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Abstract

In this paper, we propose a new approach that consists of the extended compact ge-
netic algorithm (ECGA) and split-on-demand (SoD), an adaptive discretization technique,
to economic dispatch (ED) problems with nonsmooth cost functions. ECGA is designed for
handling problems with decision variables of the discrete type, while the decision variables
of ED problems are oftentimes real numbers. Thus, in order to employ ECGA to tackle
ED problems, SoD is utilized for discretizing the continuous decision variables and works
as the interface between ECGA and the ED problem. Furthermore, ED problems in prac-
tice are usually hard for traditional mathematical programming methodologies because of
the equality and inequality constraints. Hence, in addition to integrating ECGA and SoD,
in this study, we devise a repair operator specifically for making the infeasible solutions to
satisfy the equality constraint. To examine the performance and effectiveness, we apply the
proposed framework to two different-sized ED problems with nonsmooth cost function con-
sidering the valve-point effects. The experimental results are compared to those obtained
by various evolutionary algorithms and demonstrate that handling ED problems with the
proposed framework is a promising research direction.

1 Introduction

As the energy crisis is coming in the foreseeable future, especially the shortage of oil and other
natural resources, studies on power systems become more and more important. Among all as-
pects of power systems, including generation, reservation, distribution, transmission, etc., the
economic dispatch (ED) problem, consisting of several different aspects, is an important func-
tion in the power system operation. Economic dispatch refers to the problem of appropriately
allocating generation among the generators to satisfy the specified constraints, such as the min-
imum output and maximum output of each generator, as well as to meet the exact given power
demand. Traditional mathematical approaches, such as Lagrangian multipliers, cannot be used
to solve the ED problem for modern generation units because the cost function for modern
generation units does not possess the property required by the traditional approaches, such as
monotonic increase. Moreover, the cost function of the ED problem is usually highly nonlinear
and has a lot of local optima. As a result, even if there exists some way to transform the cost
function to certain form that can be handled by a traditional method, the obtained solutions
may still be the local optima instead of the global one due to the approximation or relaxation.

Thanks to the importance of and the challenge posed by the ED problem, researchers have
been making numerous attempts to find or to develop suitable methodologies for obtaining better
solutions. Among the promising sets of optimization techniques for tackling the ED problem
are the methods proposed in the domain of evolutionary computation (EC). According to the
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optimization paradigm of most EC methods, the cost function of an ED problem can be simply
considered as a black-box to optimize, and therefore, no special requirement for the cost function
to satisfy. There have been a number of studies on the use of EC methods to handle the ED
problem, including evolutionary programming (EP) [1, 2, 3], genetic algorithms (GAs) [4, 5,
6, 7, 8], and particle swarm optimization (PSO) [9], and the like. In this research project, we
continue to explore the possibilities along the line and successfully employ a new integrated
framework in the domain of evolutionary computation. In particular, the framework consists of
an optimization engine: the extended compact genetic algorithm (ECGA), designed for binary
variables, and an interface: split-on-demand (SoD), discretizing the continuous variables. The
integration of ECGA and SoD solves a 3-unit ED problem as other algorithms do and obtains
the currently best known solution for a 40-unit ED problem.

The remainder of the paper is organized as follows. Section 2 presents the formulation for
the ED problem adopted in this study. Section 3 describes in detail the real-coded ECGA, which
is composed of ECGA and SoD, as well as the constraint handling method. The ED problems
for experiments introduced and the numerical results are shown in section 4, followed by the
summary and conclusions of this paper in section 5.

2 Economic Dispatch

The problem of economic dispatch (ED) for power systems is to find the optimal combination of
power generations that minimizes the total generation cost while satisfying the specified equality
and inequality constraints. In order to model the ED problem, a simplified cost function [10] of
each generator which is represented as a quadratic function can be described as

C =
∑
j∈J

Fj(Pj) , (1)

Fj(Pj) = ajP
2
j + bjPj + cj , (2)

where

• C: the total generation cost;

• J : the set for all generators;

• Pj : the electrical output of generator j;

• Fj : the cost function for generator j;

• aj , bj , cj : the cost coefficients for generator j.

