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Abstract

The goal of linkage identification is to obtain the dependencies among decision variables.
Such information or knowledge can be applied to the designs of crossover operators and/or
the encoding schemes in genetic and evolutionary methods. Thus, promising sub-solutions to
the problem will be less probably disrupted and successful convergences may more likely to be
achieved. In our previous studies, a linkage identification technique, called Inductive Linkage
Identification (ILI), was proposed. This method was established upon the mechanism of
perturbation and the idea of decision tree learning. By constructing a decision tree according
to decision variables and resulting fitness difference values, the interdependent variables will
be determined by the decision tree learning algorithm. In this paper, we aim to acquire
more understandings on the characteristics of ILI, especially its behavior under problems
composed of different-sized and different-typed building blocks. Experiments showed that
ILI can efficiently handle building block of different sizes and is insensitive to building block
types. Our experimental observations indicate the flexibility and the applicability of ILI on
various elementary building block types that are commonly adopted in experiments.

1 Introduction

Previous studies [1, 2] on genetic algorithms (GAs) have shown that the encoding scheme of
solutions is one of the key factors to the success of genetic algorithms. If strongly related
variables, which are usually referred to as building blocks (BBs), are arranged loosely for the
adopted representation, they are likely disrupted by crossover operations. Such a condition
contributes to the drift of population, instead of the convergence toward the optimal solution.
Although encoding strongly related variables tightly or making crossover operators aware of
such relationships could solve the plight and improve the GA performance [3], both measures
require the foreknowledge of the target problem, which is often not the cases when evolutionary
algorithms are adopted.

In order to overcome the building block disruption problem, a variety of techniques have
been proposed and developed in the past two decades and can be roughly classified into three
categories [4]:

1. Evolving representations or operators;

2. Probabilistic modeling for promising solutions;

3. Perturbation methods.
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The objective of the techniques in the first class is to make individual promising sub-solutions
separated and less likely disrupted by crossover via manipulating the representation of solutions
during optimization. Various reordering and mapping operators has been proposed in the liter-
ature, such as the messy GA (mGA) [1] and the fast messy GA (fmGA) [5], which is the more
efficient descendant of messy GA. The difficulty of these methods is that the reordering operator
usually reacts too slow and loses the race against selection and therefore, premature convergence
at local optima occurs. Another technique, the linkage learning genetic algorithm (LLGA) [2],
uses circular structures for representations with two-point crossover such that the tight linkage
might more likely be preserved. While LLGA works well on exponentially scaled problems, it is
inefficient when applied to uniformly scaled problems [2].

The methods in the second category are often referred to as the Estimation of Distribution
algorithms (EDAs) [6, 7, 8]. These approaches describe the dependencies among variables in
a probabilistic manner by constructing a probabilistic model from selected solutions and then
sample the built model to generate new solutions. Early EDAs began with assuming no in-
teractions among variables, such as the population-based incremental learning (PBIL) [9] and
the compact genetic algorithm (cGA) [10]. Subsequent studies started to model pairwise inter-
actions, e.g., the mutual-information input clustering (MIMIC) [11], Baluja’s dependency tree
approach [12], and the bivariate marginal distribution algorithm (BMDA) [13]. Multivariate
dependencies were then exploited and more general interactions were modeled. Example meth-
ods include the extended compact genetic algorithm (ECGA) [14], the Bayesian optimization
algorithm (BOA) [15], the factorized distribution algorithm (FDA) [16], and the learning version
of FDA (LFDA) [17]. Since model constructing in these methods requires no additional function
evaluations, EDAs are usually considered efficient in the traditional viewpoints of evolutionary
computation. However, the model constructing mechanism itself is sometimes computationally
expensive. The difficulty which EDAs often face is that the lower salience building blocks, which
contribute less to the total fitness, are likely ignored rather than captured.

