
Evolutionary Interactive Music Composition

Dao-yung Fu
Tsu-yu Wu

Chin-te Chen
Kai-chu Wu

Ying-ping Chen

NCLab Report No. NCL-TR-2006001
January 2006

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/



Evolutionary Interactive Music Composition

Dao-yung Fu, Tsu-yu Wu, Chin-te Chen, Kai-chu Wu, and Ying-ping Chen
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
{tyfu, tywu, chinte, kcwu, ypchen}@cs.nctu.edu.tw

January 30, 2006

Abstract

This paper proposes and describes the CFE framework—Composition, Feedback, and
Evolution—and presents an interactive music composition system. The system composes
short, manageable pieces of music by interacting with users. The most important features
of the system include creating customized music according to the user preference and the
facilities specifically designed for producing massive music. We present the structure as
well as the implementation of the system and the auxiliary functionalities that enhance the
system. We also introduce the auto-feedback test with which we verify and evaluate the
interactive music composition system, followed by the discussion and conclusions.

1 Introduction

Music plays an important role in our daily life. It makes us sad, happy, and excited. The
definition of pleasant music is different from people to people; some people love classic music,
and some love heavy metal. We can easily observe that almost everyone puts different ringtones
on their cellular phones. As a result, customization for pleasant music is desirable for our modern
life, just like a customized suit is fitter than a T-shirt with only S, M, and L sizes. In addition
to customization, massive music is needed for some applications, such as the scene music of
games and the background music of web pages. It would be fantastic if common people can
create music on their own. Although there are lots of computer software which can help people
compose music, it is still hard, if not impossible, to create pleasant music for unskilled people.
Hence, we are trying to make the computer automatically create music for us instead of merely
letting us put notes into tracks.

In order to reach the goal, making the computer automatically create music, we develop a
system which creates music by interacting with users. The created music can be used on cellular
phones, alarms, or other devices of which the sound of music can be set or load by the user. We
design the system according to two backgrounds. One is Evolutionary Computation [1, 2, 3, 4, 5]
. Based on the concept of Evolutionary Computation, we build our kernel algorithm. The other
background is the MIDI format. When we create music in the MIDI format, we can guarantee
that the created music can be played on computers, cellular phones, or other customizable
electronic devices. The mankind needs a system to sing out their voice of soul. Therefore, we
try to do our best to approach this goal in this study.

The organization of the paper is as follows. Section 2 reviews the state of the art of creating
music in the field of evolutionary computation. Section 3 describe our CFE framework in

1



Figure 1: The structure of the CFE framework.

detail, and section 4 presents the system implementation and the auxiliary functionalities for
enhancement. Section 5 describes the auto-feedback test with which we verify and evaluate
the music composition system. We discuss this research work in section 6. Finally, section 7
concludes this paper.

2 State of the Art

There have been many studies attempting to compose music with the techniques of evolutionary
computation. These studies vary a lot in their adopted evolutionary techniques. We can broadly
classify these research works by analyzing the three stages in their evolutionary processes: ini-
tialization stage, evolution stage, and grading stage.

The initialization stage: It is about the methods which are used to initialize the popula-
tion of the evolutionary environment. There are many kinds of initialization procedure in the
literature. Method 1, the random initialization [6], provides a relatively worse quality for the ini-
tial individuals but is limited by fewer restrictions than other methods. Method 2, the complex
function initialization [6, 7], initializes the population through certain pre-designed rules and
only produces individuals which satisfy the specified restrictions. Method 3, the song initializa-
tion [8], initializes the population by analyzing one or more available songs and by decomposing
these songs into individuals.

The evolution stage: It is related to the focus of evolutionary domains and the genotype
of music presentation. For example, in some studies, the genotype of music is a sequence of notes
[4, 8] or a sequence of functions, such as sin(·) and/or cos(·) which are used to produce a part
of the generated music [7]. Their evolutionary domains focus on the theme of music. In other
studies, the genotype of music is a sequence of tempo numbers [9], and it only concentrates on
the tempo of music.

The grading method: It is about how to judge the music composed by evolutionary
systems. One way is to judge the music with the real audience through either real-time judging
[4, 6] or non-real-time judging [6] methods. No matter with what kind of judging methods, it

2



may need lots of judging runs. Another way is to use the neural network evaluation function
[6]. This method needs to produce the neural network module, and it takes tremendous time
to train the module. The other way is to utilize some fitness functions [4, 6, 7]. Constructing a
function to appropriately evaluate the generated music is critical in these approaches.