In the real world, the total generation have to be equal to the total system power demand
plus the transmission network loss. However, for simplicity, the network loss is not considered
in this work as in many studies. Thus, the constraints for the ED problem include two main
parts. The first part is the equality constraint. The total system demand must be equal to the
sum of the output of all generators, which can be formulated as

D =
∑
j∈J

Pj , (3)

where D is the total system demand.
The other part is the inequality constraint. The generation output of each generator has to

be in the range of its minimum output and maximum output. The inequality constraint for the
desired output Pj of generator j can be put as

Pjmin ≤ Pj ≤ Pjmax , (4)
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where Pjmin and Pjmax are the minimum and maximum output of generator j.
In reality, the objective function of the ED problem is more complicated because of the valve-

point effects, the change of fuels, and the other practical factors. Therefore, the nonsmooth cost
functions should be considered instead of Equation (2), which is the most simplified form. The
inclusion of the valve-point loading effects makes the modeling of the incremental fuel cost
function of the generators more practical and closer to that in the real world. Such a model
modification increases the non-linearity as well as the number of local optima in the solution
space and makes the search algorithm easily trapped in the local optima. The incremental fuel
cost function of the generating units with the valve-point loadings [4] can be represented as

Fj(Pj) = ajP
2
j + bjPj + cj + |ej sin(fj × (Pjmin − Pj))| , (5)

where ej and fj are the coefficients for generator j to reflect the valve-point effects. In this paper,
we focus on solving the ED problem with the valve-point effects, modeled as Equation (5).

3 Real-Coded ECGA for ED

In this section, we will describe in detail the real-coded extended compact genetic algorithm
(rECGA), which is an integration framework of an optimization engine—the extended com-
pact genetic algorithm (ECGA) [11]—and an adaptive discretization method–Split-on-Demand
(SoD) [12]. We will first introduce ECGA and SoD, followed by the integration of the two major
components. Then, we will present the constraint handling technique employed in the study for
handling the equality constraint of the ED problem.

3.1 ECGA for Optimization

The extended compact genetic algorithm (ECGA), proposed by Harik [11], is based on the idea
that probability distributions can be used to model the population in genetic algorithms and
the choice of a good probability distribution is equivalent to learning linkage between decision
variables. The probabilistic models adopted in ECGA are a class of probabilistic models known
as the marginal product models (MPMs). ECGA uses MPMs to model partitions of decision
variables. The measurement of distribution quality is quantified based on the minimum descrip-
tion length (MDL) principle [13], which can considered as a realization of Occam’s razor. The
key concept of MDL is that all things being equal, simpler distributions are better than more
complex ones. The MDL restriction penalizes both inaccuracy and complexity, thereby leading
to high quality probability distributions.

ECGA can be algorithmically outlined as

1. Initialize a population of size N at random.

2. Apply tournament selection of size S.

3. Model the population by using a greedy MPM search.

4. Stop if the MPM model has converged.

5. Generate a new population with the MPM model.

6. Return to step 2.
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The complexity measurement of MPM is the sum of Model Complexity, formulated as Equa-
tion (6), and Compressed Population Complexity, formulated as Equation (7).

Model Complexity = log N
∑

I

2S[I] , (6)

where N is the population size, and S[I] is the length of the Ith subset of genes.

Compressed Population Complexity = N
∑

E(MI) , (7)

where E(MI) is the entropy of the marginal distribution of subset I. According to the MDL
principle, the goal for the greedy MPM search is to find an MPM model which has the minimal
combined complexity:

Combined Complexity = Model Complexity + Compressed Population Complexity . (8)

Instead of using traditional crossover and mutation operators, ECGA generates the offspring
population from the MPM obtained in step 3. By doing such an operation, new individuals
are generated without breaking building blocks represented in the form of gene groups. In
ECGA, the original framework can only handle binary decision variables. In order to handle
the ED problem, of which the decision variables are real numbers, certain technique is in order
to interface the optimization engine with the problem. In this study, we adopt an adaptive
discretization method, call split-on-demand, which is described in the next section.

