FTXI: Fault Tolerance XCS in Integer

Hong-Wei Chen
Ying-Ping Chen

NCLab Report No. NCL-TR-2006003
January 2006

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road
HsinChu City 300, TATWAN
http://nclab.tw/

FTXI: Fault Tolerance XCS in Integer

Hong-Wei Chen and Ying-Ping Chen
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
{hweichen, ypchen}@cs.nctu.edu.tw

January 31, 2006

Abstract

In the realm of data mining, several key issues exists in the traditional classification
algorithms, such as low readability, large rule number, and low accuracy with information
losing. In this paper, we propose a new classification methodology, called fault tolerance XCS
in integer (FTXI), by extending XCS to handle conditions in integers and integrating the
mechanism of fault tolerance in the context of data mining into the framework of XCS. We
also design and generate appropriate artificial data sets for examine and verify the proposed
method. Using the real world data as well, our experiments indicate that FTXI can provide
the least rule number, obtain high prediction accuracy, and offer rule readability, compared
to C4.5 and XCS in integer without fault tolerance.

1 Introduction

No matter in what business, there are some history records. For example, a bank has a lot of
credit card transactions, and a supermarket has many shopping records. We believe there is
certain information in these history records. If we can get this information, we will be able to
design better strategy to get higher profit. For example, one Midwest grocery chain find that
when men bought diapers on Thursdays and Saturdays, they also tended to buy beer. The
grocery chain move the beer display closer to the diaper display. Then, beer and diapers were
sold at full price on Thursdays to increase revenue. Some relative algorithms were proposed,
and we call them methods of data mining [I]. Data mining is composed of many components.
The most famous are associative mining [2] [3], classification, and cluster.

Classification is a kind of the supervised method and is commonly used by industry. In
supervised analysis, the initial step is to assemble a subset of samples, called the training or
learning set, which were previously diagnosed by an external supervisor. Then we use the
training set to build the prediction model. Finally, we use the model to predict the class level of
the unclassified data. The classic classification algorithms include C4.5, ID3, Artificial Neural
Network(ANN) ME], Learning Classifier System(LCS) [B] and XCS [6]. The above algorithms
work successfully under their respective hypotheses.

Although the above algorithms have high accuracy, they still have problems or limitations,
such as that some data patterns can not be recognized and that the number of generated rules
is too large. If the rule number is too large, the classification model will be useless in company
decision making. For example, we can not design a strategy with one thousand different rules
contain the same class level, but it is easy when we just have ten rules. Therefore, the above

problems will result in losing the important information and in lowering readability. In order
to handle this situation, we want to propose a strategy named Fault Tolerance XCS in Integer
(FTXI), which can provide the least rule number, get high accuracy, and achieve high readabil-
ity. Particularly, we extend XCS into the integer domain. Then we modify XCS in integer to
permit fault tolerance.

In the remainder of this paper, we will discuss in detail about the problems of traditional
classification algorithms and how to handle those problems with the mechanism of fault tolerance
in section 2. We will briefly review XCS in section 3. Then, the proposed modification to
integrate the mechanism of fault tolerance into XCS will be described in detail in section 4,
followed by displaying our experimental results in section 5. Finally, we conclude the present
work in section 6.

2 Fault Tolerance in Data Mining

In this section, we will first discuss problems of traditional algorithms. Then, we will introduce
the idea of fault tolerance in the context of data mining. Finally, we we tell about how to use
the technique of fault tolerance to handle problems of traditional data mining algorithms.

2.1 Problem Description

Traditional classification algorithms can be divided into three categories. In the first category,
the classification model is a system which contains no rules, and artificial neural networks (ANN)
belongs to this category. Although ANN has a high prediction accuracy, ANN can not tell the
users why such classification decisions are made.

In the second category, the classification model works successfully only for linearly separable
data, such as C4.5 and ID3. Such a model assumes that the data is linearly separable, so it will
fail when the data is not linearly separable. In addition, this model will result in a large rule
number. Take Tables [I] and [2| as example, Table [I] shows each attribute’s possible values. A,
B, C, and D are attributes, and Class level is the attribute which we want to classify. Integer
between one to five is the attribute for possible catalog values. Zero stands for “don’t care”.
Table [2 shows some rule examples of the linearly separable algorithms. The first row of Table
means {(A=1) and (B=2) and (C=3) and (D=4) — (Class level=>5)}, and the other rows can
be interpreted in the same way. The example uses four rules for class level five, but the above
four examples have only one attribute different between each other. There are many similar
examples and they result in a rule number which is too large for a practical purpose.