3 The CFE Framework

The evolutionary algorithms may be an suitable technique to optimize music if we take the
user preference as the fitness of the environment, like many of the previous studies reviewed in
section 2. However, what if the user needs more than one song? Similar jobs should be done
over and over to produce more songs which the user favors. To avoid this awkward situation and
to achieve a better music composition system, we propose the CFE framework in this section.

3.1 Introduction to the CFE Framework

The CFE framework contains three major parts, Composition, Feedback, and Evolution. In this
framework, we try to find the fittest way to compose music rather than the fittest melody for
the user. To be more accurate, the individuals in the evolutionary environment is no longer
complete songs but some musical elements or guidelines. The Composition part uses these
musical elements and guidelines to construct new melodies. The composed melodies then wait for
the user’s response such as making a grade or just telling good or bad. After the system receives
the information, the Feedback part distributes these feedbacks among the musical elements and
guidelines to evaluate how fit these composing components are. For discovering better methods,
the technique of evolutionary computation is adopted such that new elements and guidelines are
born into the population.

The three parts can be done independently. Therefore, once the user is satisfied with the
composed music, no more work is necessary when he or she needs more pieces of music because
Composition can be conducted alone. Since Composition and Evolution are isolated, for making
use of the domain knowledge, such as the constraints, indication, and implications in the music
theory, it is easier to embed such knowledge into the Composition part than to interfere with
the regular operations of evolutionary algorithms. The separation of Feedback and Evolution
provides the feature that the pace of evolution can be determined by how many feedbacks we
get from the user.

The CFE framework will be described in detail in the following sections. Figure 1 shows the
design of the system implemented in the present work.

3.2 Design of the Composition Part

In the present work, the type of music which we focus on is the theme music with a specific
length, say, 8 measures or 16 measures, named music phrases. Inspired by some pop music that
some subsequences appearing in a song frequently and repeatedly, we take a layered approach
to find out the potentially good sequences of notes. Our system deals with the short theme
music by using two levels of hierarchy. The music phrase consists of the variable-length small
sequences of notes, called music blocks. Composition picks the favored music blocks and fill in
the incomplete music phrases until the specified length is reached.

3



Figure 2: Operations: Append and Insert.

Figure 3: Operations: Merge and Split.

3.3 Design of the Feedback Part

The design of the Feedback part provides the interface for users to make their responses to the
system. We simply let users listen to the music phrase composed by Composition and let them
grade it in the range from 0 to 100. It is not too complex for common users because the grading
is episodic such that users do not have to listen to the music nervously for the need to make
real-time responses like applauding. Once the grading is made, the score is distributed to all the
music blocks contained in that phrase. Thus, the fitness value of a music block is determined
by the average grade of all the music phrases in which the particular music block occurs. The
key idea of this design is that good music blocks make good music.

3.4 Design of the Evolution Part

The Evolution part, seeking for the fittest music blocks, plays an essential role in the music
composition system. We employ an evolutionary algorithm similar to a typical genetic algorithm,
because music blocks can be easily and intuitively represented with a sequence of numbers.

First, we initialize the population of which the individuals are music blocks. Initially, music
blocks containing only a single note are placed in the population, and an identical fitness value
is set to all individuals.

The flow of the employed genetic algorithm can be described as three major procedures:
parent selection, recombination/mutation, and survivor selection. The procedure of parent
selection chooses one or two music blocks according to the fitness values. The parent will
go through certain operations to generate the offspring, a new music block. In the following
paragraphs, we will describe these operations in the following paragraphs.

3.4.1 Append and Insert

The Append operation concatenates two music blocks. The Insert operation, however, puts one
music block into the other at a random position to search for better combinations of the two
building blocks, as shown in Figure 2.

3.4.2 Merge and Split

These two operations adjust the music block locally, as shown in Figure 3. The Merge operation
chooses two adjacent notes of a music block and merges them into a single note with the pitch

4



Figure 4: Operations: Double and Shorten.

Figure 5: Operations: Raise and Mutate.

of one note and the combined tempo length of the two notes. In contrast, the Split operation
selects one note and splits it into two of the same pitch and half the length of the original tempo.

3.4.3 Double and Shorten

These operations mainly concern the tempo. The Double operation uniformly doubles the tempo
length of all the notes in a music block, and the Shorten operation makes the tempo length half,
as shown in Figure 4.