3.2 Split on Demand for Discretization

Split-on-demand (SoD), proposed by Chen et al. [12], is an adaptive discretization method that
splits each dimension of a real number into several intervals and encodes these intervals with
integers. The principle of SoD is to split the real-number interval in which there are more than
a certain number of search points. In order to determine which real-number interval to split, a
split rate γ, where 0 < γ < 1, is employed. Let the population size be N . If an interval contains
more than N × γ search points, the interval should be split. By adjusting the split rate, we can
control the accuracy of the probabilistic model that we want to build to describe the population
as well as avoid using unnecessarily long bit-strings for real-number discretization.

When all split operations are done, i.e., no interval contains more than N × γ individuals,
we decrease the split rate by a factor, ε, where 0 < ε < 1. Having a high split rate is similar
to roughly dissecting the search space, while having a low split rate is similar to dissecting the
search space in detail. Hence, the reason to manipulate the split rate in such a manner is that
we would like to keep the population diversity and conduct a coarse-grained global search at the
early search stage, to obtain more and more information regarding the solution space and know
where to put the search points for finding good solutions as the search process goes by, and at
the late search stage, to build accurate probabilistic models for conducting a fine-grained local
search. The factor ε can be used to control the speed of convergence. An appropriate ε can
help the search algorithm to avoid wasting time on useless regions as well as being trapped at
local optima and therefore is key to an successful, efficient search process. The pseudo code for
Split-on-Demand is shown Figure 1.

3.3 Real-Coded ECGA = ECGA with SoD

The basic idea of the proposed framework for real-coded ECGA (rECGA) is to employ SoD to
discretize the population consisting of individuals of continuous decision variables and transform
the individuals to those of integer variables. Then, we use ECGA to build marginal product
models (MPMs) for the transformed individuals and generate the next generation by sampling
the constructed MPMs. The procedure of rECGA can be put as the following steps:
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1: procedure Split-on-Demand
2: Split(lower bound, upper bound)
3: γ ← γ × ε
4: end procedure

1: procedure Split(`, u)
2: m← random[`, u]
3: N` ← number of individuals in [`,m]
4: Nu ← number of individuals in [m,u]
5: if N` ≥ N × γ then
6: Split(`, m)
7: else
8: Add a code for the range [`,m]
9: end if

10: if Nu ≥ N × γ then
11: Split(m, u)
12: else
13: Add a code for the range [m,u]
14: end if
15: end procedure

Figure 1: Pseudo code for SoD.

1. Initialize a population of size N at random.

2. Apply tournament selection of size S.

3. Use SoD to encode each dimension of the variables.

4. Model the population composed of the encoded individuals by using a greedy MPM search.

5. Stop if the MPM model has converged.

6. Generate a new population with the MPM model.

7. Return to step 2.

In rECGA, we use SoD to encode each dimension of the individuals in the population after
tournament selection and do the MPM greedy search as in ECGA. At the end of each iteration,
local search operators may be employed to improve the obtained solutions with a probability,
but in the present work, no local search operator is adopted such that we can more accurately
assess the optimization capability of the combination of ECGA and SoD. Furthermore, some
constraint handling techniques have to be utilized to handle the equality constraint in the ED
problem, and those adopted in the study will be described in the next section.

3.4 Constraint Handling

One of the most important topic for solving ED problems is the equality and inequality con-
straints. These constraints divide the entire solution space into lots of complicated regions.
Such a situation prevents many search techniques and optimization algorithms from performing
effectively and efficiently on ED problems. Hence, in this study, we devise a constraint handling
technique specifically for the ED problem based on the concept of repair. Repairing solutions
means transforming infeasible solutions into feasible ones in some way. For the ED problem,
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although the inequality constraints (Equation (4)) might need handling in traditional mathe-
matical programming methods, they can be thoroughly ignored in the framework because the
control of decision variable ranges is a built-in functionality of EC methods. As for the equality
constraint (Equation (3)), we repair infeasible solutions in the following procedure. Firstly, we
generate a number sequence from 1 to the number of generator with a uniformly distributed
random order. Each number in the sequence denotes a generator in the solution which needs
repair. The whole sequence means the order in which we process the specified generator. As
an example, for five generators, if we randomly generate a sequence: 3, 2, 5, 1, 4, the sequence
means that we will firstly process unit 3, then unit 2, unit 5, and so on. In the specified order,
we check the equality constraint, i.e., the sum of the total power output has to be equal to the
system demand. If the equality constraint is not satisfied, the output of the current generator
is modified according to

P ′
i = min(UBound(Pi),max((D −

n∑
j=1,j 6=i

Pj),LBound(Pi))) , (9)

where D is the system power demand, LBound(Pi) and UBound(Pi) are the lower bound and
upper bound of Pi, i.e., the inequality constraint of Pi.