In the last category, the classification tool ignores some noise information to get better
accuracy. Learning Classifier Systems (LCS) and XCS belong to this category. Take Table [2| as
example, the current rule set have rules as shown in Table [2| but the four rules will be discarded
if they are rarely triggered. As a consequence, we lose these rules in the system.

From the analysis, we can observe that the traditional data mining algorithms suffer from
huge rule numbers, lower rule readability, and information losing when the model ignores noise
by design.

2.2 Fault Tolerance

In 2001, Han et al [7] indicated that the real world tends to be diverse and dirty. There are
few non-trivial rules with high support and confidence in real data sets. Support is the times

Attribute | Possible values

A 0,1,2,3,4,5
B 0,1,2,3,4,5
C 0,1,2,3,4,5
D 0,1,2,3,4,5

Class level 1,2,3,4,5

Table 1: Attributes of rule

Attribute | A | B| C | D | Class level
rulel 1121314 5
rule2 212134 5
rule3 113314)
rule4 1121315)

Table 2: Example of linearly separable data rules

a rule is triggered. Confidence stands for accuracy of a rule. For this reason, we know that
knowledge discovery from large real-world data sets needs the mechanism of fault tolerance, as
demonstrated in the following examples.

Example 1 : To study students’ performance in several courses, we might find the follow-
ing rules:

R1: good(z,data structure) and good(z,algorithm) and

good(z,Al) and good(x,DBMS) — good(z,data mining), where good(z,y): student = get A in
course y.

R2: A student who is good in at least three out of four courses: data structure, algorithm, Al
and DBMS is also good at data mining.

R1 stands that the student = get A in data structure, algorithm, AI, and DBMS can imply
a student will get A in data mining. Although the rule has a high predict accuracy (high
confidence), it cover only a small set of cases (low support). Instead, R2 is more general than
R1 because every student satisfies R1 also satisfies R2, but not vice versa. Therefore, R2 gets
more support than R1 does. Han et al named that the rule requires data to match only part
of its left side as fault tolerance. They expect that fault tolerance operation will generate rules
with high accuracy and support.

2.3 Problems Solving

Inspired by fault tolerance, we will use such a mechanism to handle the problems of the tradi-
tional classification algorithms.

First, we focus on the problems of huge result rule numbers. In Table [2| we find it needs
four rules to represent class level 5, and this situation will become worse for the real word data.
Now we can use one rule with fault tolerance to represent these rules as shown in the following.
R3: (A=1) and (B=2) and (C=3) and (D=4) — (Class level=5) with fault tolerance=1
As aforementioned, we know R3 is more general than the rules listed in Table [2| Each rule in
Table [2| can be explained by R3. With fault tolerance, now we can reduce the four rules to only
one rule, in other words, we can make the size of the rule set one quarter in this case.

Secondly, we concentrate on low accuracy with information losing. Each rule in Table [2]

is rarely triggered, but the summation of the triggering events for all of the rule in the table
is significant enough. Therefore, if we use the R3 to replace the rules in Table 2] R3 will
be triggered more frequently and will survive during the process of building the classification
model because the record of each student satisfies the rule in Table [2] also satisfies R3. With the
two examples, we find that we can use fault tolerance to handle these traditional classification
problems successfully.

3 Brief Review of XCS

Since we adopt XCS as the underlying data mining methodology for our present work, in this
section, we will give a brief review of XCS. We will first present the history and the algorithm
of XCS. Then, we discuss the properties of XCS, followed by the discussion on why we choose
XCS as the base classification tool.

3.1 History of XCS

Learning Classifier Systems (LCS) are rule-based classifiers, consisting of a set of rules and
procedures for performing classifications and discovering rules using genetic operators. LCS was
proposed by Holland [[], who laid out a comprehensive framework that included the condition
sensor, internal memory, reinforcements, and rule generation by using a genetic algorithm (GA).

