
Inductive Linkage Identification: Scalability, Robustness, and
Population Sizing

Chung-Yao Chuang
Jih-Yiing Lin

Ying-ping Chen

NCLab Report No. NCL-TR-2009008
October 2009

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/

Inductive Linkage Identification: Scalability, Robustness, and

Population Sizing

Chung-Yao Chuang, Jih-Yiing Lin, and Ying-ping Chen
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
{cychuang, jylin, ypchen}@nclab.tw

October 1, 2009

Abstract

This paper proposes a linkage identification algorithm, named inductive linkage identi-
fication (ILI), to identify linkages, which are referred to as the interdependencies among
variables. The proposed algorithm utilizes the ID3 decision tree to extract sets of variables
based on the mutual relevance on the fitness differences caused by perturbation. In this
study, we concentrate on the properties and characteristics of ILI, including its scalability,
robustness, and population requirement. According to the experimental results, compared
to other linkage learning techniques, ILI exhibits equal or better flexibility, scalability, and
robustness. A theoretical population sizing model is also developed in this paper to re-
veal the population requirement for ILI to operate. The proposed population sizing model
well agrees with the experimental results and such a model may provide an insight into
perturbation-based as well as entropy-based linkage learning methodologies.

1 Introduction

Genetic algorithms (GAs) have been widely adopted in handling optimization problems for
their simplicity and applicability. In addition to population-based search, GAs explore the
search space by combining pieces of promising solutions and require only the information from
objective functions. However, the fixed presentations and problem-independent recombination
operators, inherent in the early GAs, can break combined pieces of promising solutions and thus
lead to the convergence to local optima. In order to overcome this difficulty, three categories of
techniques have been proposed and developed [1].

The first kind of such approaches is to evolve representations or operators in an attempt to
reduce disruptions of promising subsolutions. Yet, the evolution of representations or operators
often cannot match the selection rates and usually results in premature convergence. The
second category is probabilistic modeling for promising solutions. Methods in this category
construct probability models of promising solutions and utilize the built model to generate new
solutions. Though the model construction does not require additional function evaluations,
there is a trade-off between model accuracy and computational cost. The approaches in the last
category apply perturbation to identify the interdependencies among decision variables. These
interdependencies, referred to as linkage, can be used to adjust or adapt representations and/or
crossover operators to alleviate the aforementioned disruption problem. The main disadvantage
is that the operation of linkage identification requires extra function evaluations.

In this paper, we propose a linkage identification technique based on analyzing the fitness
changes caused by perturbation. The proposed algorithm, called inductive linkage identification

1

(ILI), adopts a population-wise perturbation approach and the ID3 decision tree to recognize sets
of decision variables that exhibit strong relationships. The proposed algorithm is simple, efficient
and requires no a priori knowledge about subproblem sizes. Series of experiments and a theoret-
ical population sizing model are conducted and developed in this work to give a comprehensive
understanding about ILI’s properties and characteristics. The proposed algorithm can handle
both uniformly and exponentially scaled problems with similar numbers of function evaluations.
Experimental results further show that ILI scales well as well as exhibits robustness on large
problem sizes. The proposed population sizing model provides a good agreement with empirical
results on scalability and sheds a light on the population requirement of perturbation-based and
entropy-based linkage identification approaches.

The rest of this paper is organized as follows. Section 2 introduces the background of
linkage in genetic and evolutionary algorithms. The linkage problem and different categories of
linkage handling techniques are introduced. Section 3 explains how ILI works. It firstly gives the
terminologies that will be used throughout this paper, then provides a review of the ID3 decision
tree learning algorithm, illustrates the proposed approach with an example, and finally describes
the proposed algorithm in detail. The experiments and results are presented in section 4 for
observing the behavior of ILI, including its scalability and robustness. Section 5 proposes a
theoretical population sizing model for ILI and empirically verifies the proposed model. Finally,
section 6 concludes this paper.

2 Background

An optimization problem can be defined by specifying the set of all solutions to that problem
and a measure to evaluate the quality of each solution that reflects the objectives. The goal is
to search for solutions that maximize the specified quality measure. An interesting and difficult
class of optimization problems is called black-box optimization problems, in which there is no
problem-specific domain knowledge available besides the quality measure, i.e., the objective
function. The only way of learning information about the relation between the semantics of
solutions and the quality measure is to sample new candidate solutions and evaluate them with
the objective function.

A popular way to deal with black-box optimization problems is to apply genetic algorithms
(GAs) [2, 3]. Genetic algorithms are search techniques loosely based on the paradigm of natural
evolution, in which species of creatures tend to adapt to their living environments by mutation
and inheritance of useful traits. Genetic algorithms mimic this mechanism by introducing arti-
ficial selections and genetic operators to discover and recombine partial solutions. By properly
growing and mixing promising partial solutions, which are often referred to as building blocks
(BBs) [4], GAs are capable of efficiently solving a host of problems. The ability of implicitly
processing a large number of partial solutions has been recognized as an important source of
the GA computational power. The Schema theorem [2] states that short, low-order, and highly
fit sub-solutions increase their share to be combined and eventually form solutions at the end.
Also as stated in the building block hypothesis [3], GAs implicitly decompose a problem into
sub-problems by processing building blocks. This decompositional bias is a good strategy for
tackling many real-world problems, because real-world problems can often be reliably solved by
combining the pieces of promising solutions in the form of problem decomposition.

The three features, the need of only the objective function, population-based search, and
exploration by combining pieces of promising solutions, make GAs particularly suitable for
black-box optimization. Because of the simplicity of the idea and its wide applicability, GAs
have become an increasingly important area of computational optimization. Unfortunately,
proper growth and mixing of building blocks are not always achieved. GA in its simplest form
employing fixed representations and problem-independent recombination operators often breaks

2

the promising partial solutions while performing crossovers. This disruption can lead to pre-
mature convergence. In order to overcome the building block disruption problem, a variety of
techniques have been proposed and developed, which can be roughly classified into three cate-
gories [1]: evolving representations or operators, probabilistic modeling for promising solutions,
and perturbation methods.

2.1 Evolving Representations or Operators

In order to alleviate the disruption problem of building blocks, techniques in this category adjust
the representation of solutions during the search process, and thus building blocks can be less
likely to be separated by crossover operators. Generally they encode both locations and values
of each variable and apply a modified recombination operator on the chromosome. The messy
GA (mGA) [5], its more efficient descendant—the fast messy GA (fmGA) [6], and the linkage
learning GA (LLGA) [7] are some representatives in this category. Though these techniques
incorporate the forming of tight linkage in the evolution, the progress of forming tight linkage
is often much slower than the selection process. Consequently, premature convergence to local
optima is the main drawback of the techniques in this category.

