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摘  要 

 
本論文以粒子最佳化演算法(Particle Swarm Optimization)為原型，提出

了一個統一概念的模型，來模擬電腦圖學中人群的移動。根據粒子最佳化

演算法的機制，一個人物(Particle)在群體(Swarm)中，可取得周圍環境的資
訊，自動地尋得一條前往特定目標(Optimum)的路徑，然而，粒子最佳化演

算法傳統上用以獲取最佳解，而非如本論文著重於產生粒子的路徑，因此，

為了能夠讓人群中的個體有合適的路徑，我們提出了一個方法與粒子最佳

化演算法的固有功能結合。我們所提出了模型簡單、統一且容易實做，不

管是有障礙物的環境、動態目標物的環境、非單一群體的模擬或是不同地

形的變化，利用此模型裡，我們皆可產生合理的、非決定性的

(Non-deterministic)且無碰撞(Non-colliding)的路徑。 
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Abstract 

 

This paper presents a uniform conceptual model based on the particle 

swarm optimization (PSO) paradigm to simulate crowds in computer graphics. 

According to the mechanisms of PSO, each person (particle) in the crowd 

(swarm) can adopt the information to search a path from the initial position to 

the specified target (optimum) automatically. However, PSO aims to obtain the 

optimal solution, while the purpose of this study concentrates on the generated 

paths of particles. Hence, in order to generate appropriate paths of people in a 

crowd, we propose a method to employ the computational facilities provided in 

PSO. The proposed model is simple, uniform, and easy to implement. The 

results of simulations demonstrate that using PSO with the proposed technique 

can generate appropriate non-deterministic, non-colliding paths in several 

different scenarios, including static obstacles, moving targets, and multiple 

crowds. 
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I. Introduction 

 

Today, virtual crowds created with the techniques of computer graphics can 

be oftentimes seen in movies, games, advertisements, and the like. It is applied 

to our daily life largely but in fact, creating virtual human beings behaving like 

human beings is not an easy task. Many research fields and sophisticated 

techniques are involved. In order to create high quality virtual human beings or 

animals, at least three facets must be taken into consideration [1]: The first one 

is appearance modeling. Lots of computer graphic techniques are developed to 

create a vivid human including the shapes of face and body, skin textures, 

hairstyle, and clothes. Appearance largely affects people to judge how much the 

computer creation is similar to a person or not. Then, the second facet is to make 

realistic, smooth, and flexible motions in any possible situation. Most existing 

methods for creating motions are parameter-based models with several 

parameters to control the motions. It is difficult to have a flexible, versatile 

model which can fit in all situations. Finally, realistic high-level behaviors have 

to be generated for the virtual human being. It is undoubtedly a difficult problem 

because defining what behaviors are human itself is worth a philosophical 

debate. To resolve the issue technically, many artificial intelligence and 

agent-based techniques are used to achieve the goal, while the techniques are 

still being improved and enhanced. 

 

1.1 Motivation 

Particle swarm optimization (PSO) [2] is an optimization paradigm 

proposed in the field of evolutionary computation for finding the global 

optimum in the search space. The concept of PSO is easy to comprehend, and 

the mechanism is easy to implement. The ability of PSO to reach the position of 

the optimum creates the possibility to automatically generate non-deterministic 

paths of virtual human beings from one specified position to another. On the 
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other hand, if the target is the best position, the movement of a person is a 

process to find a walkable path to the destination. For these essential reasons, we 

propose the model to work with the original PSO for path creation.   

 

1.2 Goal 

In this study, we focus on creating a realistic smooth and flexible motion for 

virtual human beings by utilizing the computational facilities provided in PSO. 

In particular, we present a uniform conceptual model based on particle swarm 

optimization (PSO) to simulate the motion of all persons in a crowd according to 

the analogy between a swarm and a crowd. A person can be considered as a 

particle, which would like to find a way to reach the best solution. The proposed 

model can be used in several scenarios, including static obstacles, moving 

targets, multiple crowds and geography. 

 

1.3 Organization 

The remainder of this paper is organized as follows.  

 Section II describes the related works on the crowd control to give the readers 

some backgrounds and briefly introduces swarm intelligence and the 

methodology of particle swarm optimization.  