3.4.4 Raise and Mutate

Different from the Double and Shorten operations, these two operations only act on the pitch of
notes. The note rises or falls in pitch. The Raise operation applies changes uniformly to all the
notes in a block, while the Mutate operation works on the chosen one, as shown in Figure 5.

The final step of the Evolution part is survivor selection that decides which music blocks
stays in the population and which to be removed. We use a fixed population size and remove
the music blocks of the lowest fitness.

4 System Implementation and Auxiliary Functionalities

We implement a reference system based on the proposed CFE framework to automatically
compose and customize music. By grading the music, users express their satisfactory degrees
and train the evolutionary environment. We expect the environment is good enough to fit the
user’s desire after acceptable grading runs. The implemented system is general for all kinds of
music instead of specialized for certain styles.

4.1 System Implementation

The implementation of the system contains two major parts, the evolutionary environment part
and the user interface part. The former is based on the CFE framework and includes many
modules as well as the environment data. We will introduce them in detail through the flow of
the evolutionary path. The latter is between users and the evolutionary environment and lets
users control the system as well as get the information conveniently. In this paper, we focus on
introducing the evolutionary environment due to the page limitation.

5



4.1.1 Environment data

The environment data include music components, environment parameters, and primary com-
posing data. We design a hierarchical architecture which contains three levels of components:
notes, music blocks, and music phrases. Higher level components consist of lower level ones.

The note is at the bottom level of the hierarchy, and it is the fundamental element. It
consists of three music factors: the pitch, the tempo, and the intensity. The music block is
at the middle level of the hierarchy. It has an array consisting of notes and records the block
information, such as the block fitness, the number of notes in the note array, and total tempos
of the array. In the system, there is a music block pool that contains all the music blocks which
can be used to compose music phrases. Music Blocks in the block pool are the individuals, and
the music block pool is the population for the evolutionary process.

The music phrase is at the highest level of the hierarchical architecture. As the relationship
between notes and music blocks, a music phrase has an array consisting of music blocks and
records the music phrase information, such as phrase grades. There is a music phrase pool which
contains all music phrases, and users can create, delete, and grade music phrases through the
user interface. All operations users can do on the music components are on music phrases, not
music blocks or notes.

The environment parameters are used to control the evolutionary process and to set desired
restrictions for the system. The parameters include the domain parameters, such as the base
tempo is a number, say 8, which means the minimal tempo is 1/8 time, the pitch scale is a
number, say 2, which defines the pitch range as 2 octaves as well as the restriction parameters,
the block pool size and the phrase pool size, defining the size of the music block pool and the
music phrase pool.

The composing data include a note to note fitness table and a note on array. The former is
an N ∗ N table, where N is the pitch range of notes and records the fitness of each pair of the
note relation. The latter is an array of N elements, where N is also the pitch range of notes and
records whether the pitch can appear in the generated music. For example, in common C major
key music, the only pitches which can appear are C, D, E, F, G, A, B, and C. These notes will
be set in the note on array, while others, such as C#, B#, and A#, will be cleared.

4.1.2 Modules

We will introduce the modules in the evolutionary environment through the flow path of the
evolutionary process. The initialization module operates only once to initialize the evolutionary
environment when the user constructs a new environment. It sets the aforementioned initial
environment parameters according to the user’s decision and sets the initial note to note fit-
ness table and the note on array and then creates the initial population. When composing a
new phrase, the composition module selects the music blocks in the music block pool with a
probability based on the fitness of music blocks and note to note fitness table.

The MIDI module generates music phrases as MIDI files and plays these files. A phrase can
be considered as a note sequence and a music block sequence. For each grading, the feedback
module distributes the score of the phrase to the note to note table for each note relation in the
phrase and converts the grade into the music blocks fitness.

The evolution module produces new music blocks through a sequence of evolutionary steps
we mentioned in section 3.4 in order to respond to the alterations of the note to note fitness
table and the music block fitness.

6



4.2 Auxiliary Functionalities

Although the flow path described in section 4.1.2 can function properly, we still need to enhance
the system for two reasons. First, we should make the grading runs as few as possible. Our
system is unlike common evolutionary computing applications which utilize programmed fitness
functions. Our individuals are graded by the user. We have to take the human limitations
and restrictions into account. Users may be tired with a large number of grading runs. As a
consequence, we have to reduce the number of grading.