2.2 Probabilistic Modeling for Promising Solutions

The approaches in the second category are often referred to as estimation of distribution algo-
rithms (EDAs) [8, 9, 10]. These methods construct probabilistic models of promising solutions
and utilize the built model to generate new solutions. Early EDAs, such as the population-based
incremental learning (PBIL) [11] and the compact genetic algorithm (cGA) [12], assume no in-
teraction between variables, i.e., variables are independent. Subsequent studies start from cap-
turing pairwise interactions, such as mutual-information-maximizing input clustering (MIMIC)
[13], Baluja’s dependency tree approach [14], and the bivariate marginal distribution algorithm
(BMDA) [15], to modeling multivariate interactions, such as the extended compact genetic algo-
rithm (ECGA) [16], the Bayesian optimization algorithm (BOA) [17], the factorized distribution
algorithm (FDA) [18], and the learning version of FDA (LFDA) [19]. The model construction
processes in these algorithms do not require additional function evaluations. Thus, they can per-
form effectively especially for the situations in which the performance are bounded by function
evaluations. However, it is difficult for them to correctly model building blocks of low salience
(small fitness contributions) [20].

2.3 Perturbation Methods

The methods in the third category examine the fitness differences obtained by conducting per-
turbations on the variables to detect interdependencies. For example, the gene expression messy
GA (GEMGA) [21] records fitness changes caused by perturbation of each variable and detects
relationships according to the possibilities that the variable may compose local optima. Linkage
identification by nonlinearity check (LINC) [1] identifies the linkage via detecting the nonlin-
earity among variables after pairwise perturbations. It assumes that nonlinearity exists within
interdependent variables. If the fitness difference by simultaneous perturbations at a pair of
variables is equal to the sum of fitness differences by perturbation at each variable in the pair,
the two variables can be viewed as to reside within different subproblems, and therefore, these
variables can be optimized separately. Linkage information identified by LINC is represented as
sets of variables. Each set contains tightly linked variables forming a building block and such a
set is called a linkage set. The descendant of LINC, linkage identification by non-monotonicity
detection (LIMD) [22], adopts non-monotonicity instead of nonlinearity and detects linkage by

3

checking violations of the monotonicity conditions. Although perturbation methods require ex-
tra function evaluations in addition to the running of GA, they have the advantage of being
able to identify building blocks of low salience. [23] generalized this category through a Walsh
analysis.

An intriguing algorithm combining the ideas of EDAs and perturbation, called the depen-
dency detection for distribution derived from fitness differences (D5), was developed by [20]. D5

detects the dependencies of variables by estimating the distributions of strings clustered accord-
ing to fitness differences. For each variable, D5 calculates fitness differences by perturbing it for
the entire population and clusters the strings into sub-populations according to the obtained
fitness differences. The sub-populations are examined to find the k variables with the lowest
entropies, where k is a pre-defined problem complexity (the number of variables in a linkage set).
These k variables are assumed to be tightly linked as a linkage set. D5 can detect dependencies
for a class of functions that are difficult for EDAs (e.g., functions contain low-salient building
blocks) and requires less computational cost than other perturbation methods do. However, the
major constraint is that it relies on an input parameter k which may not be available due to the
limited information of the problem structure. As a side-effect to the parameter k, D5 might be
fragile in the situation where the problem is composed of subproblems of different sizes.

In this work, we propose a perturbation-based linkage identification algorithm, called induc-
tive linkage identification (ILI). ILI is similar to D5 in that the population-wise perturbation
approach is adopted and different from D5 because instead of using a clustering method to obtain
a biased sub-population, a supervised learning method, ID3 [24], which is well-established in the
field of machine learning, is adopted to construct a decision tree for the task of extracting linkage
groups. By inspecting the learned decision tree, we can obtain a set of variables exhibiting a
strong relationship with the perturbed variable. The advantages of the proposed approach are
that a lower number of function evaluations is needed and no problem complexity parameter
(e.g., k in D5) is required, and as a result, ILI is robust against problems composed of different-
sized subproblems. Moreover, the experiments conducted in this work also demonstrate that ILI
can scale well and is robust on the growth and mixing of different problem sizes. A population
sizing model that reveals some important essence of population sizing in entropy-based linkage
identification approaches is also developed.

3 Inductive Linkage Identification

In this section, we first briefly review some definitions and terminologies which will be used
through out this paper. Then, we give a short review of ID3, followed by the demonstration
of the idea behind the proposed linkage identification technique with an example. Finally, the
detailed description of ILI is presented.

3.1 Additively Decomposable Functions

Through this work, we use additively decomposable functions (ADF) as the problem model
because we concentrate on the problems containing certain structures. Let s = s1s2 · · · s`, for `
variables, represent a string s of length `. The fitness of string s can be defined as:

f(s) =
m∑

i=1

fi(svi) ,

where m is the number of subfunctions fi, and svi is the subset variables of s that corresponds
to fi. vi here is a vector of indexes that specifies the corresponding subset variables svi . For
example, if vi = (1, 2, 4, 8), svi = s1s2s4s8. Let Vi be the set that contains all the elements of vi,

4

we can refer to the set Vi as a linkage set. In this paper, we consider only a subclass of ADFs.
We concentrate on non-overlapping sub-functions, that is, Vi ∩ Vj = ∅ if i 6= j. In addition, the
strings are assumed to be composed of binary variables.

In the remainder of this paper, our approach will be demonstrated and evaluated on test
problems constructed by concatenating several trap functions. Specifically, a k-bit trap function
is a function of unitation1 which can be expressed as

ftrapk
(x1x2 · · ·xk) =

{
k, if u = k ,
k − 1− u, otherwise.

,

where u is the number of ones in the binary string x1x2 · · ·xk. The trap functions were used per-
vasively in the studies concerning GAs and other evolutionary algorithms because they provide
well-defined structures among variables, and the ability to recognize inter-variable relationships
is essential to solve the problems consisting of traps [25, 26].

3.2 Decision Tree Learning: ID3

Decision tree learning is one of the most widely used methods for inductive inference. It has been
successfully applied to a broad range of tasks, from diagnosing medical cases to accessing credit
risks of loan applicants. Decision tree learning approximates discrete-valued target functions
and represents these functions with decision trees.

In this paper, the ID3 decision tree learning algorithm [24] is used, and we mainly utilize
ID3’s ability in classification. For a classification problem, a training instance is composed of
a list of attribute values describing the instance and a target value that the decision tree is
supposed to predict after training. In our case, as described in section 3.4, the list of attribute
values is the solution string, and the target value is the fitness difference caused by perturbation.

In its simplest form, ID3 constructs the decision tree in a top-down manner without back-
tracking. To construct a decision tree, each attribute is evaluated using a statistical property,
called the information gain, to measure how well it alone classifies the training instances. The
best attribute is selected and used as the test at the root node of the tree. A descendant of the
root is then created for each possible value of this attribute, and the training instances are split
into appropriate descendant nodes. The entire process is repeated using the training instances
associated with each descendant node to select the best attribute to test at that point of the
tree.

