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Basic Components of ACS

Four basic components of ACS:
input interface
output interface
classifier list

message list
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ACS Classifier

Three parts of ACS classifier:
Condition part C
m Ce {0, 1, #}"
m #: DON'T CARE

Action part A

Expectation part E
m E£€ {0, 1, #}
m #: PASS-THROUGH

Two strength values:
g: accuracy of anticipation

r: reward from environment
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Behavioral Acts
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Anticipation-Learning

Basic Idea:

If S¢y1 was anticipated correctly (S¢1 = S77%),
then the quality g should be increased.

If the anticipation was wrong (S;11 # Si1%).
then generate a new classifier that anticipates Sy correctly.

If it is not possible to generate such a classifier,
then the quality g should be decreased.
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Woods Environment & Performance Measure

Average steps to food:

. TTTT|T
Optimal: 2.5
(14+2+243+3+4)+6 = I 5 . hT
2.5 T A T TIT
Achieved knowledge: T 51 6 T T
Reliable classifiers: g > 6, T 7 TT T
Reliable anticipations. TITITT|T
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Classifier Encoding

Classifier: C- A- E
m C {t(tree), b(blank), f(food), #}8

A~ = T L NN\ )

m E {t(tree), b(blank), f(food), #}°
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Initial Classifier List

HHAHFHHH N HHAFHFHH
HHAHAHHH > HHAFHFHH
HH#HHHHH N HHAHHFHH
HH#HHHHH < HHAHHFHH
HHHHHFHHH % HHHAFHFHH
HHAHFHAH N HHAFHFHH
HHAHFHHH K HHAFHFHH
HHAHFHHH R HHAFHFHH
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Problem of Original ACS

It's not possible to learn all deterministic

multi-step environment.
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Example: Not Correctable Situation
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Detail Description

It's not possible for an ACS to solve a task where at least one
behavioral act, whose behavioral consequences depend on an
environmental attribute that is not changed by the action, plays an
important role.
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Specification of Unchanging Components:
1. Mark

Let S, be the current state and ¢ = C-A-E the active classifier.

If the application of ¢ does NOT lead to the expected case,
then c remembers S,.

The remembered S,, is called a mark (M).
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Specification of Unchanging Components:
2. Expected Case

Let S, be a later state that leads to a behavioral act where c is
applied and leads to the expected case.
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Specification of Unchanging Components:
3. Specification

A component is randomly selected out of all components with the
following property:

m S, (i.e M) is different from S, in this component.

m C and E consist of a # in this component.

If such a component i exists then the i~th component of C and E is
respectively replaced by the i-th component of S,.
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Khepera Robot

Figure 3 A Khepera robot
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LEnvircmment

Environment for Khepera Robot

Figure 2 A simple T-maze
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Detector

Input: (dl, d», ds3, dg, d5)

de: 1, if there is nothing in front of the robot;
1 0, if there is a wall in front of the robot.

d,: as di, but on the left of the robot.
d3: as di, but behind the robot.
ds4: as di, but on the right of the robot.

de- { 1, if there is a infra-red light near the robot;
5.

0, if there is no infra-red light near the robot.
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ACS'’s Perceptions of T-maze
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Effector

Output: (e7)

I, to make a 90 degree left turn;
er: r, to make a 90 degree right turn;
f, to go forward.



Action Planning in Anticipatory Classifier Systems
L ACS for Khepera Robot in T-maze
LPerceptual Aliasing

Perceptual Aliasing

m The environment is only partially observable.

m Different environmental states might be equal for the robot.
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Perceptual Aliasing
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Figure 4 The ACS’s perception of the T-maze



Action Planning in Anticipatory Classifier Systems
L ACS for Khepera Robot in T-maze
LPerceptual Aliasing

Solutions for Perceptual Aliasing

m Add memory.

m Behavioral sequences.
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Behavioral Sequences

Activation of ¢; = Ci-A;-E; is followed by ¢ = Go-Ar-E»

Generate Chew = Chew-Anew-Enew

m Cpew = passthrough(Ca, C1)
B Apenw = A1A2

m Epen, = passthrough(E1, E)
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Assumption

During the exploration phase,

the ACS has learned an internal model of the environment.
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Internal Model
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Forward Planning
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Backward Planning
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Bidirectional Planning
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Result
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Figure 9: Results of the simulations with food in F



Action Planning in Anticipatory Classifier Systems

L Action Planning in ACS

L Results in T-maze

Result

"
o
o

80

60

N
o

N
o

No. of Robots that learned the Maze

o

10 20 30 40 50 60 70 80 90 100
No. of Behavioral Acts during Exploration (x1000)
------ Simulation —=—Mean value of the Simulations

Figure 10: Results of the simulations with food in E
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Result

Experiment about latent learning:

Results of the simulation with food in F
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