The proposed framework, ECGA with SoD, incorporating the constraint handling technique
is able to solve the ED problem effectively. After adopting the described repair mechanism, the
real-coded ECGA for tackling the ED problem can be outlined as the following steps:

1. Initialize a population of size N at random according to the constraints posed to the
generator output.

2. Apply tournament selection of size S.

3. Use SoD to encode each dimension of the variables.

4. Model the population composed of the encoded individuals by using a greedy MPM search.

5. Stop if the MPM model has converged.

6. Generate a new population with the MPM model.

7. Repair the infeasible individuals in the population.

8. Return to step 2.

In order to observe the effectiveness and to verify the performance of the proposed approach,
two ED problems, one consisting of 3 generators and the other consisting of 40 generators, are
served as a testbed. The experimental results are presented in the next section.

4 Experiments and Results

In this study, we focus on solving the ED problem with nonsmooth cost functions considering the
valve-point effects. The nonsmooth cost functions were described in section 2 as Equation (5).
To examine the performance, the real-coded ECGA for ED problems proposed in section 3.4
is applied to two ED problems which were adopted as test problems in the literature [4, 14].
One consists of 3 generator units, and the other consists of 40 generator units. The input data
for the 3-generator system are given by Walters and Sheble [4], and those for the 4-generator
system are given by Shinha et al. [14], respectively. The detailed parameters for the two test
problems, including the lower bound and upper bound for the output of each generator as well
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Generator Pmin(MW) Pmax(MW) a b c e f

1 100 600 0.001562 7.92 561 300 0.0315
2 100 400 0.00482 7.97 78 150 0.063
3 50 200 0.00194 7.85 310 200 0.042

Table 1: Parameters for test case I (3-unit system) with the valve-point loading effect. a, b, c, e,
and f are the cost coefficients in the fuel cost function: Fj(Pj) = ajP

2
j + bjPj + cj + |ej sin(fj ×

(Pjmin − Pj))|.

as the coefficients for computing the cost functions, are given in Tables 1 and 2. The total power
demand for the 3-unit system is 850MW, and the demand for the 40-unit system is 10500MW.
It has been proven that for the 3-unit system given by Table 1, the global optimal solution is
8234.07 [15]. As for the 40-unit system, the global optimal solution has not been determined.
To our limited knowledge, the known best solution reported in the literature is 122252.265 [9].

To conduct the experiments, the parameter settings for the real-coded ECGA are that pop-
ulation size = 400, probability of crossover = 0.975, tournament size = 8, γ = 0.5, ε = 0.999,
and the maximum fitness evaluations is 200000. For each problem, 100 independent trails were
conducted to collect statistically significant results. The obtained experimental results for the
3-unit system are given in Table 3 and are compared to those obtained by IEP [2], EP [1], and
MPSO [9]. The results for the small ED problem demonstrate that ECGA with SoD was able
to find the global optimal solution presented by Lin et al. [15].

For the 40-unit system, the experimental results are compared with those obtained by other
methods described by Shinha et al. [14], such as classical EP (CEP), fast EP (FEP), modified
FEP (MEFP), improved FEP (IFEP), as well as the results obtained by MPSO [9]. The min-
imum costs, i.e., the best solutions, achieved by each method are shown in Table 4. The best
solution obtained by the real-coded ECGA is 121462.3591, which is better than the known best
result, 122252.265, reported [9]. For access and verification purpose, the generator outputs and
the corresponding costs of the best solution obtained by rECGA are provided in section A.