Because of LCS’s overgeneralization and the difficulty to implement a comprehensive system,
Wilson eliminated the internal memory to propose a minimalist version LCS, called Zeroth-Level
Classifier System (ZCS) [§] in 1994. ZCS has remarkably good performance with a simple
framework. ZCS still has some problems, such as path habits and recombination rules from
entirely different niches. Path habits means ZCS prematurely converge onto suboptimal rules
before the space can be properly explored. Recombining rules from different niches will result
in useless rules. Recognizing these drawbacks, Wilson proposed XCS in 1995 [6]. XCS uses the
accuracy and experience to construct its fitness to avoid the path habit problem and applies
recombination to the action set for making meaningful rules. With the new mechanisms, XCS
is improved in accuracy and system complexity.

3.2 Algorithm of XCS

XCS framework consists of two cycles, the rule evaluation cycle and the rule discovery cycle.
The rule evaluation cycle is composed of representation, fitness evaluation, cover operation, and
subsumption. The rule discovery cycle runs GA with the information collected from the rule
evaluation cycle. In the following paragraphs, we will discuss these components.

3.2.1 Representation

Representation of XCS contains three parts, condition, action and prediction reward. Condition
composed of many attributes is used to model the environment event. The value of an attribute
value can be 0, 1, or #. Zero stands for the attribute is not triggered, one means the attribute
is triggered, and # represents that the attribute is ignored. Action stands for the decided class
level when the condition match the environment event. If we take this action, in other words,
decide the class level, and put it to the environment, we will get some rewards from environment,
called prediction reward.

3.2.2 Fitness Evaluation

After describing the representation, we will discuss how to determinate the fitness of a rule. We
view the prediction reward and experience as a rule’s fitness and initialize the value with zero in
the beginning. For each environment event, there will be some match rules and they will decide
a action, class level, put it to the environment, and get rewards. If the class level XCS decides
is equal to its real class level, the reward will increase for the rule in the action set. Instead, if
we take a wrong action, the rule’s fitness will be decreased.

3.2.3 Cover Operation and Subsumption

There are two important operations in XCS, cover and subsumption. When an environment
event can not be matched with XCS’s current rule set, the cover operation will generate a new
rule to match this event for improving the accuracy. Besides, there may be some rules with the
same meaning in XCS’s framework. The subsumption operation is an mechanism designed for
this situation, and it make a rule absorb other rules if the rule is more general than other rules.

3.2.4 Genetic Algorithm

With information from the rule evaluation cycle, we apply GA to the current rule set. GA
usually uses one-point crossover and bitwise mutation on the rule set to generate new rules. In
addition, GA will hold and delete rules based on rules’ fitness values. In general, XCS will delete
rules with low accuracy and hold rules with high accuracy.

3.2.5 Flow of XCS

In the beginning, XCS randomly initializes the rule set with zero reward. The rule evaluation
cycle have four steps. First, detectors detect the state of the environment. Secondly, the system
examines the condition part of each rule to determine the match set. Thirdly, the match set
will be grouped into different sets based on their own actions, and the predict payoff for each
action is calculated to determinate the action set. Finally, effectors implement the action in the
environment, get the reward, and distribute it to the rules in the action set. After a specified
period of time, GA is executed to generate new rules and delete bad rules in the rule discovery
cycle. With this framework, Wilson expects they can find the classification rules with high
accuracy.

3.3 Properties of XCS

In the previous sections, we talk about XCS’s history and algorithm, we will discuss XCS’s
properties in this section.

e XCS has been shown capable of learning complex, non-linear classification functions that
can be used to accurately predict new cases, on a variety of problem domains.

e XCS generalizes over attributes space and under ideal condition discover a maximally
general, accurate rule set to perform classification.

e XCS offers the potential for explanatory data analysis in addition to predictive modeling
because it is rule based. In real world data mining exercises, being able to explain how a
technique forms classification is often as important as accuracy, and the techniques where

Course value 1 | value 2 | value 3

DS good | average bad
1 2 3

ALGO good | average bad
1 2 3

Al good | average bad
1 2 3

DBMS good | average bad
1 2 3

Data Mining | good | average bad
1 2 3

use 0 stand for don’t care condition

Table 3: Attributes of rule

there is difficulty to explain (such as neural networks) are often treated with suspicion in
industry.

e Unlike most rule induction algorithms, XCS does not discover and evaluate rules in isola-
tion. Instead, the two components work in parallel.

e XCS’s model may change over time for maintaining and updating classification function
without the requirement of retraining on all data.

