is an attribute of the instances, and the
target values are the fitness differences df1. By setting up this configuration, an ID3 decision
tree shown in Figure 2 can be obtained. Gathering all the variables on the non-leaf nodes, we
can identify a linkage group: s1, s2, and s3 which are the decision variables corresponding to
linkage set V1. As a consequence, linkage set V1 is correctly identified.

To further illustrate this example, we may consider the rearranged population listed in
Table 1(b). In Table 1(b), the individuals from different sections bear different patterns. For
example, s1 and s3 of the strings from the first section are all 0’s. In the fourth section, values
of s1 are 1’s, and values of s3 are 0’s. Such an observation can be extended to other sections
as well. These patterns are corresponding to the paths from the leaf nodes to the root node
of the tree in Figure 2. To put it in another way, because during tree construction, the ID3
algorithm selects the variables showing strong relationship to the target values, i.e., the fitness
differences caused by perturbations, the variables belonging to the same sub-function as the
perturbed variable, s1, tend to be selected.

A more accurate explanation can be given as follows. Consider the fitness difference df1 of
string s = s1s2 · · · s8 perturbed at variable s1:

df1(s) = f(s1s2 · · · s8)− f(s1s2 · · · s8) (1)
= ftrap3(s1s2s3) + ftrap5(s4s5s6s7s8)
−ftrap3(s1s2s3)− ftrap5(s4s5s6s7s8)

= ftrap3(s1s2s3)− ftrap3(s1s2s3) .

As shown in Equation (1), fitness difference df1 is independent of variables s4, s5, · · · , s8. df1

depends on only s1, s2, and s3. Therefore, for a sufficiently large population showing some
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s1s2 · · · s8 f df1

011 01111 0 -3
001 00011 3 1
000 00100 5 1
111 01001 5 3
000 11111 7 1
101 01101 1 -1
011 00110 2 -3
110 01101 1 -1
011 00001 3 -3
111 10100 5 3
101 11110 0 -1
110 11111 5 -1
010 11011 1 1
010 01000 4 1
010 00100 4 1
000 00001 5 1
010 01100 3 1
101 10000 3 -1
100 00000 5 -1
110 11011 0 -1
001 00011 3 1
010 00111 2 1
100 00100 4 -1
000 10110 3 1
000 11100 3 1
111 01111 3 3
010 10100 3 1
001 10100 3 1
001 01000 4 1
110 01111 0 -1
(a) Original population.

s1s2 · · · s8 f df1

000 11111 7 1
000 00100 5 1
000 00001 5 1
010 01000 4 1
010 00100 4 1
000 10110 3 1
000 11100 3 1
010 01100 3 1
010 10100 3 1
010 00111 2 1
010 11011 1 1
001 01000 4 1
001 00011 3 1
001 00011 3 1
001 10100 3 1
011 00001 3 -3
011 00110 2 -3
011 01111 0 -3
100 00000 5 -1
110 11111 5 -1
100 00100 4 -1
110 01101 1 -1
110 01111 0 -1
110 11011 0 -1
101 10000 3 -1
101 01101 1 -1
101 11110 0 -1
111 01001 5 3
111 10100 5 3
111 01111 3 3

(b) Rearranged population.

Table 1: Population of solution strings.

significant statistical evidence, the independent variables will not be chosen as the decision
attributes in the decision tree. On the other hand, because ftrap3 is a nonlinear function, all the
three variables tend to be identified given a sufficiently large population containing nonlinear
points of ftrap3.

For the rest part of this example, since V1 is already identified, we arbitrarily choose another
variable which is not in V1, say, s4. The fitness differences after perturbations at variable s4

are shown in Table 2(a). With the same procedure, an ID3 decision tree is constructed and
presented in Figure 3. By inspecting the tree, we obtain the related variables s4, s5, · · · , s8

which form linkage set V2 of size 5. The example also illustrates that ILI can handle problems
composed of subproblems of various complexities (i.e., sub-function sizes).

The idea of ILI illustrated previously can be formalized as pseudo-code and presented in
Algorithm 1. ILI mainly consists of the following three steps:

1. Calculate the fitness differences by perturbations;
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Figure 2: An ID3 decision tree constructed according to Table 1.
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Figure 3: An ID3 decision tree constructed according to Table 2.

2. Construct an ID3 tree rooted at the perturbed variable;

3. Inspect the decision tree to obtain a linkage set.

The three steps repeat until all the variables of the objective function are included in their
corresponding linkage sets. In detail, ILI starts at initializing a population of individuals. After
initialization, ILI identifies one linkage set at a time using the following procedure: (1) a variable
is randomly selected to be perturbed; (2) an ID3 decision tree with the perturbed variable
specified as root is constructed according to the fitness differences caused by perturbations; (3)
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s1s2 · · · s8 f df4

011 01111 0 -5
001 00011 3 1
000 00100 5 1
111 01001 5 1
000 11111 7 5
101 01101 1 1
011 00110 2 1
110 01101 1 1
011 00001 3 1
111 10100 5 -1
101 11110 0 -1
110 11111 5 5
010 11011 1 -1
010 01000 4 1
010 00100 4 1
000 00001 5 1
010 01100 3 1
101 10000 3 -1
100 00000 5 1
110 11011 0 -1
001 00011 3 1
010 00111 2 1
100 00100 4 1
000 10110 3 -1
000 11100 3 -1
111 01111 3 -5
010 10100 3 -1
001 10100 3 -1
001 01000 4 1
110 01111 0 -5
(a) Original population.

s1s2 · · · s8 f df4

100 00000 5 1
000 00001 5 1
000 00100 5 1
111 01001 5 1
010 00100 4 1
100 00100 4 1
010 01000 4 1
001 01000 4 1
011 00001 3 1
010 01100 3 1
101 01101 1 1
110 01101 1 1
001 00011 3 1
001 00011 3 1
011 00110 2 1
010 00111 2 1
111 01111 3 -5
011 01111 0 -5
110 01111 0 -5
111 10100 5 -1
101 10000 3 -1
010 10100 3 -1
001 10100 3 -1
000 10110 3 -1
000 11100 3 -1
101 11110 0 -1
010 11011 1 -1
110 11011 0 -1
000 11111 7 5
110 11111 5 5

(b) Rearranged population.