 Section III proposes the idea as well as the framework to utilize PSO for 

controlling crowds.  

 Section IV demonstrates the simulation results in several different scenarios.  

 Finally, Section V concludes this paper. 
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II. Background 

 

Collective behavior had been studied for a long time in many different research 

domains but was applied to computer simulation only recently. The section digests some 

related works and describes Swarm Intelligent and methods of particle swarm 

optimization. 

 

2.1 Related Works 

In the field of computer graphics, Reynolds [3],[4] created a distributed behavior 

model to simulate the aggregate motion of the flock. Bouvier [5] presented an 

application specifically oriented to the visualization of urban space dedicated to 

transportation. Brogan [6] described an algorithm for controlling the movements of 

creatures that travel as a group.  Still [7] developed a model to simulate the crowd as an 

emergent phenomenon using simulated annealing and mobile cellular automata. 

Helbing [8] used a model of pedestrian behavior to investigate the mechanisms of panic 

and jamming by uncoordinated motion in crowds. 

Moreover, there are many studies on the realistic and real-time performance for 

crowd control. Aubel [9] used a multi-layered approach to handle muscles of varying 

shape, size, and characteristics and does not break in extreme skeleton poses. Tecchia 

[10] showed a real-time visualization system based on image-based rendering 

techniques for densely populated urban environments. Aubel [11] presented a 

hardware-independent technique that improves the display rate of animated characters 

by acting on the sole geometric and rendering information. Ulicny [12] defined a 

modular behavioral architecture of a multi-agent system allowing autonomous and 

scripted behavior of agents supporting variety. Treuille [13] presented a real-time crowd 

model based on continuum dynamics. Stylianou [14] used a flow grid to measure flow 

over an area and navigate the crowd. 

Although there are many approaches for controlling crowds in computer graphics, 

only a few researchers try to use evolutionary algorithms for the purpose. Kwong [15] 
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presented breeding experiments of dynamic swarm behavior patterns using an 

interactive evolutionary algorithm. Kim [16] incorporated several specifically designed 

mechanisms into the conventional particle swarm optimization methodology for 

simulating decentralized swarm agents. 

 

2.2 Swarm Intelligence 

Swarm intelligence is a technique used in artificial intelligence, possibly first 

proposed by Beni and Wang [17] in 1989. It studies the collective behaviors of agents 

interacting in the environment. There is no centralized control to manage the agents, but 

all agents exchange their information to cooperate and emerge group behaviors. Many 

swarm intelligence systems are inspired by nature, including ant colonies, bird flocking, 

and fish schooling. They have been adopted in a lot of applications, such as ant colony 

optimization (ACO) [18], stochastic diffusion search (SDS) [19], particle swarm 

optimization (PSO) [2], and the like. Even for NP-hard problems, methods developed 

based on swarm intelligence can deliver good results. Among these swarm intelligence 

systems, PSO models a solution as a point on a surface and conducts continual 

movements in the search space. 

 

2.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is proposed by Kennedy and Eberhart in 1995, 

inspired by the social behavior of bird flocking or fish schooling. PSO is a 

population-based optimization method and qualifies each potential solution as a particle. 

In a D-dimensional problem, a particle can be represented as 

 

[ ]TDxxxx ,,, 21 L=  (1)

 

Each particle has a position, a velocity, and an objective value determined by the 

objective function. It uses the experiential and social metaphor to move toward 

the currently known best solution. Table 1 shows the basic structure of a particle. 

  4



Table 1. The structure of a particle. 

 Position 

 Vector 

 Objective Value 

 Best Local Solution (BLS) 

 Best Global Solution (BGS)

 

For per iteration, each particle updates its velocity and position. The 

velocity is varied according to Equation (2) and the position can then be updated 

according to Equation (3) : 

 

( ) ( )()()()1( 2211 tPPrctPPrctVtV iBGSiBLSii − )∗∗+−∗∗+∗=+ ω  (2) 

)1()()1( ++=+ tVtPtP iii  (3) 

 

In Equation (2),  and  make particle move toward to the best position.  

and  are the cognitive and social parameters, controlling the level of influence of 

 and  to make different movements.  and  are random numbers 

uniformly distributed in [0, 1]. The stochastic scheme makes the velocity more diverse. 