The statistical property, information gain, of each attribute is simply the expected reduction
in the impurity of instances after the instances are classified by using that attribute. The
impurity of an arbitrary collection of instances is often called entropy in the information theory.
Given a collection D, containing instances of c different target values, the entropy of D relative
to this c-wise classification is defined as

Entropy(D) ≡
c∑

i=1

−pi log2 pi , (1)

where pi is the proportion of D belonging to class i. In all calculations involving entropy, we
define 0 log2 0 to be 0.

In terms of entropy, the information gain can be defined as follows. The information gain,
Gain(D,A), of an attribute A relative to a collection of instances D is

Gain(D,A) ≡ Entropy(D)−
∑

v∈V al(A)

|Dv|
|D|

Entropy(Dv) , (2)

1A function of unitation is a function whose value depends only on the number of ones in the string.

5

s1s2 · · · s8 f df1

01111 011 0 -5
00011 001 3 1
00100 000 5 1
01001 111 5 1
11111 000 7 5
01101 101 1 1
00110 011 2 1
01101 110 1 1
00001 011 3 1
10100 111 5 -1
11110 101 0 -1
11111 110 5 5
11011 010 1 -1
01000 010 4 1
00100 010 4 1
00001 000 5 1
01100 010 3 1
10000 101 3 -1
00000 100 5 1
11011 110 0 -1
00011 001 3 1
00111 010 2 1
00100 100 4 1
10110 000 3 -1
11100 000 3 -1
01111 111 3 -5
10100 010 3 -1
10100 001 3 -1
01000 001 4 1
01111 110 0 -5
(a) Original population.

s1s2 · · · s8 f df1

00000 100 5 1
00001 011 3 1
00001 000 5 1
00100 000 5 1
00100 010 4 1
00100 100 4 1
01000 010 4 1
01000 001 4 1
01001 111 5 1
01100 010 3 1
01101 101 1 1
01101 110 1 1
00011 001 3 1
00011 001 3 1
00110 011 2 1
00111 010 2 1
01111 011 0 -5
01111 111 3 -5
01111 110 0 -5
10000 101 3 -1
10100 111 5 -1
10100 010 3 -1
10100 001 3 -1
10110 000 3 -1
11100 000 3 -1
11110 101 0 -1
11111 000 7 5
11111 110 5 5
11011 010 1 -1
11011 110 0 -1

(b) Rearranged population.

Table 1: Population of strings. s1 is perturbed.

where V al(A) is the set of all possible values for attribute A, and Dv is the subset of D for
which attribute A has value v.

3.3 Exemplary Illustration

To illustrate the idea behind ILI, suppose that we are dealing with an 8-bit problem formed by
concatenating two trap functions,

f(s1s2 · · · s8) = ftrap5(s1s2s3s4s5) + ftrap3(s6s7s8) ,

where s1s2 · · · s8 is an individual. Our goal is to identify two linkage sets V1 = {1, 2, 3, 4, 5} and
V2 = {6, 7, 8}.

In the beginning, a population of strings is randomly generated as listed in Table 1(a). The
first column lists the solution strings, and the second column lists the fitness values of the
corresponding strings. After initializing the population, we perturb the first variable s1 (0 → 1

6

s1

s4

1

0

s2

1

0

−5

1

1

0

s5

−1

0

s3

−1

0

5

1

1

1

Figure 1: The ID3 decision tree con-
structed according to Table 1.

s6

s8

1

0

s7

1

0

−3

1

1

0

s8

−1

0

s7

−1

0

3

1

1

1

Figure 2: The ID3 decision tree con-
structed according to Table 2.

or 1→ 0) for all strings in the population in order to detect the linkage set in which the variables
are related to s1 (i.e., V1). The third column of Table 1(a) records the fitness differences, df1,
caused by perturbations at variable s1.

Then, we construct an ID3 decision tree by using the population of strings as the training
instances. Each variable in s1s2 · · · s8 is an attribute to the instances, and the target values are
the fitness differences df1. By using this setup, we can obtain an ID3 decision tree as shown in
Figure 1. By gathering all the decision variables of the non-leaf nodes, we can identify a variable
group, s1, s2, s3, s4, and s5, which corresponds to linkage set V1. As a consequence, the linkage
set V1 is correctly identified.

One might think that this result is a little too sudden. We may consider the rearranged
population listed in Table 1(b) for a clearer view. In Table 1(b), strings from different blocks
are bearing different patterns. For example, s1 and s4 of the strings from the first block are
all 0’s. In the fourth block, values of s1 are 1’s, and values of s5 are 0’s. Such an observation
can be extended to other blocks as well. In fact, these patterns are corresponding to the paths
from leaf nodes of the tree in Figure 1 to the root. To put it in another way, as we consider
the fitness differences caused by perturbations as the target values of the decision tree, the
ID3 algorithm selects variables showing strong relationship to the fitness differences. Thus the
variables belonging to the same subfunction as the perturbed variable, s1, tend to be selected
in this mechanism.

A more accurate explanation can be given as follows. Consider the fitness difference df1 of
a certain string s = s1s2 · · · s8 perturbed at variable s1:

df1(s) = f(s1s2 · · · s8)− f(s1s2 · · · s8) (3)
= ftrap5(s1s2s3s4s5) + ftrap3(s6s7s8)
−ftrap5(s1s2s3s4s5)− ftrap3(s6s7s8)

= ftrap5(s1s2s3s4s5)− ftrap5(s1s2s3s4s5) .

As shown in Equation (3), the fitness difference df1 is independent of the variables s6, s7, and s8.
df1 depends on only s1, s2, . . ., s5. Therefore, for a sufficiently large population showing strong
statistical evidences, the independent variables will not be chosen as nodes in the decision tree.
On the other hand, because ftrap5 is a function with nonlinearity, all of the five variables tend
to be identified given a sufficiently large population which contains nonlinear points of ftrap5 .

For the remainder of this example, since V1 is already correctly identified, we proceed at s6.
The fitness differences after perturbations at variable s6 are shown in Table 2. Employing the

7

s1s2 · · · s8 f df6

01111 011 0 -3
00011 001 3 1
00100 000 5 1
01001 111 5 3
11111 000 7 1
01101 101 1 -1
00110 011 2 -3
01101 110 1 -1
00001 011 3 -3
10100 111 5 3
11110 101 0 -1
11111 110 5 -1
11011 010 1 1
01000 010 4 1
00100 010 4 1
00001 000 5 1
01100 010 3 1
10000 101 3 -1
00000 100 5 -1
11011 110 0 -1
00011 001 3 1
00111 010 2 1
00100 100 4 -1
10110 000 3 1
11100 000 3 1
01111 111 3 3
10100 010 3 1
10100 001 3 1
01000 001 4 1
01111 110 0 -1

Table 2: Population of strings. s6 is perturbed.

identical procedure, an ID3 decision tree is constructed as presented in Figure 2. By inspecting
the tree, we obtain the related variables s6, s7, and s8 which form the size 3 linkage set V2. The
example illustrates that the proposed algorithm can handle problems composed of different-sized
sub-problems.