Table 2: Population of solution strings.

by inspecting the constructed tree, the variables used in the decision tree are collected and
considered as a linkage set.

As clearly shown in Algorithm 1, the number of function evaluations required to accomplish
the task of linkage identification is proportional to the number of the linkage sets of the problem.
Suppose that we are dealing with an ADF f in which the length of solution strings is ` = k×m,
where m is the number of sub-functions forming f , and k is the size of each sub-function. ILI
needs O(m) function evaluations. As a consequence, ILI needs a number of function evaluations
growing linearly with the problem size if the population is sufficiently large. However, it is still
unknown that how large the population will be needed by ILI to correctly identify the linkage
groups of a given problem. In this study, we aim to empirically understand the relationship
between the population requirement and the complexity of subproblems.
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Algorithm 1 Inductive Linkage Identification
procedure IdentifyLinkage(f , `, n)

Initialize a population P with n strings of length `.
Evaluate the fitness of strings in P using f .
V ← {1, . . . , `}
m← 0
while V 6= ∅ do

m← m + 1
Select v in V at random.
Vm ← {v}
V ← V − {v}
for each string s(i) = s

(i)
1 s

(i)
2 · · · s

(i)
` in P do

Perturb s
(i)
v .

df (i) ← calculate the fitness difference.
end for
Construct an ID3 tree using (P, df) with v as root.
for each decision variable sj in tree do

Vm ← Vm ∪ {j}
V ← V − {j}

end for
end while
return the linkage sets V1, V2, · · · , Vm

end procedure

4 Experiments and Results

Experiment settings and empirical results are presented in this section. The experiments are
designed to reveal the population requirement for ILI to work correctly on problems composed
of subproblems of different complexities. In this study, we focus on the problems composed of
m concatenated non-overlapping trap functions as subproblems, which can be described as

f(s) =
m∑

i=1

ftrapk
(s(i−1)k+1 · · · s(i−1)k+k) ,

where k is the size of subproblems (i.e., subproblem complexity), and m is the number of
subproblems. In the experiments, k ranges from 3 to 6. The total problem sizes, `, are 60, 120,
180, · · · , 600 bits, and m is calculated by m = `/k.

For each problem instance, the goal is to determine the minimum population size required by
ILI to correctly identify all the linkage sets. The criterion to check whether a population size is
enough is that ILI can work as expected in 30 consecutive, independent runs. The experimental
procedure runs in a bisection style. An upper bound and a lower bound (2500 and 0 respectively
in this study) are set to initialize the experiments. The population size to test is the middle
value of the current upper bound and lower bound. If the identification is successful, i.e., ILI
can correctly identify all the linkage sets in 30 consecutive and independent runs, the current
middle value will be the next upper bound. If the identification is unsuccessful, the current
middle value will be the next lower bound. The procedure repeats until the difference between
the upper bound and the lower bound is less than or equal to 2.

The experimental results are shown in Figures 4 and 5. Figure 4 shows that the population
size required by ILI grows sub-linearly with the problem size if the subproblem complexity is
fixed. The results indicate that the population requirement of ILI is relatively insensitive to the
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Figure 4: The population size required by inductive linkage identification (ILI) to correctly
identify all the linkage sets in 30 consecutive, independent runs for problems of different total
sizes. For a fixed subproblem complexity, i.e., k, the population size grows sub-linearly with the
problem size.

total problem size and also grows sub-linearly with the number of subproblems. However, the
straight lines for ` = 120, 360, and 600 in Figure 5(b), of which the y-axis is log-scaled, indicate
that for a fixed problem size, the population size required by ILI grows exponentially with the
complexity of subproblems.

5 Conclusions and Future Works

In our previous work, we proposed inductive linkage identification (ILI) to identify linkage sets
of problems. ILI utilizes the technique of ID3 to estimate linkage sets. It starts with perturbing
a randomly chosen variable for all the individuals and then records the fitness differences caused
by perturbations. Based on the fitness differences, an ID3 decision tree is constructed to identify
the linkage group to which the perturbed variable belongs.

In this study, we concentrated on understanding the behavior and characteristics of ILI.
Particularly, we observed the growth of the population size required by ILI in order to correctly
identify the decomposition of problems of various subproblem complexities. A bisection method
was adopted to determine the minimum population size with which ILI could successfully ac-
complish the linkage identification task in 30 consecutive and independent runs. The numerical
results demonstrated that the required population size grows sub-linearly with the number of
subproblems while it grows exponentially with the size of subproblems.

In order to provide theoretical explanations for the reason why the population size required
by ILI grows exponentially with the size of subproblems, a population sizing model is being
developed and may reveal certain intrinsic properties of ILI or even linkage learning mechanisms.
As for the practical use, the performance and behavior of ILI on problems composed of different
types of subproblems other than traps will be examined and explored as future work.
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