Because of the above reasons, we believe XCS has better potential compared to ANN, C4.5,
ID3, and LCS, we choose it for the developing base of our framework.

4 FTXI

Traditional XCS takes {0,1,#} as its input, which cannot accommodate the numeric classification
problems. Hence, we will introduce a method that can transfer XCS into the integer domain.
Then, we discuss how to modify XCS to permit fault tolerance. Finally, we design a simple
strategy to avoid over-fitting. We call the extended version of XCS as the fault tolerance XCS
wn integer, FTXIL.

4.1 XCS in Integer

Although XCSI [g] was proposed in 2001, it does not fulfill our need. We design a simple integer
XCS for our own purpose. Using the same idea of XCS, for each attribute we use a numeric
value standing for its real meaning. Take Tables [3] and [4] as example, for course data structure,
we assume it can be divided into three class levels, good, average, and bad. We use 1 for good,
2 for average, 3 for bad, and 0 for don’t care. By applying this transformation, we can get rules
as in Table 4l The rulel in Table [means if a student gets a good grade in data structure, an
average grade in algorithm, a bad grade in Al, and an average grade in DBMS, we can imply
that his grade of data mining will be average. With this transformation, we can take integers
as the input to our system and handle numeric classification problems.

Attribute | DS | ALGO | AI | DBMS | Data Mining
rulel 1 2 3 2 2
rule2 2 2 3 2 2
rule3 1 3 3 2 2
rule4 1 2 3 1 2

Table 4: Example of XCS in integer

4.2 Fault Tolerance Representation

In the previous section, we tell about how to transfer XCS into the integer domain. Now we
will discuss on how to combine XCS with fault tolerance. First, we focus on the representation.
We add an attribute, FTN, which records how many attribute data do not necessarily match
the rule. Take Table [5as an example, rulel means {(A=1) and (B=2) and (C=3) and (D=2)}
— (Class level=2) with (FTN=1), in other words, a data item satisfying three attributes of
rulel still implies (Class level=2). So, the environment events {(A=1) and (B=2) and (C=3)
and (D=3)}, {(A=2) and (B=2) and (C=3) and (D=2)}, {(A=1) and (B=1) and (C=3) and
(D=2)} and {(A=1) and (B=2) and (C=1) and (D=2)} still match the fault tolerance rule. In
the traditional methods, we must use four rules to represent the four patterns, but now we can
use one rule to represent the four rules and use the sum of the four rules fitness as the fault
tolerance rule’s fitness. If the rule is rule2 in Table [5], the environment event must completely
match the rule because the FTN is zero.

4.3 Fault Tolerance Operation

We define an operation called fault tolerance to achieve the effect of fault tolerance. The fault
tolerance operation will change FTN of a rule to increase the fault capacity. Because applying
the fault tolerance operation to the rules with high fitness or zero fitness is meaningless, we put
all the rules which contain the non-zero fitness into a set, called NZS. Then, we divide NZS into
(1) top seventy percentage; and (2) the other thirty percentage. We apply the fault tolerance
operation to the bottom thirty percentage only. By do so, we can make the rules with low fitness
more general and active.

4.4 Result Rule Clearing

The main objectives of FTXI is to provide the least classification rules as well as to offer high
accuracy. Therefore, we will delete the rules of which the experience is equal one to avoid over-
fitting in the final rule set. So, we will have a lower accuracy in the training set, but get a high
accuracy in the test set. With this strategy, we can achieve our design goal.

After transferring XCS into integer, applying fault tolerance operation, and deleting over-
fitting rules, the Fault Tolerance XCS in Integer, FTXI, is then ready for action. We expect
FTXI can provide the least rule number and offer high accuracy and readability.

5 Experimental Results

Our experiments is composed of two parts. One part is to use the artificial data that is designed
for verifying the effectiveness of the mechanism of fault tolerance in classification. The artificial
data sets contain three types, perfect samples, fault tolerance samples, and error fault tolerance

Attribute | A | B| C | D | FTN | Class level
rulel 1121312 1 2
rule2 212132 0 2
rule3 11332 0 2
rule4 112131 1 2

Table 5: Example of FTXI

samples. The other part is the breast-cancer-wisconsin data set imported from the UCI Machine
Learning Repository.