Moreover, we would like to improve the music composition. As the music composition in the
real world, every type of music, such as jazz, blues, mass, and the like, has its own composition
rules, styles, and guidelines. We embed some elements of the music theory into our system.
These elements let the system have a basis for composition but will not confine the variety of
music styles.

4.2.1 Reduce the grading runs

In order to reduce the grading runs, we design the following two mechanisms:

1. Block to block fitness table: The block to block fitness table is an N*N table, where N is
an integer parameter, say 20. Considering the overhead of the system, this table is unable
to record all the fitness values of relations of each music block pair. Instead, the table
records only the fitness values of block pairs which have a top-N fitness value in the music
block pool. The table is also used to force two music blocks to be concatenated into one
new music block if the fitness of their relation is higher than a specified threshold.

2. Adaptive evolution number: For each grading event, our system can change the number of
evolution rounds according to the diversity of the new scores. For example, the following
shows 2 conditions with 3 scores:

• Condition 1: 30, 30, 90;

• Condition 2: 95, 85, 90.

For the two conditions, although their third score are both 90, the third score in condition
1 is very different from the other two. The grade diversity in condition 1 is greater than
that in condition 2. We assume the third score reveals more information of the user’s desire
in condition 1. Hence, the system executes more evolutionary iterations for condition 1.

4.2.2 Improve music composition

In order to improve the music composition, we add basics and elements of the music theory into
the system. Our system can refer to the theoretical elements and compose music according to
certain standards and/or common sense. In the present work , we add only common elements
and do not confine the variety of music styles.

1. Default note to note fitness table: In the system, there is a note to note fitness table. It
records the fitness of relations of each note pair. During the system initialization, we set
the pre-defined fitness into the note to note fitness table. We expect the default fitness
table to help compose not-too-bad music at the early stage.

2. Music block repeat: As the real world music, a sequence of notes repeating in the whole
song often occurs, such as “Happy Birthday” and “Twinkle Twinkle Little Star”. We make

7



the Composition part to implement this feature. Thus, there are two choices for choosing
a music block to compose an unfinished music phrase.

• Choice 1: Select a new block which is in the music block pool but not in this unfinished
phrase;

• Choice 2: Select an old block which appears in this unfinished phrase.

5 Auto-Feedback Test

In order to verify the kernel architecture of our system described in the previous sections is
effective, we establish a mechanism, named the auto-feedback test. In this section, we will
discuss the motivation and how we implement the auto-feedback test. Then, we will show the
test results to demonstrate the effectiveness of the proposed framework and mechanisms.

5.1 Why Do We Need the Auto-Feedback Test?

Conducting enormous tests by using manpower is not efficient, and feelings of people may change
due to the time passing by and the change of the surroundings. For the two reasons, we need to
design an efficient and objective mechanism to verify and evaluate our system. We develop the
auto-feedback test, which can automatically interact with our system according to certain factors
of music. The auto-feedback test does not participate in the evolutionary process. It simulates
a user’s preference to grade the generated music phrases. In the meantime, when we add new
modules into the system, the auto-feedback test can provide massive and objective statistics. We
can therefore utilize the statistics to verify the effectiveness of the mechanisms provided in the
system and analyze the behavior to understand their influence to the kernel architecture. The
auto-feedback test may not conform to human nature, but it is quite convenient and objective
to verify the kernel architecture.

5.2 Implementation

The auto-feedback test mainly simulates the user preference. It is divided into four aspects:
rhythm, specific pitch, pitch sequence, and pitch interval. Each of them is described as follows.

5.2.1 Rhythm

The system hypothesizes that the phrase length is around seventeen or eighteen seconds. With
a fixed length, the more notes, the faster the rhythm is. For instance, if we want to mimic a
user who favors fast rhythms, more notes will make higher grade.

5.2.2 Specific pitch

Specific pitch is designed for the user’s favorite pitch. In the auto-feedback test, we can set
up multiple specific pitches for the preference. However, it does not mean that if the more the
favorite pitches, the phrase is closer to the user’s expectation. In order to make music phrases
certain melody favored by the user, we establish the other two aspects for testing purpose, pitch
sequence and pitch interval.

8



5.2.3 Pitch sequence

Pitch sequence is made of a series of notes. We can set up multiple rules for the specific pitch
sequence for the user’s preference. According to these rules, the phrase obtained through the
evolutionary process should be closer to the user’s expectation.

