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ABSTRACT

In this thesis we analyze“the convergence time. of particle swarm optimization
(PSO) on the facet of particle, interaction. \We“propose & statistical model of PSO
which captures the behavior 'of PSO particle:interaction, and we use it to obtain results
about convergence time. After the theoretical analysis we'use experiments to verify
our results by running real PSQ on benchmark functions.
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Chapter 1

Introduction

1.1 Motivation

Particle swarm optimizer (PSO), introduced by James Kennedy and Russell C. Eberhart
in 1995[1}, 2], is a stochastic, populationsbased algorithm for solving optimization problem.
It is kind of a swarm intelligence[3, 4, 5] based on sogial-psychological principles. In PSO,
each potential solution is eensidered-as a particle flying through the n-dimensional search
space searching for the optimal solution; the velocity of ‘each particle is determined by the
inertia, personal experi¢nce and particlednteraction.

As [0] shows, PSO is an efficient-optimization framework. Although PSO has been
widely applied in many fields[7, 8] 9;[10], the understanding of PSO in theoretical aspect is
still limited. Most of previous theoretical-results |11, [12] T3] [14] [15] 16 17, 18, 19, 20, 21]
are derived under the system that assumes fixed attractor or single particle, which do
not take particle interaction into consideration. Due to the lack of theoretical analysis
of PSO particle interaction which is one of the most mechanism of PSO, we will propose
a simplified model of PSO with non-fixed attractors. And the behavior of PSO will be

analyzed under this model.

1.2 Thesis objectives

Due to the lack of theoretical analysis of PSO particle interaction, this thesis primarily
aims to provide a theoretical analysis of the behavior particle interaction. There are three

objectives in this thesis:

e To analyze the behavior of particle interaction, we will propose a model of PSO



which captures the behavior of particle interaction.
e Using the proposed model, the convergence of PSO will be analyzed.

e The experimental results will be obtained to examine our model and results.

1.3 Road map

The thesis is composed by five chapters, the organization is given as follows:
e Chapter [l consists of motivation, objective and organization of this thesis.

e Chapter [2] gives a detail description of standard PSO algorithm and survey of pre-

vious theoretical works of PSO.

e Chapter [3| describes the proposed statistical model of PSO and the analysis of PSO

convergence time.

e Chapter {4] providés experimental results obtained by running real PSO, and use

these results to verify the results obtained in chapter 3|

e Chapter 5| summaries and*concludes this thesis, "and some future objectives are

provided.



Chapter 2

Background

In this chapter, we first give a detail description of PSO algorithm, and then we survey

previous theoretical works.

2.1 Particle swarm _eptimization

In this section, we will describe the framework6f PSOvin, detail, the algorithm of standard
PSO is described in figure 2.1

procedure PSO(Objective function %: R" — R)
Initialize m particles
while the stopping criterion'is mot-satistiedrdo
fori=1,2,...,m do
if F(X;) < F(Pb;)-then
Pbi — Xi
if 7(Pb;) < F(NDb) then
Nb <« Pb;
end if
end if
end for
fori=1,2,....,m do
Vi — wVi + Cp<Pb1 — X1> + Cn<Nb — Xl)
Xi — Xi + Vi
end for
end while
end procedure

Figure 2.1: Standard PSO

Note, in this thesis we will use boldface to represent vectors, ex. Xj, V;. And with-
out loss of generality we assume that the objective of PSO is to minimize the objective

function.



According to figure 2.1], at first PSO will initialize the m particles where m is swarm
size which is a parameter of PSO algorithm, each particle contains three informations:
location(Xj), velocity(V;) and personal best position(Pb;). In each generation, each
particle will update the personal best position(Pb;) and neighborhood best position(INb)
according to the objective function’s return value. Nb can be updated by all members
within the neighborhood, but Pb; can only be updated by particle itself. After the
update of personal and neighborhood best position, each particle will update their velocity
according to Pb; and Nb, there are some parameters in the velocity update formula: w
is the weight of inertia which is a constant, C}, and C,, are random variable sampled from
uniform distribution U(0, ¢,) and U(0, ¢,) where ¢, and ¢, are acceleration coefficients of
PSO. Finally, each particle will update it’s position according to the velocity and then go

to next generation.