Approaches in the third category observe the fitness differences caused by perturbing vari-
ables to detect dependencies. In the literature, the gene expression messy GA (GEMGA) [18]
represents the sets of tightly linked variables as weight values assigned to solutions and employs
a perturbation method to detect them. GEMGA observes the fitness changes caused by pertur-
bation on every variable for strings in the population and detects interactions among variables
according to how likely those variables compose the optimal solution. Assuming that nonlin-
earity exists within a building block, the linkage identification by nonlinearity check (LINC) [4]
perturbs a pair of variables and observes the presence of nonlinearities to identify linkages. If
the sum of fitness differences of perspective perturbations on two variables equal to the fitness
difference caused by simultaneously perturbing the two variables, the linearity is determined
and thus, these two variables are considered independent. Instead of the non-linearity, the de-
scendant of LINC, linkage identification by non-monotonicity detection (LIMD) [19], adopts
non-monotonicity to detect interaction among variables. Compared to EDAs, the low salience
building blocks are unlikely ignored in these approaches. However, since obtaining fitness differ-
ences requires extra function evaluations, perturbation methods are usually regarded demanding
more computational efforts to detect linkages. In addition to empirical studies, Heckendorn and
Wright generalized these methods through a Walsh analysis [20]. Zhou et al. later extended this
study from the binary domain to high-cardinality domains [21, 22].

An interesting algorithm combining the ideas of EDAs and perturbation methods, called
the dependency detection for distribution derived from fitness differences (D5), was developed
by Tsuji et al. [23]. D5 detects the dependencies of variables by estimating the distributions
of strings clustered according to fitness differences. For each variable, D5 calculates fitness
differences by perturbations on that variable for the entire population and clusters the strings
into sub-populations according to the obtained fitness differences. The sub-populations are
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examined to find k variables with the lowest entropies, where k is the algorithmic parameter
for problem complexity (the number of variables in a linkage set). The determined k variables
are considered forming a linkage set. D5 can detect dependencies for a class of functions that
are difficult for EDAs (e.g., functions contain low salience building blocks) and requires less
computational cost than other perturbation methods do. However, its major constraint is that
it relies on an input parameter k, which may not be available due to the limited information to
the problem structure. As a side-effect to the parameter k, D5 might be fragile in the situation
where the problem is composed of subproblems of different sizes.

In our previous work, we proposed inductive linkage identification (ILI), a method which is
based on the perturbation and integrated with the ID3 [24] algorithm widely used in the field of
machine learning. ILI is an unsupervised method without any parameters for the complexity of
building blocks, and its scalability and efficiency against the increasing problem sizes have been
demonstrated [25, 26, 27]. In this paper, we address more detailed characteristics of ILI in order
to gain deeper insights and better understanding of linkage learning. In particular, problems
constructed by building blocks of different sizes and sub-functions are studied and experimented
upon. Our experimental results indicate that ILI holds the properties of robustness and efficiency
when facing various configurations of building blocks.

The reminder of this paper is organized as follows. In section 2, the background of the linkage
in GA and the decomposability of problems is briefly introduced. Section 3 gives an introduction
of ILI, including a review of the ID3 decision tree learning algorithm, an example illustrating
the proposed approach, and an algorithmic description ILI. Section 4 presents the experiments
conducted in this study and the results revealing the behavior of ILI. Finally, section 5 summaries
and concludes this paper.

2 Linkage and Building Blocks

In this section, we briefly review the definitions and terminologies which will be used through
out this paper. As stated in [28], “two variables in a problem are interdependent if the fitness
contribution or optimal setting for one variable depends on the setting of the other variable,”
and such relationship between variables is often referred to as linkage in the GA literature. In
order to obtain the full linkage information of a pair of variables, the fitness contribution or
optimal setting of these two variables shall be examined on all possible settings of the other
variables.

Although obtaining the full linkage information is computationally expensive, linkage should
be estimated by using a reasonable amount of efforts if the target problem is decomposable.
According to the Schema theorem [29], short, low-order and highly fit substrings increase their
share to be combined. Also stated in the building block hypothesis, GAs implicitly decompose a
problem into sub-problems by processing building blocks. It is considered that combining small
parts is important for GAs and consistent with human innovation [30]. These lead to a problem
model called the additively decomposable function (ADF), which can be written as a sum of
low-order sub-functions.

Let a string s of length ` be described as a series of variables, s = s1s2 · · · s`. We assume
that s = s1s2 · · · s` is a permutation of the decision variables x = x1x2 · · ·x` to represent the
encoding scheme adopted by GA users. The fitness of string s is then defined as

f(s) =
m∑

i=1

fi(svi) ,

where m is the number of sub-functions, fi is the i-th sub-function, and svi is the substring to fi.
Each vi is a vector specifying the substring svi . For example, if vi = (1, 2, 4, 8), svi = s1s2s4s8.
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If fi is also a sum of other sub-functions, it can be replaced by those sub-functions. Thus, each
fi can be considered as a nonlinear function.