3.4 Algorithm and Steps

The idea illustrated in previous sections forms the basis of the proposed algorithm, called in-
ductive linkage identification (ILI), of which the procedure consists of the following three main
steps:

1. Calculate the fitness differences caused by perturbation;

2. Construct an ID3 decision tree rooted at the perturbed variable;

3. Inspect the decision tree to obtain a linkage set.

8

Algorithm 1 Inductive Linkage Identification
procedure IdentifyLinkage(f , `)

Initialize a population P with n string of length `.
Evaluate the fitness of strings in P using f .
V ← {1, . . . , `}
m← 0
while V 6= ∅ do

m← m + 1
Select v in V at random.
Vm ← {v}
V ← V − {v}
for each string si = si

1s
i
2 · · · si

` in P do
Perturb si

v.
df i ← fitness difference caused by perturbation.

end for
Construct an ID3 decision tree using (P, df) with v as root node.
for each decision variable sj in tree do

Vm ← Vm ∪ {j}
V ← V − {j}

end for
end while
return the linkage sets V1, V2, · · · , Vm

end procedure

The three steps repeat until all the variables are divided into their corresponding linkage sets.
In detail, ILI starts at initializing a population of strings. After initialization, ILI identifies one
linkage set at a time using the following procedure: (1) a variable is randomly selected to be
perturbed; (2) an ID3 decision tree with the perturbed variable as root is constructed according
to the fitness differences caused by perturbations; (3) by inspecting the constructed tree, the
variables used in the decision tree are collected and considered as a linkage set.

Algorithm 1 presents the pseudo code of the overall ILI procedure. As shown in Algorithm 1,
the number of function evaluations required to accomplish the task of linkage identification is
proportional to the number of the linkage sets of the given objective function. Suppose that
we are dealing with an ADF f in which the length of solution strings is ` = k ×m, where m
is the number of subfunctions forming f , and k is the size of each subfunction. In this case,
with the notation adopted by [20]2, LINC needs O(`2) = O(k2m2) function evaluations, D5

needs O(`) = O(km) function evaluations, and ILI needs O(m) function evaluations. As a
consequence, both ILI and D5 need a number of function evaluations linear to the problem size,
but ILI needs fewer evaluations by a factor of k, which is the subfunction size. The numerical
results verifying this theoretical observation are included in the next section.

4 Comparative Evaluations, Scalability, and Robustness

Experimental settings and numerical results are presented in this section. The experiments are
designed to indicate the population requirement for ILI to work correctly on problems composed

2[20] separates the discussion of population sizes and extra function evaluations used in linkage detection. To
discuss the number of function evaluations needed for linkage identification, it is assumed that the population
size is sufficiently large to capture all nonlinearity of the objective function. Such an assumption is the premise
for perturbation methods, such as LINC, to work correctly.

9

of subproblems of different complexities. In this study, we focus on the problems composed of
m concatenated non-overlapping trap functions as subproblems, which can be described as

f(s) =
m∑

i=1

ftrapk
(s(i−1)k+1 · · · s(i−1)k+k) ,

where k is the size of subproblems (i.e., subproblem complexity), and m is the number of
subproblems.

For each problem instance, the goal is to determine the minimum population size required by
ILI to correctly identify all the linkage sets. The criterion to check whether or not a population
size is sufficiently large is that ILI can work as expected in 30 consecutive, independent runs.
The experimental procedure runs in a bisection style. An upper bound and a lower bound (2500
and 0 respectively in this study) are set to initialize the experiments. The population size to test
is the middle value of the current upper and lower bounds. If linkage identification is successful,
i.e., ILI can correctly identify all the linkage sets in 30 consecutive, independent runs, the current
middle value will be the next upper bound. If linkage identification is unsuccessful, the current
middle value will be the next lower bound. The procedure repeats until the difference between
the upper and lower bounds is less than or equal to 2.

4.1 Comparative Evaluations

In the first series of experiments, we compare the proposed algorithms with two related meth-
ods, LINC and D5, on binary ADFs with non-overlapping subfunctions for comparison. The
numerical results on uniformly scaled functions as well as on exponentially scaled functions are
also compared to demonstrate the flexibility of ILI.

The empirical comparison of the proposed approach with LINC and D5 on uniformly scaled
functions is performed on the functions composed of trap5 subfunctions:

f(s) =
m∑

i=1

ftrap5(s5·(i−1)+1 · · · s5·(i−1)+5) ,

where m ranges from 20 to 180. That is, the problem size ranges from 100 bits to 900 bits.The
results of ILI are compared to that of LINC and D5 [20] and plotted in Figure 3. The number
of function evaluations is much lower than that needed by LINC and grows in a relatively slow
rate. It is also lower than D5 about a factor of the subfunction size, k = 5. The results confirm
our previous theoretical observation.

Moreover, Figure 4 presents the population requirement of ILI on exponentially scaled func-
tions, in which the trap5 function is also adopted:

f(s) =
m∑

i=1

2i−1 × ftrap5(s5·(i−1)+1 · · · s5·(i−1)+5) ,

where m ranges from 10 to 50. That is, the problem size ranges from 50 bits to 250 bits. The
results are compared to that of ILI on uniformly scaled functions. It can be observed that
ILI needs approximately the same number of function evaluations for problems of same sizes.
That ILI is independent of different subproblem scalings can be concluded according to the
observation.

4.2 Scalability

In this section, we exam the scalability of ILI on different problem sizes for both population
sizes and function evaluations. The number of subproblems, m, and the size of subproblems,

10

100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

x 10
5

Problem size

Fu
nc

tio
n

ev
al

ua
tio

n

LINC

D5
Inductive Linkage Identification

Figure 3: Numerical results of ILI compared to
that of LINC and D5 [20] on uniformly scaled
problems.

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Problem size

F
un

ct
io

n
ev

al
ua

tio
n

Uniformly−scaled

Exponentially−scaled

Figure 4: ILI needs approximately the same
number of function evaluations for problems of
same sizes.

k, are two key elements of problem sizes, `. To clearly identify the effect of each element, we
adopt non-overlapping ADFs as testbeds. The problem sizes are the sum of all the sizes of the
subproblems. In order to examine the scalability of population sizes and function evaluations on
the number and size of subproblems, we empirically determine the population sizes and function
evaluations required for k from 3 to 6 with various numbers of subproblems. The overall problem
sizes, `, are 60, 120, 180, · · · , 600 bits, and m is calculated by m = `/k.

The results of population sizes and function evaluations are illustrated in Figures 5 and
Figure 6, respectively. Figure 5(a) and 5(b) show that the population size required by ILI grows
sub-linearly with the problem size when the subproblem complexity is fixed. This observation
indicates that the population requirement of ILI is relatively insensitive to the overall problem
size and grows sub-linearly with the number of subproblems. Figure 5(c) and Figure 5(d) show
the scalability of ILI on population sizes against subproblem complexity. Each line in these two
figures corresponds to a fixed overall problem size. The straight lines for ` = 120, 360, and 600
in Figure 5(d), of which the y-axis is log-scaled, indicate that for a fixed overall problem size,
the population size required by ILI grows exponentially with the complexity of subproblems.
Overall, the required population size grows sub-linearly with the number of subproblems while
it grows exponentially with the size of subproblems.