Because of the stochastic nature of the methods in evolutionary computation, in order to
avoid reporting the result of a “lucky shot” in the 100 independent trials, comparison of the
experimental results in a statistical manner should be implemented. First of all, Table 5 shows
the range of the results in 100 trials obtained by CEP, FEP, MFEP, IFEP, MPSO, and rECGA,
where the listed results except for that of rECGA are provided in [14, 9]. As we can observe in
Table 5, the distribution of the results can be considered better than those for other evolutionary
algorithms. Furthermore, to precisely compare the performance of rECGA and MPSO [9] on
the 40-unit ED problem, the t-test was conducted to indicate the statistical significance of the
obtained results. Since the actual data set of the 100 trials for MPSO is not available, in order
to get a fair comparison and assessment, we set up two conditions under which the t-test can be
conducted. According to the data given in Table 5, the first condition is that the MPSO data set
contains forty-seven 122252.265, which is the optimum reported for MPSO [9], and fifty-three
122750, which is the mean value of 122500 and 123000. Table 6 demonstrates the t-test results
for condition 1. Given the p-value: 2.26 × 10−55, which is much smaller than the commonly
used significant levels, such as 0.05 (5%), 0.01 (1%), or 0.001 (0.1%), we can conclude that
the performance of rECGA on the 40-unit ED problem is statistically significantly better than
that of MPSO on the same problem. For condition 2, the MPSO data set contains forty-seven
122252.265, which is the optimum reported for MPSO [9], and fifty-three 122500, which is the
best value in the range from 122500 to 123000. The t-test results under condition 2 are shown
in Table 7. Due to the change of the standard deviation, the p-value becomes 9.09×10−91. Such
a small p-value prevents us from accepting the null hypothesis, which in this case is interpreted
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Generator Pmin(MW) Pmax(MW) a b c e f

1 36 114 0.0069 6.73 94.705 100 0.084
2 36 114 0.0069 6.73 94.705 100 0.084
3 60 120 0.2028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.6 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.2 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.4 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.1 801.32 300 0.035
26 254 550 0.00277 7.1 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.0114 5.35 148.89 120 0.077
31 60 190 0.0016 6.43 222.92 150 0.063
32 60 190 0.0016 6.43 222.92 150 0.063
33 60 190 0.0016 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

Table 2: Parameters for test case II (40-unit system) with the valve-point loading effect. a, b, c,
e, and f are the cost coefficients in the fuel cost function: Fj(Pj) = ajP

2
j +bjPj +cj + |ej sin(fj×

(Pjmin − Pj))|.
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Generator GA IEP EP MPSO rECGA
(pop=20) (par=20)

1 300 300.23 300.26 300.27 300.267
2 400 400 400 400 400
3 150 149.77 149.74 149.73 149.733

TP 850 850 850 850 850
TC 8237.6 8234.09 8234.07 8234.07 8234.07

Table 3: Comparison of the experimental results obtained by various methods on the nonsmooth
cost function considering the valve-point loading effect. For the 3-unit system, IEP, EP, MPSO,
and rECGA were able to find the global optimum [15].

CEP FEP MFEP IFEP MPSO rECGA
Minimum Cost 123488.3 122679.7 122647.6 122624.35 122252.265 121462.3591

Table 4: Comparison of the experimental results obtained by various methods on the nonsmooth
cost function considering the valve-point loading effect. For the 40-unit system, rECGA was
able to find the best solution.

Range of Cost
127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5

Method - - - - - - - - - - - -
126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5 121.0

CEP 10 4 - 16 22 42 4 2 - - - -
FEP 6 - 4 2 10 20 26 24 6 - - -

MFEP - - - - - 14 26 50 10 - - -
IFEP - - 2 - 4 4 18 50 22 - - -
MPSO - - - - - - - - 53 47 - -
rECGA - - - - - - - - - 2 97 1

Table 5: Comparison of method on relative frequency of convergence in the ranges of cost
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rECGA MPSO
mean 121777.649963 122516.06455

t-value 27.8068829451749
p-value 2.2645299161711E-55

Table 6: The t-test for the experimental results obtained by rECGA and MPSO under condition
1, where the rECGA data set contains the actual results, and the MPSO data set contains forty-
seven 122252.265 and fifty-three 122750.

rECGA MPSO
mean 121777.649963 122383.56455

t-value 39.4214198098397
p-value 9.0857670116394E-91

Table 7: The t-test for the experimental results obtained by rECGA and MPSO under condition
2, where the rECGA data set contains the actual results, and the MPSO data set contains forty-
seven 122252.265 and fifty-three 122500.

as that the performance of rECGA and MPSO on the test problem is equivalent.
According to the results, we can know that the proposed algorithm performed well on the two

test ED problems. In particular, for the 40-unit system, we improved the known best solution
from 122252.265 [9] to 121462.3591. rECGA is capable of solving ED problems effectively.