5.2.4 Pitch interval

Pitch interval is mainly aimed at variety and novelty. If we have only pitch sequence in the
auto-feedback test, it will be the same thing as that the user chooses several specific pitches to
make his or her own music. Thus, variety and novelty cannot be reached.

5.3 Auto-Feedback Test Script

The auto-feedback test script is designed for two purposes. One is to integrate the aforemen-
tioned rules to establish the user’s preference. The other is to test the mechanisms and func-
tionalities described in section 4 for whether or not they can contribute positive effects to the
system. According to the two reasons, we not only add the rules for the user’s preference but also
add switches of functionalities in the automatic test. By observing the individual result graph,
we can find which function is good for the system. For instance, if there is a user preference for
specific pitches of “Do, Mi, and Sol”, we can set up a rule to favor the particular pitch. On the
other hand, we can turn on and off each of the functions to see the difference.

The control of function switches is divided into three parts, described as all functions on, all
functions off, and functions individually off. We expect to find the differences between all-on,
all-off, and which function effects.

5.4 Results for the Auto-Feedback Test

We did the experiments for testing the utility of the functionalities described in section 4.2. The
experimental results are shown in Figures 6, 7, 8, and 9. The X-axis of these plots is the number
of grading runs, and the Y-axis is the fitness for simulating the user preference.

In Figure 6, we find the grade of all-on is higher than that of all-off. It means that the
auxiliary functionalities we established are helpful for the system to search for better individuals.
Moreover, Figures 7, 8, and 9 present each function described in section 4 is off, and the other
functions are on. In Figures 7, 8, and 9, we find that if we turn one of the functions off, the
grade gets down, except for the music block repeat at the late stage of the evolutionary process.
The results demonstrate that the auxiliary functions can assist the proposed framework and
system, and the exception indicates that if the user is willing and able to grade the generated
music phrases for more than 300 runs, turning the music block repeat off may provide better
performance. Otherwise, all-on is a better setting.

6 Discussion and Future Work

We introduced and described the auto-feedback test in the previous section. In this section, two
design issues are presented and discussed. Then, we propose the potential development of this
work in the future.

9



25

75

125

175

225

275

325

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

all-off

all-on

Figure 6: All of the enhancement functions for the system are switched on vs. all are switched
off.

25

75

125

175

225

275

325

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

evo_num
block_table
all-on

Figure 7: All-on vs. evolution number & block to block fitness table are individually switched
off.

6.1 Evaluation and Feedback

The feedback function is designed for evaluating the music blocks. However, the uniform dis-
tribution of the score provided by the user may be misled the system because we estimate the
fitness values of the music blocks from the scores of the music phrases rather than directly from
the grading of music blocks. If the amount of the gradings is sufficiently large, we may have
more accurate results by applying certain statistical techniques.

The situation is similar to that we have to evaluate the ability of the players in a baseball team
according to little information, for example, the score of each game. Our design does this simply
by recording the mean performance of all the events in which they appear. As a consequence, as
we showed in the previous section, the evaluation seems roughly correct. However, sometimes
faults can occur, especially when the likes and dislikes of the user are ambiguous.

10



25

75

125

175

225

275

325

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

fitness_table
def_fit_tab
all-on

Figure 8: All-on vs. note to note fitness table & default fitness table are individually switched
off.

25

75

125

175

225

275

325

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

mb_repeat
def_fit_tab
all-on

Figure 9: All-on vs. music block repeat & default fitness table are individually switched off.

6.2 Role of Rhythm and Melody

The rhythm and melody are two major components in music. Regardless of the play of music,
one may say that the quality of the music is mostly determined by these two components. In our
system, the rhythm and melody are considered together since the music block is the sequence
of the notes and the evolutionary operations treat them equally. However, can the rhythm and
melody be treated as two independent elements of music? We believe the answer is yes. We may
have two populations, one for the rhythm sequence and the other for the pitch sequence. The
proposed CFE framework can handle such a configuration with some insignificant modifications.
Compared to the proposed framework, it will be easy to integrate the music theory in the
Composition part because many constraints in the music theory are applicable only to either
rhythm or melody.

What problem will we face with this design? The relation between the rhythm and the
melody is hard to clarify and investigate. Even if we have the fittest rhythmic patterns and the

11



best individuals of melody, we still do not know how good it will be to combine them. Unless we
can make sure that good rhythms fit with good melodies, the arrangement should be considered
as a very important issue.