2.2 Literature'review

In this section, we will review previous theoretical works of, PSO. The model used in these
theoretical works all assume glebalsstrueture which means all particles are within the
same neighborhood, every particle:update the same Nb, in here we denote this global
attractor by Gb.

To the best we know, the first analysis is [I1] proposed by Kennedy, in this work some

simplification are used:
Gb = Pb; = p where p is a constant, m =1, w =1,n=1
the update rules thus become

V—V+pp-—r)

r—2x+V

where ¢ = C), + C),, in this work Kennedy further assumed that ¢ = ¢, + ¢, is a constant,
the particle trajectories under different ¢ are plotted. The particle trajectories are sinu-

soidal waves, for ¢ = 4.0 the trajectory explodes linearly and for ¢ > 4.0 the explosion



becomes exponential, this suggests user to set ¢, and ¢,, smaller than 2.0. Another be-
havior mentions in this study is ”drunkard’s walk”, since the initial velocity, location and
the fixed attractor p scale the amplitude of the system, when a trajectory is headed away
from p and approaching the extreme of its cycle, the effect of decreasing V' as a function
of increasing (p — x) eventually causes the particle to slow down and turn around. If
(p— ) is weighted by a very small(or, in some case, very large) random number, then the
movement toward the extreme will continue farther than it would have which results in a
larger value of z, as the particle is hurled outside its previous bound and v is a function
of of previous velocity and (p — x), the further x travels from p the greater will v be. This
will cause the cycles approach the new limit and then inevitably exceed it again, a fix
proposed in this study is set the limit of velocity V,,qz.

Shi and Eberhart[22] analyzed the impact fof the inertia weight(w) and maximum
velocity (Vinae ), they conducted a number of experiménts to find good settings of w and
Vinae- When we lack of knowledge regarding the selection of V.., this study suggests
that set Ve = Xinee and inertia weight w,=0.8 is a godd starting point. Furthermore
if a time varying inertia,weight is employed , even bettersperformance can be expected.

Using the same simplified system'in [11];-Ozcan and.Mohan[12] analyzed the particle

trajectories by solving the equations:

Vit+1)=V(Et)+elp—zt—1))

z(t+1)=z(t—1)+v(t)

the conclusion of this study is there are four search types according to the value of .
Using type 1(¢p = 0 or ¢ > 4), search is conducted by increasing step sizes in the space.
For other types, a particle follows a path on a sinusoidal wave searching a space bounded
by the amplitude of the sine wave. In type 3(2 — V3 <o <24 \/§) the amplitude
of the sine wave is approximately the initial velocity, and in type 2(0 < ¢ < 2 — v/3)
and type 4(2 + V3 < ¢ < 4) the amplitude decrease and increase respectively as ¢
increase. The simulations in [I1] correspond exactly to the analytical results in this work.
Later Ozcan and Mohan[I3] generalized their results to a multiple multi-dimensional

particles(m > 1,n > 1) with Gb = p,, Pb; = p; where p, and p; are not necessary the



same, similar results were obtained. And due to the increasing step sizes, the setting of
velocity limit(V},4,) is suggested in both [12, 13].
With the same simplified system in [13], Clerc and Kennedy[I4] defined a simplified

dynamic system:

v(t+1) =v(t) + @y(t)

y(t+1) = —v(t) + (1 = 9)y(t)

where y(t) = p — x(t) and p = %Pl;';i—i:c;bi the weight average of the two best which is
assumed to be a constant. Let
v(t
T
y(t)
be the current point in R? and
WL
M
L LASSs

the matrix of the system, we have o= M'P,. The eigenvalues of M are

@ N? — Ap

e

<1 R

e i = 47
2 2 ’

The behavior of this system is governed by the two eigenvalue eq,es of this system. The
system converges when e; < 1 and es < 1. Another contribution of this work is the
introduction of the constriction coefficient and different classes of constriction models.
The objective of this theoretically derived constriction coefficient is to prevent the velocity
to grow out of bounds, with the advantage that, theoretically, velocity clamping(V,,q.) is

no longer required. According to this study, the velocity equation changes to
V(t+1) = x[V(t) + ¢,(Pb; — z(t)) + ¢, (Gb; — z(t))]

where y is the constriction coefficient calculated as

2K

X:
12— —\V* — 4yl




with ¢ > 4 and k € [0,1]. The constant s controls the speed of convergence, for k ~ 0
fast convergence to a stable point is obtained, while x /~ 1 results in slow convergence.
Trelea[18] analyzed the stability under the similar dynamic system in [I4], the update

rules in this work are
V(t+1) =aV(t) + Cp(Pb; — z(t)) + C,(Gb; — z(t))
z(t+1) =ca(t) +dV(t+1).