Figure 6 shows the numerical results of function evaluations against various problem sizes as
well as subproblem sizes. The straight lines in Figures 6(a) and 6(b) indicate the liner growth of
function evaluations with overall problem sizes when the subproblem size is fixed. Figures 6(c)
and 6(d) illustrate the scalability of function evaluations on the subproblem complexity. The
straight lines in Figure 6(d), of which the y-axis is log-scale, indicate that function evaluations
grow exponentially with the complexity of subproblems because of the exponentially-growing
population requirement.

4.3 Robustness

In this section, experiments are conduct to investigate the robustness of ILI against the popula-
tion sizes that are smaller than the population requirement. As aforementioned, existing linkage
detection/identification methods, including ILI, LINC, and D5, basically assume to work on a
sufficiently large population that is able to provide statistically significant evidence to reveal the
interdependency among decision variables. However, in practice, an insufficiently large popula-

11

0 60 120 180 240 300 360 420 480 540 600 660
0

500

1000

1500

2000

Problem size

Po
pu

la
tio

n
si

ze

k=3
k=4
k=5
k=6

(a)

60 180 300 420 540 660

1000

2000

3000

4000

Problem size (log−scale)

P
op

ul
at

io
n

si
ze

 (
lo

g−
sc

al
e)

k=3
k=4
k=5
k=6

(b) log scale

3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

Sub−problem size

P
op

ul
at

io
n

si
ze

120 bits
360 bits
600 bits

(c)

3 4 5 6
100

500

1000

1500

2000

2500
3000

Sub−problem size

P
op

ul
at

io
n

si
ze

 (
lo

g−
sc

al
e)

120 bits
360 bits
600 bits

(d) semi-log scale

Figure 5: Results of ILI for population sizes: (a, b) Population size versus problem size with
different subproblem sizes; (c, d) Population size versus subproblem size with different problem
sizes.

tion may be employed by the user and consequently result in the failure of linkage identification.
Therefore, investigating the robustness of ILI against the population size is necessary and may
provide some helpful information to ILI users.

Based on the measured population requirement in section 4.2, we decrease the population
size to the 90%, 80%, . . ., 50% of the requirement to see how well ILI can perform in terms of
the ratio of linkage sets that can be correctly identified. Figure 7 shows the identification rate
for different subproblem sizes and overall problem sizes. According to the experimental results,
we can know that within a decrement of 20% of the requirement population size, ILI can still
recognize about 90% of the linkage sets disregarding the problem size or subproblem complexity.
Such an observation implies that ILI is quite robust and responds well to population sizes that
are not large enough.

5 Population Sizing for ILI

In this section, we theorize the linkage identification mechanism of ILI and accordingly derive the
population sizing model which can indicate a sufficiently large population to ensure successful

12

60 120 180 240 300 360 420 480 540 600 660
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

Problem size

Fu
nc

tio
n

ev
al

ua
tio

n

k=3
k=4
k=5
k=6

(a)

60 180 300 420 540 660

10000

50000

100000

200000

Problem size (log−scale)

F
un

ct
io

n
ev

al
ua

tio
n

(lo
g−

sc
al

e)

k=3
k=4
k=5
k=6

(b) log scale

3 4 5 6
0

2

4

6

8

10

12

14

16

18
x 104

Sub−problem size

F
un

ct
io

n
ev

al
ua

tio
n

120 bits
360 bits
600 bits

(c)

3 4 5 6

10000

50000

100000

200000

Sub−problem size

F
un

ct
io

n
ev

al
ua

tio
n

(lo
g−

sc
al

e)

120 bits
360 bits
600 bits

(d) semi-log scale

Figure 6: Results of ILI for function evaluations: (a, b) Function evaluation versus problem size
with different subproblem sizes; (c, d) Function evaluation versus subproblem size with different
overall problem sizes.

linkage identification. We will firstly establish a population sizing model by analyzing the core
mechanism of ILI and then empirically verify the derived model. Finally, we will discuss several
aspects and implications of the proposed model.

5.1 Model Derivation

Since ILI adopts the ID3 decision tree to identify linkage, we firstly investigate the relationship
between the population size, n, and the probability of selecting a wrong decision variable in
the decision tree, pterr. We assume that the objective function consists of non-overlapping
subfunctions and the sampling of objective function is noise free. Since every variable of each
individual is generated at random, the subpopulation size of individuals with a same substring
sisi+1 · · · si+r−1 = a0a1 · · · ar−1, denoted as nsr , is a binomial distribution with n = population
size and p = 2−r. When n is sufficiently large, an excellent approximation of such a binomial
distribution can be obtained via the normal distribution:

N(np, np(1− p)) .

13

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

Population decrement

Id
en

tif
ic

at
io

n
ra

te

300 bits
480 bits
600 bits

(a) k = 3

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

Population decrement

Id
en

tif
ic

at
io

n
ra

te

300 bits
480 bits
600 bits

(b) k = 4

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

Population decrement

Id
en

tif
ic

at
io

n
ra

te

300 bits
480 bits
600 bits

(c) k = 5

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

Population decrement

Id
en

tif
ic

at
io

n
ra

te

300 bits
480 bits
600 bits

(d) k = 6

Figure 7: Numerical results of ILI robustness test on subproblems of different sizes.

For a more detailed illustration, we start from using the following function as a demonstrative
example:

f(s) =
m∑

i=1

ftrap3(s3·(i−1)+1 · · · s3·(i−1)+3) (4)

= ftrap3(s1s2s3) +
m∑

i=2

ftrap3(s3·(i−1)+1 · · · s3·(i−1)+3) . (5)

To identify the linkage set V1 = {1, 2, 3}, the first variable s1 is perturbed. Figure 8(a) lists
the fitness differences of individuals categorized by s1s2s3s3+ values. For example, the first
row indicates the fitness difference of any individual with its s1s2s3s3+ = 0000 is 1. The fo

column denotes the original fitness value, and the fn column denotes the new fitness value after
perturbation. The 0 denotes that the corresponding variable has been perturbed from 1 to 0,
and s3+ denotes a specified variable other than s1, s2, and s3. With a sufficient population size
n, it is reasonable to approximate the subpopulation size of each s1s2s3s3+-typed individuals as
a normal distribution with a mean of 2−4 · n.

Figure 8(b) illustrates the expected fitness difference distribution in subpopulations classified
by decision variables s1s2 and s1s3+, respectively. Since the fitness difference distributions are

14

s1 s2 s3 s3+ fo fn df1

0 0 0 0 1 2 1
0 0 0 1 1 2 1
0 0 1 0 0 1 1
0 0 1 1 0 1 1
0 1 0 0 0 1 1
0 1 0 1 0 1 1

0 1 1 0 3 0 -3
0 1 1 1 3 0 -3

1 0 0 0 2 1 -1
1 0 0 1 2 1 -1
1 0 1 0 1 0 -1
1 0 1 1 1 0 -1
1 1 0 0 1 0 -1
1 1 0 1 1 0 -1

1 1 1 0 0 3 3
1 1 1 1 0 3 3

(a)

s1

...