By eliminating the ordering property of vi, we can obtain a set Vi containing the elements
vi. The variables belonging to the same set of Vi is regarded as interdependent because fi is
nonlinear. Thus, we refer to the set Vi as a linkage set. A related term, building blocks (BBs),
is referred to as the candidate solutions to sub-function fi. In this paper, only a subclass of the
ADFs is considered. We concentrate on non-overlapping sub-functions. That is, Vi ∩ Vj = ∅ if
i 6= j. In addition, the strings are assumed to be composed of binary variables.

3 Inductive Linkage Learning

In this section, the ideas behind inductive linkage identification (ILI) are firstly presented. Then,
the ID3 learning algorithm, which is proposed and widely utilized in the field of machine learning,
is briefly introduced. An example is given to illustratively explain the mechanism of ILI, followed
by the pseudo code.

In ILI, linkage learning is regarded as the issue of decision tree learning. As an illustration,
the fitness difference can be derived in the following equation within the ADF model:

f(s1s2 · · · s8) = f1(s1s2s3s4s5) + f2(s6s7s8)
df1(s) = f(s1s2 · · · s8)− f(s1s2 · · · s8) (1)

= f1(s1s2s3s4s5) + f2(s6s7s8)
−f1(s1s2s3s4s5)− f2(s6s7s8)

= f1(s1s2s3s4s5)− f1(s1s2s3s4s5) .

Equation (1) indicates that the fitness difference df should be affected by only the bits belonging
to the same sub-functions as the perturbed bits, which are s1s2 · · · s5. Since certain fitness
difference values are respectively caused by particular bits arranged in some permutation of the
sub-function where the perturbed variable belongs, we can consider the task as finding which
values of variables will result in the corresponding fitness differences.

We found that this kind of tasks is similar to decision making in machine learning: Giving
a condition composed of attributes, an agent (algorithm) should learn to make a decision with
the given training samples. When the decision making method is adopted for conduct linkage
learning, decision variables are regarded as attributes and the fitness difference values stands for
class labels. With this simple and direct mapping, linkage learning in genetic algorithms can
potentially be handled with certain well-developed methods in machine learning.

3.1 Decision Tree Learning: ID3

In ILI, the ID3 decision tree learning algorithm [24] is adopted. We consider ID3 as a clas-
sification mechanism, and decision learning can be viewed as and achieved by a sequence of
classifications. In a classification problem, a training instance is composed of a list of attributes
describing the instance and a target value that the decision tree is supposed to predict after
training. In our case, as described in section 3.2, the list of attributes is the solution string, and
the target value is the fitness difference caused by perturbation.

In its most basic form, ID3 constructs the decision tree in a top-down manner without back-
tracking. To construct a decision tree, each attribute is evaluated using a statistical property,
called the information gain, to measure how well it alone classifies the training instances. The
best attribute is accordingly selected and used as the root node of the tree. A descendant node
of the root is created for each possible value of this attribute, and the training instances are
split into appropriate descendant branches. The entire process is repeated by using the training
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instances associated with each descendant node to select the best attribute to test at that point
of the tree.

The statistical property, information gain, of each attribute is simply the expected reduction
in the impurity of instances after classifying the instances with that attribute. The impurity of
an arbitrary collection of instances is often called entropy in the information theory. Given a
collection D, containing instances of c different target values, the entropy of D relative to this
c-wise classification is defined as

Entropy(D) ≡
c∑

i=1

−pi log2 pi ,

where pi is the proportion of D belonging to class i. For simplicity, in all the calculations
involving entropy, we define 0 log2 0 to be 0.

In terms of entropy, the information gain can be defined as follows. The information gain,
Gain(D,A), of an attribute A relative to a collection of instances D, is

Gain(D,A) ≡ Entropy(D)−
∑

v∈V al(A)

|Dv|
|D|

Entropy(Dv) ,

where V al(A) is the set of all possible values for attribute A, and Dv is the subset of D for
which attribute A has value v.

3.2 Exemplary Illustration

This section illustrates the idea that linkage learning is considered as decision learning with an
example. We consider a trap function of size k defined as the following:

ftrapk
(s1s2 · · · sk) = trapk(u =

k∑
i=1

si)

=
{

k, if u = k;
k − 1− u, otherwise.