Each of the four data sets is divided into the training set and the test set. We use the training
set to build the prediction model and the test set to test the model accuracy. Moreover, the
four data sets are also tested with C4.5, Integer XCS, and FTXI in ten independent runs. We
will first describe how to make meaningful artificial data by using our data generator. Then,
the experimental results on the artificial data will be presented. Finally, we will introduce the
real word data set and the experimental results.

5.1 Data Generator

Our data generator uses these symbols:
e n: integer value, seed rules number

e m: integer value, attribute number

N integer value, samples number

e TN1: integer value, training samples number

e TN2: integer value, test samples number

e FT: integer value, mismatch attribute number of data

e 0: integer value, the number of attributes will be change
e p: float value, the percentage of samples be change

e AR: array of integer, each integer represents the possible catalog of its corresponding
attribute

e \: boolean value, zero means attributes change will result in changing of class level and
one mean class level will not change no matter attributes change or not.

5.1.1 Description of Perfect Sample

Perfect samples mean there is no noise in the samples. We randomly initialize n seed rules with
m attributes and duplicate the n seed rules until the total number of sample is N. Then the
sample will be divided into two parts, the training samples and the test samples. We use the
training samples to build the predict model and use the test samples to verify the accuracy. In
our experiment for the perfect case, we set n=20 and m=10, N=10000, T'N1=2000, TN2=8000,
FT=0, 0=0, p=0,AR={10,10,10,10,10,10,10,10,10,10} ,and A=0.

XCS in Integer | FTXI | C4.5
Rule number 30.9 27.5 71
Recognition rate 100% 100% | 100%
No recognition rate 0% 0% 0%
Accuracy 100% 100% | 100%

Table 6: Results of Perfect Sample in Training Set

5.1.2 Description of Fault Tolerance Data

Fault tolerance data mean that these data contain the same class level even if there is little
difference in their attributes. In addition to the procedure of perfect sampling, we use p to
decide what the percentage of data will become fault tolerance data and o to decide how much
attributes will be altered. Finally, we set A=0 to set that class level will not be changed even if
there are different attributes. In our experiment for the fault tolerance case, we set n=20 and
m=10, N=10000, TN1=2000, TN2=8000, FT=1, o=1, p=0.5,AR={10,10,10,10,10,10,
10,10,10,10}, and A=0.

5.1.3 Description of Error Fault Tolerance Data

FError fault tolerance data mean these data contain the different class level if there is little
difference in their attributes. In addition to the procedure of perfect sampling, we use p to
decide what the percentage of data will become fault tolerance data and ¢ to decide how much
attributes will be altered. Finally, we set A=1 to set that class level will be changed even if there
are different attributes. In our experiment for the error fault tolerance case, we set n=20 and
m=10, N=10000, TN1=2000, TN2=8000, F'T=1, c=1, p=0.5,AR={10,10,10,
10,10,10,10,10,10,10} ,and A=1.

5.2 Parameters of XCS and Estimation Principle

We follow [I0] to set the parameters for XCS: N=1000, a=0.1, v=>5, 4=0.2, x=0.7 ,u=0.05
,0sub=>5, #del=5, 0GA=40, doGASubsumption=true, and doActionSetSubsumption=true. We
initialize fitness and error with small values.

In the following experimental results, we use ”Rule number” to represent how many rules
the algorithm needs in its model, "Recognition rate” to stand for the number of successfully
recognized data divided by the number of data which can be recognized, ”No recognition rate”
to represent the number of patterns the algorithm can not recognize divided by the number of
all patterns, and ” Accuracy” to be the number of successfully recognized data divided by the
number of all patterns.

5.3 Results of Perfect Sample
5.3.1 Experimental Results

Observing Table [6] we find all the algorithms in the expreiment completely handle the training
samples because of the accuracy of each algorithm is 100%. However, the rule number of each
algorithm is quite different. On the average of ten independent runs, FTXI generates 27.5 rules,
XCS in integer 30.9 generates rules, and C4.5 generates 71 rules. The experimental results
demonstrate that FTXI work very well for the perfect samples.