BLSP BGSP 1c

2c

BLSP BGSP 1r 2r

The new position is evaluated by the given objective function, and an objective 

value is assigned to the particle accordingly. Based on the objective value,  and 

 might be updated and have influence in the next iteration. Figure 1 is a flowchart of 

particle swarm optimization.  

BLSP

BGSP

 

2.4 Summarization 

This section introduces the related works about group behaviors and the basic 

method of particle swarm optimization. In general, particle swarm optimization is 

usually used to find the best “result” in search space. But we can find the fundamental 

concept of PSO is quite similar to that of the movement of pedestrians according to 
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section 2.3. We would like to simulate a crowd with the optimization process that 

particles move toward the expected and currently known best solutions. Instead 

of modifying the conventional PSO and designing different mechanisms for different 

issues, we propose a conceptual model to work with PSO to create a non-deterministic, 

non-colliding path for each agent with a uniform approach. The characteristics of PSO 

can make the particles act as a group and simulate crowds by these particle groups. 

 

  

Update Velocity and Position 
Update the velocity and the position of each particle. 

Evaluate 
Compute the objective value by the objective function. 

Update PBLS 
Update the PBLS  of each particle by its objective value. 

Update PBGS 
Update the PBGS in the swarm. 

Initial 
Set the position and the velocity of each particle.  

 

 

 

 

 

 

 

 

Figure 1. A flow chat of particle swarm optimization. 
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III. Proposed Model 

 

Although PSO does possess some characteristics of the crowd behavior, it is still 

incompatible with the use for crowd control. Firstly, the particle in PSO is absolutely 

free to fly through everywhere in the given multidimensional space. However, the 

environment for a crowd may have obstacles, and the pedestrians in the crowd must 

avoid collisions, including the collision with the given obstacles and the collision with 

the fellow pedestrians, where other pedestrians can be considered as dynamic obstacles. 

These dynamic obstacles are not predictable and may appear and disappear in the 

environment at any moment. Moreover, it is important to make a virtual pedestrian to 

walk smoothly and naturally, instead of just oscillate uncertainly and strangely. The 

walking path must be reasonable and appropriate. To resolve the aforementioned 

incompatibility issues, we propose a framework to work with PSO such that the 

movement of particles can be similar to that of real people. 

 

3.1 PSO Essence 

In the light of the analogy between swarms and crowds, we may consider a person 

as a particle and a group as a swarm. The structure of a particle is similar the Table 1. , 

but we separate the velocity into a direction component D and a speed component S for 

convenience. Each particle holds the information about itself, including a position, a 

direction, a speed, and an objective value. The position and the direction can be 

represented by 3D vectors1. 

 

[ ]Tiziyixi PPPP ,,=  (4)

[ ]Tiziyixi DDDD ,,=  (5)

                                                 
1 Because the objects are simulated in 3D space, we observe the behaviors in x, y and z axes. 
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The direction and position are computed as 

 

( ) ( ))()()()1( 2211 tPPrctPPrctDtD iBGSiBLSii −∗∗+−∗∗+∗=+ ω  (6)

)1()1()()1( +∗++=+ tStDtPtP iiii  (7)

 

where  and ( ))(tPP iBLS − ( )(tPP iBGS )−  are both unit vectors for indicating the direction 

only. Other parameters are defined as the same parameters of the velocity in PSO.  

The speed component S models and matches the variant paces of different people 

and has a maximum limit. The range of speed is [ ]max,0 V  and scales by the particle's 

objective value. The  is set by a step size with a random number. It is able to fit the 

different pace of each person and to make the environment more dynamic. If a particle 

approaches an obstacle, the speed will be slower to avoid it. The speed also decreases 

gradually when a particle is close to the specified goal. The mechanism can eliminate 

the collision issues and reduce the oscillatory situation that occurs near the optimal 

solution in PSO. 

maxV

At each step, each particle gets an objective value to measure the current position. It 

is synchronous to update the local best position and the global best position based on the 

objective value. Such a PSO mechanism will make the particles in the group converge 

to the target. Moreover, we can adopt different objective functions to arrange the final 

state of a group, such as a line, a circle, or other possible shapes. 