0

s2

1 1 1 1

0

1 1 −3 −3

1

1

s1

...

0

s3+

1 1 1 −3

0

1 1 1 −3

1

1

(b)

Figure 8: Fitness differences and decision tree construction for scenario I.

similar for s1 = 0 and s1 = 1, for simplicity, we omit the left sibling s1 = 0. At the top of
the tree, all the individuals with their s1s2 = 10 have df1 = 1, and the s1s2 = 11 individuals
have roughly half df1 = 1 and half df1 = −3. Meanwhile, at the bottom, df1 = −3 individuals
is expected to distribute equally in each subpopulations with a quarter share. This fitness
difference distribution symmetry inherent in the s1s3+ tree grounds a higher entropy state than
that of the asymmetric s1s2 tree. According to the expected fitness difference distribution and
the information gain defined in Equation (2), taking s2 as a tree node can achieve a lower entropy
state than taking s3+ can. Likewise, taking the variables in the linkage set as decision tree nodes
can achieve lower entropy states than taking others can. Thus, selecting wrong variables during
the decision tree construction does not often occur.

Of course, there are still chances for a decision tree to take a wrong variable as an internal
node. By observing the decision trees shown in Figure 8(b), we can see that a wrong variable
will be selected when one of the subpopulation of s1s3+ does not contain df1 = −3 individuals
and the size of the other subpopulation is less than that of s1s2 = 11 subpopulation. Figure 9(a)
illustrates one of such scenarios, in which s1s2s3s3+ = 0110 is absent. The corresponding s1s2

and s1s3+ trees are illustrated in Figure 9(b). Since the df1 = −3 individuals in both trees are
identical, once the subpopulation size of s1s3+ = 11 individuals is less than that of s1s2 = 11,
selecting s3+ as a node will achieve a lower entropy state and thus will introduce a wrong variable
into the linkage set.

In general, since there are around half of the population in the s1 = 1 sibling, the subpop-
ulation size of s1s3+ = 11 individuals, ns3+ , can be approximated with a normal distribution
as

N(
22n

2(23 − 1)
,
22(22 − 1)n
2(23 − 1)2

) = N(
4n

14
,
12n

98
) .

It is in fact a binomial distribution with population size = n/2 and p = 4/7, which corresponds

15

s1 s2 s3 s3+ df1

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1

0 1 1 0 -3
0 1 1 1 -3

1 0 0 0 -1
1 0 0 1 -1
1 0 1 0 -1
1 0 1 1 -1
1 1 0 0 -1
1 1 0 1 -1

1 1 1 0 3
1 1 1 1 3

(a)

s1

...

0

s2

1 1 1 1

0

1 1 −3

1

1

s1

...

0

s3+

1 1 1

0

1 1 1 −3

1

1

(b)

Figure 9: Fitness differences and decision tree construction for scenario II.

to the proportion of s1s3+ = 11 individuals in the whole population. The subpopulation size of
s1s2 = 11 individuals in s1 = 1 sibling, ns2 , can also be approximated with a normal distribution
as

N(
(22 − 1)n
2(23 − 1)

,
22(22 − 1)n
2(23 − 1)2

) = N(
3n

14
,
12n

98
) . (6)

Similarly, ns3 has the same distribution. In this scenario, when ns3+ is less than the largest
among nsi∈V1

, it is possible for s3+ to be selected as a decision tree node. Moreover, when ns3+

is less than the smallest among nsi∈V1
, s3+ definitely would be taken as a decision variable. Since

the distribution of each nsi∈V1
is identical, the largest among nsi∈V1

can be considered as the
largest number sampled from the normal distribution described by Equation (6). In other words,
it is a second order statistic. The smallest among nsi∈V1

is a first order statistic. Therefore, pterr

of the s1 = 1 sibling, when s1s2s3s3+ = 0110 is absent, can be estimated as

Φ(
µX(1:2)

− µs3+

σs3+

) ≤ pterr ≤ Φ(
µX(2:2)

− µs3+

σs3+

) ,

where Φ denotes the cumulative distribution function of the standard normal function, µX(1:2)

denotes the mean of the first order statistic in a sample of size two while µX(2:2)
denotes the

mean of the second order statistic. µs3+ denotes the mean of ns3+ , and σs3+ denotes the standard
deviation of ns3+ .

Now we consider a more general case of a linkage set of k variables, V = {1, 2, · · · , k}, and
revisit Figure 8(a) for a closer look at the fitness difference induced by perturbing a bit in a
trap function. In the case of alternating a bit from one to zero, one is added to the fitness of
each individual except those who originally have the fitness value k. These exceptions have a
new fitness of zero, and hence fitness difference −k. In the case of alternating a bit from zero

16

to one, this reduces one from the fitness of each individual except those who originally have a
fitness value of zero. These exceptions have a new fitness of k, and hence fitness difference k. As
depicted, only those s2s3 · · · sk = 11 · · · 1 individuals have fitness ±k. In this way, their decision
tree on si∈V and sk+ resembles those in Figure 8(b). As the discussion for k = 3 example,
there are two scenarios in which the s1sk+ tree may achieve a lower entropy state in the s1 = 1
sibling: when either s1s2 · · · sksk+ = 01 · · · 10 or s1s2 · · · sksk+ = 01 · · · 11 individuals are absent.
Therefore, we can similarly approximate the subpopulation size of s1sk+ = 11 individuals in
s1 = 1 sibling, nsk+

, with a normal distribution as

N(
2k−1

2(2k − 1)
n,

2k−1(2k−1 − 1)
2(2k − 1)2

n) .

The subpopulation size of s1si∈V = 11 individuals, nsV , can be approximated with a normal
distribution as

N(
(2k−1 − 1)
2(2k − 1)

n,
2k−1(2k−1 − 1)

2(2k − 1)2
n) . (7)

Likewise, pterr on the s1 = 1 sibling tree when s1s2 · · · sk+ = 01 · · · 10 is absent can be estimated
as

Φ(
µX(1:k−1)

− µsk+

σsk+

) ≤ pterr ≤ Φ(
µX(k−1:k−1)

− µsk+

σsk+

) ,

where Φ denotes the cumulative distribution function of the standard normal function, µX(1:k−1)

denotes the mean of the first order statistic in a sample of size k − 1 while µX(k−1:k−1)
denotes

the mean of the (k− 1)-th order statistic. µsk+
denotes the mean of nsk+

, and σsk+
denotes the

standard deviation of nsk+
. In the following sections for the verification purpose, we will use the

term

Φ(
µX(1:k−1)

− µsk+

σsk+

) (8)

as a lower bound of pterr to compute an upper bound of the population size and the term

Φ(
µX(k−1:k−1)

− µsk+

σsk+

) (9)

as an upper bound of pterr to compute a lower bound of the population size.
Since the two scenarios for selecting wrong decision variables are symmetric, pterr is identical.