XCS in Integer | FTXI | C4.5

Recognition rate 100% 100% | 100%
No recognition rate 0% 0% 0%

Accuracy 100% 100% | 100%

Table 7: Results of Perfect Sample in Test Set

XCS in Integer | FTXI C4.5

Rule Number 35.5 30.6 961
Recognition Rate 99.22% 100% | 99.56%

No Recognition Rate 34.06% 0% 0%
Accuracy 65.43% 100% | 99.56%

Table 8: Results of Fault Tolerance Sample in Training Set

5.3.2 Discussion

Since our data generator will generate linearly separable data. In this case, even if the data is
linearly separable, C4.5 cannot provide the least classification rule number for the training data.

C4.5 is constructed in a top-down recursive divide-and-conquer manner. At start, all the
training examples are at root. Then examples are partitioned recursively based on the selected
attributes and a test attribute is selected on the basis of the information gain. Although the
information gain can decide the dividing attribute that makes the system entropy the least, it
cannot guarantee that such a choice is the best dividing attribute. Therefore, C4.5 has to use
71 rules in this experiment of the perfect samples, although the ideal size of the rule set is 20.

XCS in integer and FTXI both use approximate 30 rules to explain the training samples
because there are some rules with the same meaning which may subsume each other.

5.4 Results of Fault Tolerance Data
5.4.1 Experimental Results

In Table we find C4.5 and FTXI can represent the training set completely, but XCS in
integer cannot. XCS in integer can only represent 65.43% of the train set in 50% fault tolerance
data. Comparing the rule number of FTXI and that of C4.5, we can find that the rule number
generated by of FTXI is 3% of that generated by C4.5, in other words, we save 97% of the rule
number for C4.5. To analyze of the test data, in Table [9] we can find that the rules generated
for the training set can provide a very good estimation for the test set because the recognition
rate, no recognition rate, and accuracy are all similar to those in Table

XCS in Integer | FTXI | C4.5

Recognition rate 99.93% 100% | 100%
No recognition rate 34.74% 0% 0%

Accuracy 65.22% 100% | 100%

Table 9: Results of Fault Tolerance Sample in Test Set

10

XCS in Integer | FTXI C4.5

Rule number 30.9 28.6 2371

Recognition rate 98.38% 94.84% | 73.3%
No recognition rate 56.75% 42.98% | 0%

Accuracy 42.55% 54.07% | 73.3%

Table 10: Results of Error Fault Tolerance Sample in Training Set

XCS in Integer | FTXI C4.5

Recognition rate 98.58% 95.38% | 57.6%
No recognition rate 57.46% 43.96% | 0%

Accuracy 41.95% 54.80% | 57.6%

Table 11: Results of Error Fault Tolerance Sample in Test Set

5.4.2 Discussion

In the beginning, we focus on the rule numbers of FTXI and C4.5. Reviewing Tables [5] and
C4.5 generates the rules like those in Table [l and a large result rule number is inevitable.
However, FTXI uses one rule like the first row of Table [5| to represent other rules. That is the
reason why FTXI only uses 30.6 rules, but C4.5 needs 961 rules.

Then, we discuss why XCS in integer contains 34.06% samples which can not be recognized.
In the XCS framework, XCS uses GA to preserve the rules with high fitness and delete the
rules with low fitness. Fitness is composed of experience and accuracy. Experience stands for
the times of the rule is triggered. Therefore, the rules generated by the cover operation will be
deleted because of their low fitness caused by the rare triggering events. Hence, XCS cannot
recognize those data and such information is lost.

5.5 Results of Error Fault Tolerance Data
5.5.1 Experimental Results

Table shows that C4.5 offers the best representation of the training set, FTXI provides
54.07%, and XCS in integer has 42.55%. Although C4.5 offers high representation of the training
samples, it has only 57.6% accuracy of the test samples. Comparing the accuracy of FTXI and
C4.5 in Table the results are of only slight difference. In addition, C4.5 uses 2371 rules in
the prediction model, but FTXI uses only 28.6 rules. In the viewpoint of readability, FTXI has
better performance and generality.