 

3.2 Objective function 

As a matter of fact, PSO is only interested in the final state of particles and cares 

nothing about the particle paths at each step. It is very different from crowds in the real 

world. In the real world, not everywhere on the ground can be stepped on or gone 

through. There are obstacles, such as holes and buildings. Moreover, a person normally 

also cannot step on another person. These situations contribute to the incompatibility of 

PSO for crowd control. In order to resolve these incompatibility issues with an uniform 
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approach, we design an objective function to represent the specified target, the static 

obstacle, as well as other particles. 

 

3.2.1 Cost function for a unit obstacle 

The objective value of a particle is affected by two factors: the target and the 

obstacles. For the purpose to use the optimization ability of PSO, we make the target as 

the minimum in the mathematical search space. If a particle approaches the target, it 

should get a lower (better) objective value. All particles move toward the lower region 

just like water flows downward. On the other hand, the objective value goes up as 

penalty if the particle comes close to or even touches obstacles. Since PSO used in this 

study for solving a minimization problem, we will view the objective value as “cost” in 

the remainder of this paper. 

We use an exponential function to represent everything in the search space, 

including the target and the obstacles. The function for calculating the cost for an object 

P relative to an object Q can be given as 

 

( )
( )

( )
( )

( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
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⎞

⎜
⎜

⎝

⎛

+
−

+
+
−

+
+
−

−= 2

2

2

2

2

2

exp),(
ZZYYXX QP

ZZ

QP

YY

QP

XX QPQPQPQPCost
σσσσσσ

 (8)

 

Q can be a target, an obstacle, or a particle. For example, if an obstacle's area is 30, 40, 

and 50, we can set ( ) ( )50,40,30,, =
ZYX QQQ σσσ  or set each edge with smaller 

combinations.  If it is the target, ( )
ZYX QQQ σσσ ,,  is set to the whole search area. Figure 2 

shows the exponential model for an obstacle. 

The proposed exponential model is similar to the 3D normal distribution with a 

mean and a standard deviation2. The difference is that every exponential function 

representing an object in the system has its own volume size, while the volume size is 

always one for the normal distribution. The different sizes in volume make it relatively 

                                                 
)2  is the mean and ( ZYX QQQ ,, ( )

ZZYYXX QPQPQP σσσσσσ +++ ,,  is the standard deviation. 
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easy to model the landscape for the pedestrians to go through. Overlaying these 

exponential functions, a bumpy landscape with a minimum position as the target can be 

created. Therefore, the overall objective function proposed in this study can be described 

as Equation (9). 

 

( )
),(

1),(max)(
GPCost

oPCostcPF
Ooobjobj +∗=

∈
 (9)

 

It has to be noticed that the set O contains not only all the specified obstacles, such 

as holes and buildings, on the landscape but also other people in the crowd. We adopt 

the identical model for everything in the scenario instead of developing different models 

for objects of different kinds. By doing so, no extra models have to be introduced into 

the system when new objects are included, such as moving cars or running animals. 

Furthermore, the proposed model induces an interesting situation for PSO. Every 

particle actually “sees” a different landscape due to the relative relations among particles. 

Such a situation does not exist in common optimization applications. Under this 

condition, according to the results of this study, PSO can still appropriately accomplish 

its assigned task, and the particles converge to the desired goal via reasonable paths. 

 
Figure 2. The exponential model for an obstacle. The box indicates the obstacle to 
be represented by the function with different object Pi. 
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3.2.2 Local search for collision avoidance 

Even with the carefully design objective function, the possibility for a particle to 

pass through an obstacle still need to be eliminated. In this study, we implement this 

functionality as a form of local search, which is a common operator used with PSO. 

When we get the cost for a new position of a particle, whether or not the new position is 

accepted should be checked. We use a stochastic mechanism to decide whether the new 

position should be accepted according to the cost. The probability to accept a newly 

generated position is computed by 

 

ke
ffprob −−=1)(  (10)

 

The shape of the exponential function is quite appropriate for estimate whether or not a 

particle is too close to an obstacle. It helps the particle to avoid collisions and makes the 

path smoother. Moreover, there exists a hard boundary when according to 

Equation (8), because the probability will be zero if . Therefore, we can 

theoretically verify that collisions under this checking mechanism can never happen. 