6.3 Future Work

For the proposed framework and system , we have shown the capability of composing good
theme music in section 5. However, the measurements from real users are needed because it
is difficult to model the user preference with certain rules in the auto-feedback test. If we can
deal with the short music well, perhaps we can extend the current composition to more levels
of hierarchy for creating longer music.

For practical use, we should provide some post-composition functionalities for the user. For
example, the system may automatically generate harmonies to match the composed music.
Furthermore, the user may want to modify a small part of the music with some post-processing
mechanisms. After the customized music is created, different types of music files such as a MIDI,
a staff, or a numbered musical notation can be produced. Finally, for the immediate future,
creating personalized cellular phone ringtones is a good real-world application. Whenever and
wherever you go, you can take out your cellular phone, listen to different music, and create your
own ringtones. You may find it not only a tool but also an interesting game.

7 Conclusions

We started with describing the motivation and the goal of this work. Compared with and
inspired by previous studies in the literature, we proposed the CFE framework. Moreover, we
presented the implementation of the reference system and the functionalities that enhance the
system. The auto-feedback test illustrated how we measure and evaluate the system. Finally,
we discussed the design issues and the future work of the proposed system.

Our work shows it is feasible and promising for the computer to automatically compose
customized or personalized music. Although the system currently acts only on short music,
the design might be extensible for longer music. The composed music can be used in many
applications, such as games, cellular phones, background music of web pages, and so on. With
this system, everyone effectively has a personal music composer at their service.

Acknowledgments

The work was partially sponsored by the National Science Council of Taiwan under grant NSC-
94-2213-E-009-120. The authors are grateful to the National Center for High-performance Com-
puting for computer time and facilities.

References

[1] J. A. Biles, “GenJam: evolution of a jazz improviser,” in Creative evolutionary systems.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 165–187, ISBN:
1-55860-673-4.

[2] H.-C. Chang, “Applying genetic algorithms to music composition: Modeling and simulation
of art systems,” Hsinchu, Taiwan, 2002, master’s Thesis, National Chiao Tung University,
Hsinchu, Taiwan.

12



[3] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. SpringerVerlag,
2003, ISBN: 3540401849.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. New
York: Addison-Wesley, 1989.

[5] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection. The MIT Press, 1992, ISBN: 0262111705.

[6] P. Laine and M. Kuuskankare, “Genetic algorithms in musical style oriented generation,” in
Proceedings of the 1994 International Conference on Evolutionary Computation, 1994, pp.
858–862.

[7] M. Marques, V. Oliveira, S. Vieira, and A. C. Rosa, “Music composition using genetic
evolutionary algorithms,” in Proceedings of the 2000 Congress on Evolutionary Computation
(CEC 2000), vol. 1, 2000, pp. 714–719.

[8] R. A. McIntyre, “Bach in a box: the evolution of four part baroque harmony using the ge-
netic algorithm,” in Proceedings of the First IEEE Conference on Evolutionary Computation,
vol. 2, 1994, pp. 852–857.

[9] A. Pazos, A. Santos del Riego, J. Dorado, and J. J. Romero Caldalda, “Genetic music
compositor,” in Proceedings of the 1999 Congress on Evolutionary Computation (CEC 99),
vol. 2, 1999, pp. 885–890.

A Showcases

This section contains several pieces of music created by the reference system implementation.
These showcases demonstrate not only that the proposed CFE framework with the enhancement
functionalities can accomplish the goal of this study but also that the proposed system can
actually create music of various types and styles.

Figure 10: Showcase 1

Figure 11: Showcase 2

13



Figure 12: Showcase 3

Figure 13: Showcase 4

Figure 14: Showcase 5

14


	Introduction
	State of the Art
	The CFE Framework
	Introduction to the CFE Framework
	Design of the Composition Part
	Design of the Feedback Part
	Design of the Evolution Part
	Append and Insert
	Merge and Split
	Double and Shorten
	Raise and Mutate


	System Implementation and Auxiliary Functionalities
	System Implementation
	Environment data
	Modules

	Auxiliary Functionalities
	Reduce the grading runs
	Improve music composition


	Auto-Feedback Test
	Why Do We Need the Auto-Feedback Test?
	Implementation
	Rhythm
	Specific pitch
	Pitch sequence
	Pitch interval

	Auto-Feedback Test Script
	Results for the Auto-Feedback Test

	Discussion and Future Work
	Evaluation and Feedback
	Role of Rhythm and Melody
	Future Work

	Conclusions
	Showcases