To simplify the analysis, the acceleration coefficients are set to their expected value. Thus,

the update rules can be expressed as

V(t+1)=aV(t)+b(p—z(t))

z(t+1).= eu(t) + dV(t + 1),

where
CptC
p E
2
P PR GE
Cp 1=Cy Cp + Cp

The dynamic system is defined as follows:
y(t+1) = Ay(k) + Bp

with

The eigenvalues of the system A\; and )y are the solution of the equation:
N —(a=b+1A+a=0.

The system will converge if the parameters satisfy following condition:
a<1l,b>0,2a—b+2>0.

which is a triangle in the (a, b) plane. Trelea also conducts some experiments to examine

the effect of the parameters a and b.



Keiichiro, et al.[16] also analyzed the particle trajectories using similar dynamic system
in [I4] but take inertia weight into consideration. The update equations in this work are
V(t+1)=wV(t) + oy(t)

y(t+1) = —wV(t) + (1 - 9)y(t)
where y(t) = p — z(t). The system is defined as

V(t+1) L |w © V(t) Y V(t)

y(t+1) —w 1—op| |y(t) y(t)

where M is the matrix of the system. The eigenvalues of M are

wH+1—p+(w+1—¢)?—4dw

A =
2

\ wa b= =s/w+l—¢)?— 4w

2 = :
2

According to the stability*theory, the behavior of the particle is stable if and only if A\; < 1

and Ay < 1. Since the value ‘of eigenvalues are function ofww and ¢, there are four cases:

e w = 0: The system is stable.wheén 0 < ¢ < 2 and-each particle converges to p.

¢ < w+1—2y/w :4The system is stableswhen 0 < w < 1, and each particle

converges to p.

o w+1—2y/w<p<w+1+2y/w: The system is stable when 0 < w < 1, and each

particle converges to p.

e w+1+42y/w < ¢ : Under the condition w+ 1 + 2y/w < ¢ < 2w + 2, the system is

stable when 0 < w < 1, and each particle converges to p.

In the third case, ¢ can be expressed as ¢ = w + 1 — 2y/w + 4k1/w, and let ky = —2

Cp +cn”

The velocity update rule become
V(t+1) =wV(t)+2(1 — k2)p(Pb;i — 2) + 2k20(Gb; — ).

The relation between the particle trajectories of the system and the parameters is sum-

marized as follows:



e w: If 0 <w < 1, the convergence tendency of the system strengthens as w become

small. If 1 < w, the divergence tendency strengthens as w becomes large.
e k1 : 0 < Ky <1, the system becomes vibrational as k; becomes large.

® ko : 0 < Ky <1, pisput in the neighborhood of Pb; if ks &~ 0, and p is put in the
neighborhood of Gb if kg ~ 1.

Keiichiro also examined the relationship between particle trajectories of the system and
the parameters w, k1 and ko through experiments.
Zheng[17] analyzed the same dynamic system in [16], let A = (¢ —1)*—2(¢p — 1) + w?,

the conclusions of the analysis are summarized as follows:
e w = 1: The particle trajectoriesiare sinusoidal waves which are consist with [12, [13].
e A < 0: The particlestrajectories-converge.
e A > 0: The partiele trajectories diverge:

Since a large inertia weight facilitates a‘global search while:a small inertia weight facilitates

a local search, a novel PSQ is. proposed in this. work:

Vi «— wW + pp(Pby=X;)“ ©2(Gb — Xj)

Xi<—Xi—|—Vi

where ¢; = byr;+d;, b; = 1.5, r; ~ U(0,1) and d; = 0.5 for ¢ = 1,2. w is an inertia weight
linearly increasing from 0.4 to 0.9. In the experiment section of this study, the novel PSO
outperform the standard PSO.