Then, we find XCS in integer has better recognition rate than FTXI with an approximately
same rule number, and C4.5 has the worst recognition rate.

5.5.2 Discussion

Comparing C4.5’s difference of accuracy between training and test sample results, we can con-
clude that C4.5 probably builds an over-fitting classification model.

Moreover, we find the recognition rate of FTXI is lower than that of XCS in integer. Because
there are some data that cause the failure of the fault tolerance operation. Take Table [12| as an
example, if we have a rule with accuracy and fitness like
R4: (A=1) and (B=2) and (C=3) — (Class level=1) (fault tolerance=1),
each row of Table [12] will decrease the rule fitness and accuracy because of the error action

11

Data | Attributel | Attribute2 | Attribute3 | Class Level
1 1 2 3 3
2 2 2 3 2
3 1 3 3 3
4 1 2 2 4

Table 12: Error Fault Tolerance Data

decision. Despite this, FTXI’s accuracy is higher than that of XCS in integer, and FTXI’s
recognition rate is still higher compared to C4.5. Because C4.5 will assign every pattern a
class level no matter whether it collects enough information, but XCS in integer and FTXI will
distinguish recognition patterns from non-recognition patterns.

5.6 Description of Real Word Data

We used the Wisconsin Breast Cancer Database which was donated to the UCI Repository [I1]
by Prof. Olvi Mangasarian and contains 699 instances collected over time by Dr. William H.
Wolberg. Each instance contains nine attributes which are Clump Thickness, Uniformity of
Cell Size, Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei,
Bland Chromatin, Normal Nucleoli, and Mitoses. Each attribute has a value between 1 and 10
inclusive. Small sample of raw data is shown as follow:

1166654,4,10,3,5,1,10,5,3,10,2 1167439,4,2,3,4,4,2,5,2,5,1
1167471,2,4,1,2,1,2,1,3,1,1 1168359.4,8,2,3,1,6,3,7,1,1
1168736,4,10,10,10,10,10,1,8,8,8 1169049,4,7,3,4,4,3,3,3,2,7
1170419,4,10,10,10,8,2,10,4,1,1 1170420,4,1,6,8,10,8,10,5,7,1
1171710,2,1,1,1,1,2,1,2,3,1 1171710,4,6,5,4,4,3,9,7,8,3
1171795,2,1,3,1,2,2,2,5,3,2 1171845,4,8,6,4,3,5,9,3,1,1
1172152,4,10,3,3,10,2,10,7,3,3 1173216,4,10,10,10,3,10,8,8,1,1

The first number is a label, the next nine attributes are the attributes, and the last is the
class level.

5.7 Results of Real World Data
5.7.1 Experimental Results

Table [13] shows that C4.5 has the highest representation of the training data, but it needs 210
rules. Besides, we can find the best is XCS in integer, then FTXI, and the last is C4.5 in the
recognition rate. The discussion given in the previous section can also explain such a situation.
In the viewpoint of the rule number, we find that FTXI uses a half of rules generated by XCS in
integer and a quarter of rules generated by C4.5. Observing Table we find the over-fitting in
C4.5 still occurs, and its accuracy is 83%. No matter in Tables [13| or we can see that FTXI
has better performance in no recognition rate, accuracy, and the number of rules.

5.7.2 Discussion

As the experimental results we obtained on three artificial data sets, we once more have the
similar situations and outcomes for the real world data set. Therefore, the observations, expla-

12

XCS in Integer | FTXI | C4.5

Rule number 99.8 46.3 210
Recognition rate 99.55% 98.60% | 92%
No recognition rate 19.64% 15.35% | 0%
Accuracy 80% 83.46% | 92%

Table 13: Results of Real World Sample in Training Set

XCS in Integer | FTXI | C4.5

Recognition rate 98.68% 96.82% | 83%
No recognition rate 24% 14.85% | 0%
Accuracy 75% 82.3% | 83%

Table 14: Results of Real World Sample in Test Set

Run |1 [2]34]5[6][7]8]9]10
XCS in Integer

Recognition number 149 | 148 | 150 | 148 | 150 | 164 | 148 | 148 | 148 | 148

No Recognition number | 48 | 50 | 46 | 51 | 46 | 32 | 48 | 47 | 47 | 49
FTXI

Recognition number 164 | 164 | 164 | 164 | 164 | 164 | 170 | 164 | 164 | 164

No Recognition number | 30 | 29 | 32 | 30 | 32 | 29 | 25 | 30 | 28 | 32
C4.5

Recognition number 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166 | 166