,

where u is the number of ones in the string s1s2 · · · sk. Suppose that we are dealing with an
eight-bit problem

f(s1s2 · · · s8) = ftrap5(s1s2s3s4s5) + ftrap3(s6s7s8) ,

where s1s2 · · · s8 is a solution string. Our goal is to identify the two linkage sets V1 = {1, 2, 3, 4, 5}
and V2 = {6, 7, 8}.

In the beginning, a population of strings is randomly generated as listed in Table 1. The
first column lists the solution strings, and the second column lists the fitness values of the
corresponding strings. After initializing the population, we perturb the first variable s1 (0 → 1
or 1 → 0) for all strings in the population in order to detect the variables with interdependency
on s1. The third column of Table 1 records the fitness differences, df1, caused by perturbations
at variable s1.

Then, we construct an ID3 decision tree by using the perturbed population of strings as the
training instances and the perturbed variable s1 as the tree root. Variables in s1s2 · · · s8 are
regarded as attributes of the instances, and the fitness differences df1 are the target values/class
labels. Corresponding to Table 1, an ID3 decision tree showed in Figure 1 is constructed. By
gathering all the decision variables on the non-leaf nodes, we can identify a group of s1, s2, s3,
s4, and s5. As a consequence, linkage set V1 is correctly identified.

For the remainder of this example, since s1, s2, s3, s4 and s5 are already identified as linkage
set V1, we proceed at s6. The fitness differences after perturbing variable s6 are showed in
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s1s2 · · · s8 f df1

00001 011 3 1
00001 011 3 1
00011 111 5 1
00011 111 5 1
00100 001 3 1
00100 100 3 1
00101 111 5 1
00110 111 5 1
01000 111 6 1
01010 011 2 1
01101 010 1 1
01101 100 1 1
01101 101 1 1
01110 110 1 1
01110 110 1 1
01111 001 0 -5
01111 110 0 -5
01111 110 0 -5
01111 111 3 -5
10000 010 3 -1

s1s2 · · · s8 f df1

10001 010 2 -1
10010 101 2 -1
10010 110 2 -1
10011 000 1 -1
10101 010 1 -1
10101 100 1 -1
10101 110 1 -1
10110 101 1 -1
10111 100 0 -1
11001 011 1 -1
11001 111 4 -1
11010 011 1 -1
11011 001 0 -1
11011 010 0 -1
11100 000 1 -1
11100 010 1 -1
11100 011 1 -1
11110 101 0 -1
11111 010 5 5
11111 011 5 5

Table 1: Population perturbed at s1

Figure 1: ID3 decision tree constructed according to Table 1
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Algorithm 1 Inductive Linkage Identification
procedure IdentifyLinkage(f , `)

Initialize a population P with n string of length `.
Evaluate the fitness of strings in P using f .
V ← {1, . . . , `}
m← 0
while V 6= ∅ do

m← m + 1
Select v in V at random.
Vm ← {v}
V ← V − {v}
for each string si = si

1s
i
2 · · · si

` in P do
Perturb si

v.
df i ← fitness difference caused by perturbation.

end for
Construct an ID3 decision tree using (P, df).
for each decision variable sj in tree do

Vm ← Vm ∪ {j}
V ← V − {j}

end for
end while
return the linkage sets V1, V2, · · · , Vm

end procedure

Table 2. Conducting the same procedure, an ID3 decision tree presented in Figure 2 is obtained.
By inspecting the decision tree, we obtain variables s6, s7, and s8, which form linkage set V2.
Because all the decision variables are classified into their respective linkage sets, the linkage
detecting task is accomplished. ILI finally reports two linkage sets, V1 = {s1, s2, s3, s4, s5} and
V2 = {s6, s7, s8}.

As illustrated in the example, the mechanism of ILI can detect size-varied building blocks
without assumptions. Such an ability implies that ILI should be capable of finding all relations
among these variables as long as the population size is sufficiently large to provide the statistical
significance.

3.3 Inductive Linkage Identification: ILI

In this section, the idea demonstrated in the previous section is formalized as an algorithm,
which is called inductive linkage identification (ILI) and presented in Algorithm 1. ILI includes
mainly the following three steps:

1. Calculate fitness differences by perturbations;

2. Construct an ID3 decision tree;

3. Examine the decision tree to obtain a linkage set.

The three steps repeat until all the variables of the objective function are classified into their
corresponding linkage sets.