For each scenario to occur, all the individuals in the subpopulation of s1 = 1 sibling should not
contain the absent substring. Because there are roughly half of the population in the s1 = 1
sibling and the probability for an individual to contain the absent substring is 2−k, we can
estimate the probability as (1−2−k)n/2. Thus, the total probability of selecting a wrong decision
variable sk+ in the s1 = 1 sibling is

2 · (1− 2−k)n/2 · pterr .

The probability for one sibling to identify linkage correctly is

1− 2 · (1− 2−k)n/2 · pterr .

Since there are two siblings from the root, (`− k)sk+ candidates, and m decision trees, we can
calculate the probability for ILI to correctly identify the linkage set as

pα = [1− 2 · (1− 2−k)n/2 · pterr]2m(`−k) . (10)

17

µ2:2 µ3:3 µ4:4 µ5:5 µ1:2 µ1:3 µ1:4 µ1:5

0.564 0.846 1.029 1.163 −0.564 −0.846 −1.029 −1.163

Table 3: Mean values of the normal order statistics for different k.

5.2 Empirical Verification of the Model

In section 4, the population sizes required by ILI to correctly identify all the linkage sets on
different problem sizes are empirically measured. Since we conduct the experiment by using
30 consecutive and independent successful runs as the judgment criterion, the 95% confidence
interval of pα is 0.884 to 1.0 according to statistics [27]. Thus, we select pα = 0.942, the
middle point of the interval, for the proposed model described by Equation (10) to estimate the
population sizes. In order to conduct a thorough verification of the derived model, the estimated
population sizes are compared for k, the subproblem complexity, from 3 to 6. Table 3 lists the
means of normal order statistics for different k’s [28]. µx:n denotes the mean of the x-th order
statistic in a sample of size n when the distribution is standard normal.

Hence, the mean values of the i-th order statistics in a sample of size k − 1 from the sub-
population size distribution of linkage set variables can be calculated as

µXi:k−1
= µsls

+ µi:k−1σsls
,

where µsls
and σsls

are the mean and standard deviation of Equation (7), respectively. Applying
the aforementioned setting of pα to Equation (10), the estimated population sizes as well as
the corresponding empirical results are illustrated in Figure 10. The circle marks represent the
empirically obtained population sizes, and the solid lines are predicted population sizes according
to the proposed population sizing model (Equation (10)). Figure 11 further illustrates the
population requirement of ILI for problems of different subproblem complexity. In Figure 11,
the marks represent the obtained population sizes for problems of lengths 120, 360, and 600
bits, and the lines are predicted population sizes. Figures 10 and 11 indicate that the proposed
population sizing model is able to provide a very good approximation for the population sizes
required by ILI to identify the linkage sets in trap functions for different overall problem sizes
as well as subproblem sizes.

5.3 Discussion

Although we developed a population sizing model based on the properties and characteristics of
trap functions, several aspects actually support that the proposed model provides an approxi-
mated upper bound of population sizes for a broad range of popular test functions. Observing
the fitness difference list given in Table 4, we can find that the fitness difference distributions
of trap4 and nith4 are similar. Moreover, taking a further investigation on the fitness difference
distribution of valley4 and trap4, the pterr of valley4, though with a slight difference, should be
similar to that of trap4. On the other hand, pterr of tmmp4 should be smaller because there are
more fitness difference classes in each subpopulation and variables in the linkage set are easier to
be selected. In general, any of these test functions shall hold a pterr smaller than or equal to that
of trap4. Figure 12 shows the population sizes required by ILI on problems composed of different
subproblem types (k = 4) as well as the computed theoretical bounds. All the population sizes
are well within the bounds and imply that the derived population sizing model can also be used
to compute population sizes for other functions.

18

60 120 180 240 300 360 420 480 540 600 660
0

20

40

60

80

100

120

140

160

180

Problem size

Po
pu

la
tio

n
si

ze

Empirical results
Theoretical prediction
Upper bound (p

terr
 = Eq. (8))

Lower bound (p
terr

 = Eq. (9))

(a) k = 3

60 120 180 240 300 360 420 480 540 600 660
0

50

100

150

200

250

300

350

400

450

Problem size

Po
pu

la
tio

n
si

ze

Empirical results
Theoretical prediction
Upper bound (p

terr
 = Eq. (8))

Lower bound (p
terr

 = Eq. (9))

(b) k = 4

60 120 180 240 300 360 420 480 540 600 660
0

100

200

300

400

500

600

700

800

900

1000

Problem size

Po
pu

la
tio

n
si

ze

Empirical results
Theoretical prediction
Upper bound (p

terr
 = Eq. (8))

Lower bound (p
terr

 = Eq. (9))

(c) k = 5

60 120 180 240 300 360 420 480 540 600 660
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Problem size

Po
pu

la
tio

n
si

ze

Empirical results
Theoretical prediction
Upper bound (p

terr
 = Eq. (8))

Lower bound (p
terr

 = Eq. (9))

(d) k = 6

Figure 10: Population sizing model: Theoretical prediction vs. empirical results.

3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800

Subproblem size

Po
pu

la
tio

n
si

ze

120 bits: Empirical results
120 bits: Theoretical prediction
360 bits: Empirical results
360 bits: Theoretical prediction
600 bits: Empirical results
600 bits: Theoretical prediction

Figure 11: Population sizing model: Theoreti-
cal prediction vs. empirical results for different
k.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

450

Problem size

Po
pu

la
tio

n
si

ze

trap
4
: Empirical results

nith
4
: Empirical results

valley
4
: Empirical results

tmmp
4
: Empirical results

Upper bound (p
terr

 = Eq. (8))

Lower bound (p
terr

 = Eq. (9))

Figure 12: Population sizing model: Theoreti-
cal prediction vs. empirical results for different
subproblem types.