Figure 3 shows the probability to accept a new position around an obstacle. 

1=k
1−= ef

 
Figure 3. The probability to accept a new position around an obstacle with 
different k. The scope of object P is 10. 
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 If the cost is not accepted, another direction must be taken to create a 

smooth path. We use two steps to find an acceptable position. First, according to 

the direction decided by Equation (6), a random angle less than 90 degrees is 

added to or subtracted from the direction vector of the particle. This kind of the 

random direction would be generated several times and the position with the 

lowest cost is chosen. Following, based on this direction, do a grid search with a 

fixed angle. The better position is chosen to be the new position. If only with 

random angle to do local search, it is possible to find no way to walk. Particles 

often stop if meeting an obstacle. On the contrary, if only fixed angle, it is 

changeless when particles locate in same position. Therefore, we integrate both. 

The random search can be regard as a viewpoint to find a walkable area. The 

grid search can be regard as eyeshot to find a walkable position in the area. 

Figure 4 shows the local search area. The gray area is the range of random search 

base on V determined by PSO. The yellow area is the range of grid search base 

on V’ which is selected by random search. 

 

1θ

2θ

 
Figure 4. The local search methods in our system. 
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3.3  Summarization 

This section dwells on our proposed model and methods. It is reliable to guide 

particles toward their target with particle swarm optimization. An identical model makes 

the system more flexible. The mechanisms designed in local search allow particles to 

qualify the ability to avoid collisions. Hence, particles in our model can move with a 

reasonable path. 
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IV. Moving Path Generation 

 

With the proposed framework, we simulate several showcases on the x-z plane3, 

just like to have a bird's eye view on the top of people's heads. For expediently 

observing, we show the walking paths generated by PSO in 2D space. Each simulation 

includes two cases. There are two kinds of figures to show our results. Path figure 

displays the paths of all particles in whole process. State figure depicts the condition in a 

moment. By these two kinds of figures, we can image the dynamic scenery in the 

simulation. Each simulation has one state figure at least. For convenience, we collect the 

state figures in appendix. Table 2. The Indication for each symbol in figures. 

 

Table 2. The Indication for each symbol in figures. 

Symbols Indication 

Start Goal Position 

Solid line A path of a particle. 

Filled area Obstacles. 

Circle A person. 

Quiver The direction of a person.

 

 

4.1 Crowd Simulation by using the Original PSO 

We first attempt to simulate a crowd by using the original PSO. The parameter 

settings for PSO are 0.1=ϖ , 5.01 =c  and 5.02 =c . The population size is 20, and the 

initial positions are assigned. The velocities are initialized at random.

                                                 
3 Because the y-axis represents the height in the 3D space, the ground surface is the x-z plane. 
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4.1.1 Without Obstacles 

Figure 5 shows an influx. Each solid line indicates a path of a person. People 

initially are scattered and finally converge to the target. Figure 6 shows a stream. People 

who on the left side move toward the right side. We can observe that they converge first 

and move toward the target together. For an influx or a stream, the appropriate paths can 

be created under the mechanism of the original PSO.  

 
Figure 5. The paths of influxes can be simulated by the original PSO. The curves indicate the 
paths of people in the crowd. 
 

A B

Fi
m

 

A 

gure 6. The paths of streams are generated by the original PSO. They simulate that a 
oves from position A to position B.
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4.1.2 With Obstacles 

The original PSO can make all persons to reach the goal automatically, but it does 

not have the ability to make the particles to avoid obstacles as shown in Figure 7. We set 

an obstacle on the way from position A to position B. It can be observed that the original 

PSO with the mechanism of the penalty can guide the crowd to select a better way to 

avoid the obstacle. Sometimes it is successful to avoid the obstacle successfully, but it is 

not implicit.  

A 

An obstacle B

An obstacle 

Figu
a co

4.2 

 

4.2.

reas

solv

with

acce

Figu

 

A 

re 7. The original PSO can guide the crowd to find a better way, but it is still like t
llision. 
 