No Recognition number | 0 0 0 0 0 0 0 0 0 0

Table 15

: Results of Real World Sample in Test Set

13

nations, and interpretations for the experimental results are fundamentally identical to those
presented in the previous sections. Because of the very similar results, our design to integrate
the mechanism of fault tolerance into XCS is useful and effective in the real world. Currently, in
Table we can find that recognition number of XCS in integer is around 148 and recognition
number of FTXI is around 164. So, we can observe that fault tolerance=1 can make FTXI
recognize 16 more patterns out of the 200 training samples in this case.

6 Conclusions

In this paper, we first described several problems existing in the traditional classification algo-
rithms, such as low readability, large rule number, and low accuracy with information losing.
Then, we reviewed algorithm of XCS. Finally, we proposed FTXI modified from XCS to handle
problems of traditional classification algorithms. With experimental results, we find that FTXI
solve successfully these problems.

FTXI can use the least rule number and get high accuracy and readability. It will provide
better and interesting strategies in commerce for higher profit. Besides, it also helps biologist
understand the mystery of human body. But there still are some problems in FTXI, such as
error fault tolerance data which lower the recognition rate, some rules with the same meaning
that cannot subsume each other, and automation on fault tolerance number. How to cluster
the rule set into smaller set is still an interesting work. How to apply FTXI to association rule
mining is a good question waiting to be answered.

Research along this line should be continuously pursued and conducted in order to develop
not only feasible but also practical classification systems to further advance the business, science,
and even art in the world.

Acknowledgments

The work was partially sponsored by the National Science Council of Taiwan under grant NSC-
94-2213-E-009-120. The authors are grateful to the National Center for High-performance Com-
puting for computer time and facilities.

References

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann,
2001.

[2] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining Association Rules between Sets of
Items in Large Databases,” in ACM SIGMOD, 1993.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in Very Large
Data Bases(VLDB), 1994.

[4] J. M. Zurada, Introduction to Artificial Neural Systems, 1992.
[5] J. H. Holland, “Adaptation,” in Progress in Throretical Biology, vol. 4, 1976.

[6] S. W. Wilson, “Classifier fitness based on accuracy,” Evolutionary Computation, vol. 2(2),
pp. 149-175, 1995.

14

[7] J. Pei, A. K. H. Tung, and J. Han, “Fault-Tolerant Frequent Pattern Mining: Problems
and Challenges,” in ACM-SIGMOD, 2001.

[8] S. W. Wilson, “ZCS:A zeroth level classifier system,” Evolutionary Computation, vol. 2(1),
pp. 1-18, 1994.

[9] ——, “Mining Oblique Data with XCS,” in Advances in Learning Classifier Systems, 2001.

[10] M. V. Butz and S. W. Wilson, “An Algorithm Description of XCSs,” in Advances in Learn-
ing Classifier Systems, 2001.

[11] C. Blake and C. Merz, “Uci repository of machine learning databases,” 1998,
http://www.ics.uci.edu/ mlearn/MLRepository.html.

15

	Introduction
	Fault Tolerance in Data Mining
	Problem Description
	Fault Tolerance
	Problems Solving

	Brief Review of XCS
	History of XCS
	Algorithm of XCS
	Representation
	Fitness Evaluation
	Cover Operation and Subsumption
	Genetic Algorithm
	Flow of XCS

	Properties of XCS

	FTXI
	XCS in Integer
	Fault Tolerance Representation
	Fault Tolerance Operation
	Result Rule Clearing

	Experimental Results
	Data Generator
	Description of Perfect Sample
	Description of Fault Tolerance Data
	Description of Error Fault Tolerance Data

	Parameters of XCS and Estimation Principle
	Results of Perfect Sample
	Experimental Results
	Discussion

	Results of Fault Tolerance Data
	Experimental Results
	Discussion

	Results of Error Fault Tolerance Data
	Experimental Results
	Discussion

	Description of Real Word Data
	Results of Real World Data
	Experimental Results
	Discussion

	Conclusions