19

substring trap4 nith4 valley4 tmmp4

s1 s2 s3 s4 fo fn df1 fo fn df1 fo fn df1 fo fn df1

0 0 0 0 2 3 1 0 0 0 2 4 2 1 0 -1
0 0 0 1 1 2 1 0 0 0 0 2 2 2 1 -1
0 0 1 0 1 2 1 0 0 0 0 2 2 2 1 -1
0 0 1 1 0 1 1 0 0 0 2 0 -2 1 2 1
0 1 0 0 1 2 1 0 0 0 0 2 2 2 1 -1
0 1 0 1 0 1 1 0 0 0 2 0 -2 1 2 1
0 1 1 0 0 1 1 0 0 0 2 0 -2 1 2 1
0 1 1 1 4 0 -4 4 0 -4 4 2 -2 4 1 -3
1 0 0 0 3 2 -1 0 0 0 4 2 -2 0 1 1
1 0 0 1 2 1 -1 0 0 0 2 0 -2 1 2 1
1 0 1 0 2 1 -1 0 0 0 2 0 -2 1 2 1
1 0 1 1 1 0 -1 0 0 0 0 2 2 2 1 -1
1 1 0 0 2 1 -1 0 0 0 2 0 -2 1 2 1
1 1 0 1 1 0 -1 0 0 0 0 2 2 2 1 -1
1 1 1 0 1 0 -1 0 0 0 0 2 2 2 1 -1
1 1 1 1 0 4 4 0 4 4 2 4 2 1 4 3

Table 4: Fitness differences of different sub functions

6 Conclusion

In this paper, we proposed a linkage learning approach, called inductive linkage identification
(ILI), that adopts the ID3 decision tree construction algorithm to learn the linkage group to
which the perturbed variable belongs. The proposed approach is simple and concise because only
perturbation and the ID3 algorithm are utilized to extract the linkage information. In addition
to its simplicity, compared to other related, existing linkage detection methods, ILI needs fewer
function evaluations to accomplish its task and similar numbers of function evaluations on
uniformly exponentially scaled problems. In order to investigate the scalability and robustness
of ILI, series of experiments were conducted in this study. The empirical results indicate that
the required population size and function evaluations of ILI grow linearly or sub-linearly with
the problem size, while they grow exponentially with the subproblem complexity. It implies
that if the size of subproblems is fixed, ILI does exhibit good scalability on the problem size. In
the experiments for robustness, we found that ILI is rather robust because the successful rate
drops slightly as the population size decreases. Finally, a theoretical population sizing model
was developed in this paper. The proposed model, derived based on a statistical basis, not only
well agreed with the empirical results but also revealed some insights of population sizing in
perturbation-based and entropy-based linkage identification methods.

Acknowledgments

The work was supported in part by the National Science Council of Taiwan under Grant NSC
98-2221-E-009-072. The authors are grateful to the National Center for High-performance Com-
puting for computer time and facilities.

20

References

[1] M. Munetomo and D. Goldberg, “Identifying linkage by nonlinearity check,” Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign., IlliGAL Report No.
98012, 1998.

[2] J. H. Holland, Adaptation in natural and artificial systems. Cambridge, MA, USA: MIT
Press, 1992.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[4] ——, The Design of Innovation: Lessons from and for Competent Genetic Algorithms.
Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[5] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation, analysis,
and first results,” Complex Systems, vol. 3, no. 5, pp. 493–530, 1989.

[6] H. Kargupta, “SEARCH, polynomial complexity, and the fast messy genetic algorithm,”
Ph.D. dissertation, University of Illinois, 1995.

[7] G. Harik, “Learning gene linkage to efficiently solve problems of bounded difficulty using
genetic algorithms,” Ph.D. dissertation, University of Illinois, 1997.

[8] H. Mühlenbein and G. Paaß, “From recombination of genes to the estimation of distribu-
tions i. binary parameters,” in Proceedings of the 4th International Conference on Parallel
Problem Solving from Nature (PPSN-IV). London, UK: Springer-Verlag, 1996, pp. 178–
187.

[9] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Boston, MA: Kluwer Academic Publishers, 2001.

[10] M. Pelikan, D. E. Goldberg, and F. G. Lobo, “A survey of optimization by building and
using probabilistic models,” Computational Optimization and Applications, vol. 21, no. 1,
pp. 5–20, 2002.

[11] S. Baluja, “Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning,” Carnegie Mellon University, Pitts-
burgh, PA, USA, Tech. Rep., 1994.

[12] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 4, p. 287, November 1999.

[13] J. de Bonet, C. Isbell, and P. Viola, “MIMIC: Finding optima by estimating probability
densities,” in Advances in Neural Information Processing Systems, vol. 9. The MIT Press,
1997, p. 424.

[14] S. Baluja and S. Davies, “Using optimal dependency-trees for combinational optimization,”
in Proceedings of the Fourteenth International Conference on Machine Learning (ICML-97).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 30–38.

[15] M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution algorithm,” in Ad-
vances in Soft Computing - Engineering Design and Manufacturing. London, UK: Springer-
Verlag, 1999, pp. 521–535.

21

[16] G. Harik, “Linkage learning via probabilistic modeling in the ECGA,” Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign., IlliGAL Report No.
99010, 1999.

[17] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian optimization algo-
rithm,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
99), vol. I. Orlando, FL: Morgan Kaufmann Publishers, San Fransisco, CA, 13-17 1999,
pp. 525–532.

[18] H. Mühlenbein and T. Mahnig, “FDA - A scalable evolutionary algorithm for the opti-
mization of additively decomposed functions,” Evolutionary Computation, vol. 7, no. 4, pp.
353–376, 1999.

[19] H. Mühlenbein and R. Höns, “The estimation of distributions and the minimum relative
entropy principle,” Evolutionary Computation, vol. 13, no. 1, pp. 1–27, 2005.

[20] M. Tsuji, M. Munetomo, and K. Akama, “Linkage identification by fitness difference clus-
tering,” Evolutionary Computation, vol. 14, no. 4, pp. 383–409, 2006.

[21] H. Kargupta, “The gene expression messy genetic algorithm,” in Proceedings of the 1996
International Conference on Evolutionary Computation (ICEC-96), 1996, pp. 814–819.

[22] M. Munetomo and D. E. Goldberg, “Identifying linkage groups by nonlinearity/non-
monotonicity detection,” in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-99), vol. 1. Orlando, Florida, USA: Morgan Kaufmann, 13-17 1999, pp.
433–440.

[23] R. B. Heckendorn and A. H. Wright, “Efficient linkage discovery by limited probing,” Evo-
lutionary Computation, vol. 12, no. 4, pp. 517–545, 2004.

[24] J. R. Quinlan, “Induction of decision trees,” in Readings in knowledge acquisition and
learning: automating the construction and improvement of expert systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993, pp. 349–361.

[25] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,” in Foundations of
Genetic Algorithms 2, 1993, pp. 93–108.

[26] ——, “Sufficient conditions for deceptive and easy binary functions,” Annals of Mathematics
and Artificial Intelligence, vol. 10, no. 4, pp. 385–408, 1994.

[27] D. Zwillinger and S. Kokoska, CRC Standard Probability and Statistics Tables and Formu-
lae. FL, USA: CRC Press LLC, 2000.

[28] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in Order Statistics.
NY, USA: John Wiley and Sons, Inc., 1993.

22

	Introduction
	Background
	Evolving Representations or Operators
	Probabilistic Modeling for Promising Solutions
	Perturbation Methods

	Inductive Linkage Identification
	Additively Decomposable Functions
	Decision Tree Learning: ID3
	Exemplary Illustration
	Algorithm and Steps

	Comparative Evaluations, Scalability, and Robustness
	Comparative Evaluations
	Scalability
	Robustness

	Population Sizing for ILI
	Model Derivation
	Empirical Verification of the Model
	Discussion

	Conclusion

