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Introduction

Science has long been fascinated by how simple localized
hehavior can produce very complex global behavior.

Cellular automata (CA) is an abstract representation of
individuals.
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Introduction

1D Cellular Automata

A one-dimensional cellular automata (CA) looks like an array
of bits.

For example, C = {a1, a2, . . . , aN} is a CA of width N and aN

is adjacent to a1.

sk denotes the neighborhood of ak . If we define the neighbor
radius r = 3, s2 = {aN−1, aN , a1, a2, a3, a4, a5}.
The transition rule Θ : {0, 1}2r+1 → {0, 1} takes
neighborhood as inputs and output a bit.
Assume r = 5. There are 211 different combination of
neighbors. Each neighbor is mapped to zero or one, so there
are 2211

different rules.
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Introduction

Multi dimensional Cellular Automata

There are two definitions of neighborhood: the von Neumann
neighborhood and the Moore neighborhood.

The neighborhood used in experiments is von Neumann
neighborhood.
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Genetic Algorithm

Genetic Algorithm

λ: the number of individuals.

Single-point crossover with crossover rate c .

Mutation rate m.

Random initialization. The number of ones distributes over
normal distribution.
Prevent the algorithm from specializing in a particular area of
the search space at the beginning of the algorithm.

D: maximum generation.

Tournament selection with size q.

Fitness: the success probability.
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Majority Problem Description

The majority problem is often used to show the power of
cellular automata.

The problem is:
Given a set A = {a1, . . . , an} with n odd and am ∈ 0, 1 for all
m. Answer the question: are there more ones than zeros in A?

Convert the problem to 1D CA:
Find a transition rule that result in an all zero state if λ < 0.5,
and an all one state otherwise.
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Majority Problem

Methods for majority problem

Intuitive method:
If the number of ones is more than the number of zeroes in
the neighborhood, the output value is 1.

1978 GKL rule: 81.6% for N = 149.

1995 Davis: 81.8% for N = 149.

1995 Das: 82.178% for N = 149.

1996 David, Forrest, Koza: 82.326% for N = 149.
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Majority Problem

The parameter of GA

r = 3 and d = 1. The length of chromosome is 128 bits.

Population size λ = 100, tournament size q = 20.

Crossover probability c = 0.6, mutation probability
m = 2

128 = 0.015625.

Max generation D = 100.

Select the distribution of the number of ones:
It is very difficult to evolve good transition rules with a GA
while using a binomial distribution over the number of ones in
the initial state.
The distribution starts as uniform distribution and ends as
binomial distribution.

Each experiment is runned 100 times.

I = 320: the maximum iterations of CA.

M = 104: the number of test cases.
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Majority Problem

Some problems of the experiment

The tournament size is too large and the population size is
too small.

The performance is not as good as GP (F < 0.8).
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Checkerboard Problem

Problem Description

Find a transition rule that, given an initial state of a CA, it
iterates this CA to a ”checkerboard pattern” within I
iterations.

Checkerboard pattern: 1, 0, 1, 0, 1, 0, . . .

The same GA that was used in majority problem is used here.
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Checkerboard Problem

Results

For M = 105, r = 3, d = 1, N = 150, the fitness is 0.99834.

For M = 105, r = 1, d = 3, N = 63, the fitness is 0.99997.
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Evolving Bitmaps

Problem Description

Given an initial state and a specific desired end state: find a
rule that iterates from the initial state to the desired state in
less than I iterations.

This is a generalized version of the checkerboard problem.
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Conclusions

The GA exceeds the performance found in [9,10] and does this
for different topologies of CA.

Multi dimensional CA can solve problems faster than one
dimensional CA.

The global behavior of a CA is not limited to checkerboards
and majority problems.
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Discussion

The applications of CA: bot.
Insufficient information, multi dimensional, distributed
environment.

Improve the process of GA.
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