All works above assume the acceleration coefficients as constants, Kadirkamanathan,
et al.[20] analyzed the system similar in [I4] which take stochastic acceleration coefficients

and inertia weight in to consideration. The update rules in this work are:

V(t+1) = wV () + o) (Pb; — 2(t) + o (Gb — z(¢))

z(t+1)=z(t)+V(t+1)



where af”) ~ U(0,¢,) and of” ~ U(0,¢,). Let oy = o + of and

a"Pb; + 0! Gb

)
o

we have

V(t+1) = wV () + alp — z(t))

z(t+1)=z(t)+V(t+1).
The state-space representation of the PSO system is given by

E(t+ 1) = A&(t) + Buy

yr = C&
where
Y = [1 0] R | = =0 (Y =.p) €(#) = o :
__V(t)4 V(t)
A= -; ZJ P [1 1] ,C = {1 0].

The main result of this work is when |w| < 1 andsw % 0, if

2(1%-2|w| + w?)
I+w

Cp+ Cp < (
the system is asymptotically stable.
Jiang, et al. [21] also analyzed the stochastic acceleration coefficients with similar sys-
tem in [20], by calculating the expected value, E[X (t)] they showed that given w, ¢,, ¢, >
0, the iterative process E[X ()] is guaranteed to converge to (¢,Pb; + ¢, Gb)/(¢c, + ¢,)
if and only if 0 < w < 1 and 0 < ¢, + ¢, < 4(1 + w). And by more advanced analysis
of the iterative process E[X (t)] they obtained some convergence criteria for parameters
w, ¢, and ¢y,
A good survey about PSO particle trajectories analysis is provided in [I5, 19]. As

we can see, all the results mentioned above assumes fixed attractor, although in [20], 21]

the attractor p is time variant, but the local best(Pb;) and global best(Gb) are still

10



constants. Since the particles interaction of PSO progresses through update of global
best or neighborhood best, this assumption eliminate all effect of the particle interaction.

Thus, the behavior of particle interaction is shown in none of these studies.

11



Chapter 3

Analysis of PSO convergence time

In this chapter, we first propose our statistical model of PSO, and then we use it to

analyze the convergence time of PSO.

3.1 Statistical model of PSO

From the above section, we €an see that particle interaction is an important part of PSO,
but there are not too much literature ‘discussed about this. Although there are some
theoretical studies havesdiscussed about.particle interaction and the behavior of PSO,
most of these studies are.based on'the assumption that the attractor is fixed. It seems to
be inevitable to assume that the attractor is fixed,-singe each particle not only keeps its
own experience(inertia and Phy) but shares collective knowledge(Nb), any slight change
in these quantities will result in a new state. The analysis of the overall behavior thus
become intractable due to the complication of state transition, and fixed attractor thus
becomes necessary simplification.

In order to take particle interaction into consideration, we use an alternative view of
PSO that regards the swarm as a unity. Instead of consider the detail configuration of
each particle in the swarm, we consider the overall behavior of the swarm. To do this, we
convert the state of the entire swarm into a statistical abstraction. The exact locations
of particles are not traced but modeled with a distribution 6 over R™, and velocities are
viewed as random vector V € R". To concentrate on the particle interaction, we use
the social-only model of PSO[23] which works without personal experience. The swarm

size m is considered as the number of samples from distribution 6, since the geographic

12



knowledge is embodied in the distribution, the neighborhood attractor can be viewed as
the best of the m samples.
More specifically, each particle P; is a random vector sampled from 6, and its velocity

V; is sampled from V. The neighborhood attractor is defined as
Pa = H%)ID{F(Pl)aF(PQ)7 s 7F<Pm>}

At each generation particle Pj its position to P;y+wV;+C(P,—P;), the distributions of
next time step are thus the statistical characterization which can be denoted by functions

of the observed value:

0 <—7;)(P1,...,Pm),

Ve T,(Pag85Pm, Vi,.... V).

Since w is a constant the distribution V-ean-be removedtbecause given two random vectors
X ~ 0 and V ~ YV, we can simply-let #=besthe distribution of X' := X + wV.

Now the only question remain is which distribution is,suitable for description of the
swarm and how to update the distribution. For- simplicity, we use product distribution
in this thesis i.e. the position"of each dimension is independently sampled from the
distribution 6;. Now consider'the random variable X '~ 6, and let E[X]| = p. If we divide
the support of #; into s disjoint regions Ry, ..., Rs such that Prob[X € R;| = 1/s for
i =1,2,...,s, and each region is associated with a random variable of velocity V; ~ V.