ILI starts at initializing a population of strings. After initialization, ILI identifies one linkage
set at a time using the following procedure: (1) a variable is randomly selected to be perturbed;
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s1s2 · · · s8 f df6

11100 000 1 0
10011 000 1 0
11011 001 0 0
01111 001 0 0
00100 001 3 0
11111 010 5 0
10101 010 1 0
11100 010 1 0
10001 010 2 0
11011 010 0 0
10000 010 3 0
01101 010 1 0
00001 011 3 -3
00001 011 3 -3
11010 011 1 -3
11001 011 1 -3
11111 011 5 -3
11100 011 1 -3
01010 011 2 -3
10111 100 0 0

s1s2 · · · s8 f df6

10101 100 1 0
01101 100 1 0
00100 100 3 0
10010 101 2 0
10110 101 1 0
11110 101 0 0
01101 101 1 0
01110 110 1 0
01111 110 0 0
01110 110 1 0
10101 110 1 0
01111 110 0 0
10010 110 2 0
00011 111 5 3
00011 111 5 3
01000 111 6 3
00101 111 5 3
11001 111 4 3
00110 111 5 3
01111 111 3 3

Table 2: Population perturbed at s6

Figure 2: ID3 decision tree constructed according to Table 2.
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(2) an ID3 decision tree is constructed according to the fitness differences caused by perturba-
tions; (3) by inspecting the constructed tree, the variables used in the decision tree are collected
and considered as a linkage set.

As clearly showed in Algorithm 1, there are no parameters needed for the complexity of
sub-functions. That is, ILI does not rely on any assumption on the size of building blocks while
other existing perturbation methods usually requires the maximum size of building blocks to be
specified. This property of being unsupervised distinguishes ILI with other existing methods.
The only factor effecting the correctness of ILI is whether or not the solution strings in the
population can provide sufficient information for the ID3 construction.

In our previous studies [25, 26], we already know that the required population size growths
linearly with the problem size while the building blocks size is constant. Those results indicate
that ILI is more efficient than LINC(O(`2) = O(k2m2)) [4] and D5(O(`) = O(km)) [23]. In
order to gain further understanding on the flexibility and applicability of ILI, in the next section,
experiments focusing on the building blocks of different sub-functions as well as lengths are
conducted and discussed.

4 Experiments and Results

Experiments and results of ILI on binary ADFs are presented in this section. These experi-
ments are designed to gain more understandings of the behavior of ILI on problems of different
sub-function compositions, including size-varied, size-mixed building blocks and different sub-
functions.

The required population size reflects the behavior of ILI. We determine the population re-
quirement in a bisection manner: For a given problem and a possible population size ranging
from PL to PU , firstly population size P = (PL + PU )/2 will be configured for ILI. If ILI can
correctly identify all the building blocks within the problem for 30 consecutive and independent
runs, P will be regarded sufficiently large for the problem. The next iteration will perform
on the range [PL, P ]. Otherwise, the range [P, PU ] will be used. This procedure repeats until
the range is small than a predefined distance, which is 2 in this study, and the last examined
population size is considered as the minimal requirement for the test problem.

4.1 Different Building Block Sizes

This section describes the experiment on the problems of the same overall size but with different-
sized sub-functions. From our experimental results with different configurations of the building
block size k and the number of build blocks m, we group those results with the overall problem
sizes and arrange them with the building block size k. Thus, the results of the same problem
size with different k can be examined.

Figures 3(a) and 3(b) show the experimental results where the overall problem sizes are 60
bits, 240 bits, 420 bits, and 600 bits with a log-scaled y-axis. The strait lines indicate that for
identical overall problem sizes, the requirements of both the population size and the function
evaluation growth exponentially.

With the exponential regression of the experimental results, an estimation of y = C × 2a×k

can be obtained, where a is a constant around 0.55 and C varies with different problem sizes.
Earlier studies of LINC [4] and Heckdorn’s work [20] respectively suggested an empirical and
a theoretical upper bounds of function evaluations, which are both in the form of 2k`j log(·)
for problems of ` bits, composed of order-k building blocks and each building block sharing j
bits with others. Comparing our empirical results with the upper bounds, ILI shows the same
computational complexity of the exponential growth with k. However, the regression gives 0.55
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as the base of exponent and thus indicates the practically better efficiency than the suggested
upper bound when the complexity of sub-problem increases.