Crowd Simulation with Collision Avoidance 

The collision avoidance mechanism has to be employed in the same situation

1 With Dynamic Obstacles 

Avoiding collisions between persons in a crowd is a necessity for gen

onable paths. In this study, we do not resort to any extra method or mecha

e this problem. In the proposed framework, each person is considered as an o

 5=σ . If two persons come close, the cost of each person will be checked,

ptable position for each person will be determined. Stream cases are simu

re 8. It holds a distance between particles, and don’t converge first.  
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A 

re 8. Two stream cases are displayed in our system. 

2 With Static Obstacles 

We also place an obstacle between position A and position B. Figure 9 s

d passing by a static obstacle in our system. Based on the paths, we can see 

d can avoid the obstacle and reach the goal. The crowd will keep a distanc

tacle, because the solid line is the position center of a particle, not the volume.

 

An obstacle 

A 

An obstacle 

A 

re 9. The situations for collision avoidance in our system are presented. 
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4.3 Other Crowd Simulations 

Three types of crowds are simulated in our system, including Dynamic Target, 

Multiple Crowds and Geography. 

 

4.3.1 Dynamic Target 

In addition to the fundamental path generation presented in the previous sections, 

we also conducted experiments on the crowd simulation with a dynamic target in our 

proposed framework. As the goal moves, the crowd is capable of following the moving 

target as shown in Figure 10.  

 

End 

Start 

End 

Start 

Figure 10. A circle crowd and a wave crowd are simulated. 
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4.3.2 Multiple Crowds 

Furthermore, in our framework, simulating multiple crowds going toward different 

targets is a trivial extension. Multiple groups can be overlaid on the same area such that 

more complex scenes are made possible. Figure 17 and Figure 18 demonstrate that four 

groups in the four corners move toward their opposite corners. The different symbol 

represents the person in the different group, and each group consists of ten members. 

There are four obstacles with different sizes at different positions. As time goes by, each 

group can pass by these obstacles and reach their respective targets. 

 

4.3.3 Geography 

It is feasible to simulate a crowd in different topography in our system. We adjust 

the parameter k in Equation (10) to fit different situations. Figure 11 exhibits different 

topographies for people move from left side to right side. We present 3D scenery and 

each sphere represents a person. It is explicit to find the altitude is higher, the accept 

probability of people is lower.  
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Figure 11. Three different topographies. 
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V. Conclusions 

 

This paper proposed a uniform model to simulate crowd movements based on 

particle swarm optimization. We considered that people finding a walkable path to their 

goal as the process to find the optimal solution by PSO. The advantages of PSO are 

simple, fast, and easy to implement. By the PSO mechanism, each person can search for 

a path automatically. However, particles controlled by the original PSO may penetrate 

an obstacle. Hence, we developed the collision avoidance mechanism in a form of local 

search to work with PSO. Static obstacles, dynamic obstacles, and the target were all 

modeled with an exponential function. Combining these exponential functions, the 

scenario environments were constructed, and the particle paths were generated by the 

proposed framework. 

The proposed method in this study is compact, coherent and controls the crowd 

movement easily. Based on the uniform model, we can demonstrate a complex 

crowd-space to stack up several different crowds, and the created paths are more 

dynamic, non-deterministic. Although this study is not the first to apply the concept of 

swarm intelligence on crowd control, to the best of our limited knowledge, it retains the 

most design of the original PSO and almost leaves PSO unmodified. The proposed 

model is flexible, versatile and can be used to represent a variety of objects. 

The future work includes understanding how the parameters affect the paths, 

determining whether functions of other classes can be employed for creating better paths, 

and integrating the framework into the existing computer graphics systems. Theoretical 

insights into the crowd behavior might also be obtained through the development of the 

proposed framework. 
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Figure 12. The conditions for a influx by the original PSO. 
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Figure 13. The conditions for a stream by the original PSO. 
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Figure 14. The conditions for collictions by the original PSO. 
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Figure 15. The conditions for a stream in our system. 
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Figure 16. The conditions for collision avoidance in our system.
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Figure 17. Four groups in the four corners move toward their opposite corners. (Case 1) 
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Figure 18. Four groups in the four corners move toward their opposite corners. (Case 2)
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Figure 19. The condition for a crowd moves following a dynamic target. 
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