Pick z; € R; for each region, when s is sufficiently large the swarm can be characterized

by
s 1 s z; s ‘/1
=1 =1 =1
Vi
~pt Y
i=1

and each component of "7 | V;/s can be approximated with a normal distribution by
central limit theorem. Therefore normal distribution seems to be a reasonable choice.
We let the distribution of i-th dimension, §; be N (u;, 0?) where N (p;, 02) is the normal

distribution with mean p; and variance o2. Now the update of distribution becomes simply

13



calculate the mean and the variance. The mean can be calculated intuitively by take
the average of updated positions, and the variance is calculated by maximum likelihood
estimation(MLE) which will be describe in next section. The statistical model of PSO
is summarized in figure 3.1} the distribution 6 is represented by p = (pi1, pt2, . . . , ftn,) and

o = (01,09,...,0y,), and the acceleration coefficient C' ~ U(0, ¢).

procedure STATISTICAL MODEL OF PSO(Objective function F : R* — R)
Initialize:o «— g, < pio
while the stopping criterion is not satisfied do
for:=1,2,...,mdo
for j=1,2,...,ndo
Pi; ~ N(pj,07)
end for
end for
P, = minp {F(P;)}
fori=1,2,....,m do
Pi — Pi + C(Pa = Pl)
end for
i (S0, P/l
o? «— MLE(P,,P5,...,PL)
end while
end procedure

Figure 3.1: Statistical model of- PSO

3.2 Convergence time analysis

In this section we first describe the maximum likelihood estimation which used in the
update of distribution, and then we obtain the results about PSO convergence time.
Let 0¢? and ju? be the variance and mean of i-th dimension in ¢-th generation, let
j = Py, and y; = Pj for j = 1,2,...,m and let y, = Pa;, § = (1/m) >y To
estimate the variance of i-th dimension for ¢+ 1-th generation, we use maximum likelihood
estimation (MLE), the likelihood function L(o?) is defined as the joint probability:
—(y; —9)* 1 — 2 )
Ut@ : H \/%le ) exp( (;‘JHI;/) ) = (mat+1?)meXP( ZJ \ J2 ) )-

20411

14



To find 04,17 that maximizes L(o?), we differentiate L(0?) with respect to ogy1%:

N X . . N ZWl:l (y/ _ y)Q
L'(og}) = —(3)(\/_2_7T> oes1; "7 exp( ]20't+i12 )

1 o > (Y — @)20 et o >y —7)?
\/ﬂ 2 b 2Ut+122

the value of ¢¢;17 that maximizes (o) is D07, (y; —9)*/m, so in our model of PSO the

+(

),

results of MLE is o441 = Y 0" (v —3)?/m for i = 1,2,...,n.

After introduce MLE, we now discuss about the convergence time of PSO. There are
many different definitions of convergence, in here we define the state of swarm is converge
if all particles crowd into some specific location. Since in our viewpoint, the swarm is seen
as a distribution, so the state of particles crowd into some specific location is refer to the
variance of the distribution becomes very.small. Here comes another problem, what’s the
definition of “very small”? Sinee under difference circumstances the definition of “very
small” is different, so in here we.do not give exact, valueg instead we define the variance is
“very small” if the variance is less than some constant € > 0. So the state of convergence
refer to the variance for every dimensionsisless than e. Use this definition, now we start
our analysis of convergence time.

To estimate the variancé after distribution updage,.we need following lemma from [24]:

Lemma 1. Let X1, Xo, ..., X, ~ N(pu,02) i define S = 37" (X, — X)?/(m — 1) where
X =3" X;/m. We have (m —1)S ~ o?x2,_, where x2,_; is the chi-square distribution

with m — 1 degrees of freedom.
Using this lemma we can obtain the following result:

Lemma 2. Given the swarm size m, acceleration coefficient ¢ and variance of i-th di-

2

mension at t-th generation oy} we have Elog17] = [5¢* — ¢+ 1][(m — 1) /m]o}.