5 Summary and Conclusions

In this work, we employed the extended compact genetic algorithm (ECGA) as an optimization
engine and split-on-demand (SoD), which is an adaptive discretization method, as a variable-
type interface. By combing ECGA and SoD, we proposed the framework of the real-coded
ECGA (rECGA) and used rECGA on two economic dispatch (ED) problems for examining the
performance. Incorporating with the proposed constraint handling technique, rECGA success-
fully achieved the global optimal solution of the ED problem consisting of 3 generators and
was able to obtain the solutions better than the known best solution reported in the literature
for the 40-unit ED problem. Furthermore, the t-test was conducted to demonstrate that the
performance of rECGA is statistically significant.

The overall results of this study serves two important purposes. The first one is that ECGA
with SoD is capable of appropriately handling the ED problem of which the cost function is
nonsmooth with the valve-point effect. Since the energy crisis comes closer and closer, power
related problems, such as the ED problem, become more and more important. Although the
ED problems considered in this study are not the most complicated ones, it is still a promising
research direction to employ the proposed framework to tackle the similar problems such that
some parts of current power systems might be improved or enhanced.

On the other hand, the results of this study also demonstrate that it is viable to employ an
optimization algorithm designed for handling decision variables of the discrete type to handle
problems consisting of continuous variables, as long as a suitable interface is adopted. Although
many researchers do not consider the variable-type transformation as an issue, in practice,
except for some limited cases, most algorithms for discrete variables do not perform well on
continuous problems and vice versa. By comparing the real-coded ECGA to the algorithms
designed for continuous variables, such as particle swarm optimization (MPSO) and evolutionary
programming (IFEP, MFEP, FEP, CEP), this paper provides solid experimental results to serve
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as the proof of principle for transforming the variable type while retaining the capability of the
optimization algorithm.

Finally, the future work includes applying the proposed framework to other important prob-
lems as well as developing different integrations of optimization engines and variable-type trans-
forming techniques. Theoretical understandings for the quality of the transforming techniques,
such as SoD and fixed-height histogram, as well as for the interaction between the engine and
the interface can also be considered.
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A The Best Solution

Generator Pmin(MW) Pmax(MW) Output Cost
1 36 114 110.80098 925.11565
2 36 114 110.88806 926.56631
3 60 120 97.40449 1190.63739
4 80 190 179.73300 2143.55011
5 47 97 96.15215 840.66343
6 68 140 140.00000 1596.46432
7 110 300 299.99898 3216.41474
8 135 300 284.62219 2780.24662
9 135 300 284.61234 2798.46198
10 130 300 130.00001 2502.06532
11 94 375 94.00003 1893.30606
12 94 375 94.00027 1908.17291
13 125 500 214.76169 3792.11715
14 125 500 394.27878 6414.85790
15 125 500 304.52026 5171.21428
16 125 500 394.28449 6436.71537
17 220 500 489.27966 5296.71703
18 220 500 489.27855 5288.76474
19 242 550 511.27996 5540.94200
20 242 550 511.28163 5540.95823
21 254 550 523.28030 5071.30855
22 254 550 523.28419 5071.38735
23 254 550 523.28495 5057.33548
24 254 550 523.28151 5057.26621
25 254 550 523.28214 5275.14526
26 254 550 523.27977 5275.09678
27 10 150 10.00013 1140.52698
28 10 150 10.00517 1140.64280
29 10 150 10.00018 1140.52812
30 47 97 87.84287 707.21302
31 60 190 189.99927 1643.98840
32 60 190 189.99996 1643.99109
33 60 190 189.99993 1643.99098
34 90 200 199.99994 2101.01644
35 90 200 199.99993 2043.72638
36 90 200 199.99972 2043.72436
37 25 110 110.00000 1220.16612
38 25 110 109.99978 1220.16484
39 25 110 109.99871 1220.15859
40 242 550 511.28401 5541.02984
Total Generation & Total Cost 10500 121462.3591
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