4.2 Mixed Building Block Sizes

One of the key features of ILI is unsupervised. In this section, we inspect this feature by
conducting experiments on the problems consisting of non-overlapping building blocks of several
sizes as

trapk+`(·) =
m∑

i=1

(trapk(·) + trap`(·)) ,

where m is the number of trapk and trap`. By designing the experiments in this way, the em-
pirical results can therefore be easily compared with those from problems consisting of identical
sub-problem complexities in the following manner: For each problem size obtained from the ex-
periment of trapk+`(·), two results of the same amount of trapk and trap` from experiments in
section 4.1 are summed up to get the same problem size and total number of building blocks, in-
terpolation is utilized when there is no results of such configurations. These calculated numbers
are denoted as trapk + trap` in Figure 4 with the experimental results trapk+`.

Firstly, these results show that ILI is capable of detecting building blocks of different sizes
within one problem without any extra information regarding the complexity of sub-problems.
Secondly, comparing with calculated data, it can be seen that although ILI requires more function
evaluations for the problems composed of mixed building block sizes, the growth rate is still
linear or very close to linear. The observation indicates that identifying size-varied building
blocks within a problem poses no particular difficulties for ILI. Such a property of robustness
makes ILI more practical when being applied to real world problems where information regarding
the sub-problem complexity is usually unavailable and no guideline exists to make appropriate
assumptions.

4.3 Building Blocks of Various Elementary Functions

Despite of using trapk functions as the sub-function to construct building blocks, the capability
of ILI to handle building blocks formed by other functions showed in Figure 5 is examined in
this section. These elementary functions are used to compose the objective function according
to the ADF model, and the complexity of order 4 is adopted in this section.

Figure 6 shows the experimental results. The required population sizes and function evalua-
tions of trap4, nith4, tmmp4, and valley4 are plotted together, and the standard deviation of the
results for trap4 is also shown in the figures. Because the population and function evaluation re-
quirements of these problems are similar, the behavior of ILI should also be similar for problems
constructed by mixing sub-problems of the same complexity. Moreover, the applicability of ILI
on a wide range of problems is also confirmed. ILI is capable of detecting the interactions among
decision variables as long as a sufficiently large population is employed to provide significant
statistics.

5 Summary and Conclusions

In this paper, we examined ILI on several different configurations of building blocks in order to
gain better understandings. We focused on the mixed sizes of building blocks and the elementary
functions of different types. These series of experiments verified the efficiency of ILI on the
population requirement growth, the robustness of ILI on the mixed sizes of building blocks, and
the applicability of ILI on building blocks formed with various elementary functions.
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Figure 5: Elementary functions adopted in the series of experiments in section 4.3.

From the experiments of building block sizes, it is demonstrated that the required function
evaluations grow exponentially with the size of building blocks when the overall problem size
remains constant. Such a result is consistent with the conclusions of previous studies from
other researchers in the manner of Big-O while ILI demands less computational resource in
practice. Another observation is that when ILI performs on problems composed of mixed-sized
building blocks, the computational complexity of ILI is still in the same order. This phenomenon
indicates that detecting these more complicated problem structures poses no particular difficulty
for ILI. Finally, the experimental results obtained by using four different elementary functions
to construct building blocks are quite similar. Thus, this series of experiments evidentially prove
that ILI behaves similarly when handling sub-problem of different types. As a consequence, we
can now know that the most important factor that affects ILI’s ability to identify linkage is
the size of building blocks. ILI is insensitive to other factors commonly studied by the related
work, including the overall problem size, the number of building blocks, the scaling of building
blocks, and the type of building blocks. Hence, ILI can be considered as a good linkage learning
technique and can be adopted as a tool for analyzing structures of target problems or a pre-
processing procedure in frameworks of genetic algorithms.

Since its introduction, ILI as a linkage learning technique has been empirically proven ef-
ficient, robust, and widely applicable. Research along this line includes integrating ILI into a
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Figure 6: Experimental results on different building block types.
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GA framework, handling real-world applications with ILI, exploring ILI’s capability of analyzing
problem structures, and understanding the nature of linkage learning via getting deeper insights
of ILI. We will continue to work on advancing the knowledge on linkage learning in order to
practically help the algorithmic development of genetic algorithms and theoretically reveal the
operation principle of evolutionary computation.
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