15



Proof. From above we know o117 = > ", (y; — 7)?/m, the expected value is

J

E[% i(y} - wy] = %E[i(yj b Oly— ) — B +mc(ya Uy
o B %E[%ﬂ;(m(l ~C)y; —S - )X, e y2
- %E[(l —C)? ﬁ;(myj - éyk)Q]
= —B[(1 - C)Q]E[g(yj — %éyk) I,

Let S = >0 (y; — LS yk)?, since y; ~ N(pgia,,00417) for j = 1,2,...,m and

Y1, Y2, - - Ym are iid., by lemmal[l] S ~ oy?x2,_;, thus E[S] = (m — 1)o¢?. Using this, we

can obtain
Elogia;]= EE[(l - C) }E[Z(yj - > )]
j=1 k=1

= iEu =26 i C°E]S]
m
1.1

- E(gcz 2ot - 1)ais

= (%c2 =c+ 1)m 10»5?

]

Lemma 2] is derived under the situation that o¢? is given, the following lemma will

derive the relationship between E[o¢?] and E[og.17].

%

Lemma 3. Floy17] = (%02 —c+ 1)L Eo]].

Proof.

E[at?] = /2 . E[Ut+1?‘0t? = UQ]PTOb{Ut? = 02}d02
o“e

1 -1
= / (zc* —c+ 1)m o?Prob{oy; = o }do? (by lemma
o2eRt 3 m
1 —1
= (A —c+ 1)m— o Prob{o} = o0}do?
3 m o2eR+
1, m — 1 9
— (2 — et D2 E0)
(2 et )" Lo
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Using all the previous results, we can obtain the relationship of convergence time and

parameters of PSO:

Theorem 4. Given swarm size m, acceleration coefficient c, € and og, let h = max;{o¢?}

2l < e fori=1,2...,n when [5¢ —c+ 1][(m —1)/m] < 1 and t >

log(e/o0,)/ log([5¢* — ¢+ 1][(m — 1) /m)).

we have Eloy

Proof. From lemma [3| we know

1 m— 1

Elo}] = (502 —c+ 1)t(T)tE[00?]
:(%9—0+D% A

Since [3¢* — ¢+ 1][(m — 1)/m]+< 1 we have
Y i, * )
Blo =t D o
1 N
<G8 A (=Yoo
<€

The last inequality is hold because

1 m—1
log ((§c2 —c+ DY p- )taoi)
1 m—1
=tlog <(§C2 —c+ 1)(T)> + log oo;
<10g(6/002) + log 00,%

=loge

We have two corollaries immediately from theorem [4}

Corollary 5. Given swarm size m, acceleration coefficient ¢, and level of convergence €
such that [5¢* — c+1][(m — 1)/m] < 1 and € < 1, we have Elo}] < € fori=1,2,...,n
fort = O(—loge).

17



Corollary 6. Given swarm size m, ¢, and € such that [5¢* — ¢+ 1][(m — 1)/m] < 1 and
€ < 1, there exist a constant ¢ < 1 such that for t = O(—1/logc (1 —1/m)) we have

Elo?] <e fori=1,2,...,n.

Corollary [5| reveals the linear relationship between the level of convergence and con-
vergence time, and the interpretation of corollary [] is that when the swarm size is large
enough, enlarge swarm size can only influences convergence time slightly. In next chapter,

We will examine the above two corollaries.
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Chapter 4

Experiments

In tis section, we examine corollary [fland [6| by running standard PSO, we use two objective

functions in our experiments:

e Sphere function [25]:
D
Ji(x) = g where x € [+100, 100] .
=1
e Schwefel’s problem.1.2 [25]:

fa(x) = Z (i a:?) where x/€(—100, 100]".

= j=1

We set D = 10 for both fi(x) andfa(x) in thefollowing experiments.

First, we examine the corollary [5 the parameters we used in PSO are given in the
following: ¢, =1, ¢, =1, w = 1/(2In2) and swarm size = 50. The value of € is from 10!
to 1071, for each value of € we perform 100 runs, for each run we count the number of
generations from initialization to the state that all dimension’s variance is smaller than
¢, and then we calculate the mean number of generations from the 100 runs. The result
of fi(x) and fy(x) are shown in figure [4.1 and [4.2] respectively, the x-axis represents the
value of € and the y-axis represent the mean number of generation.

The comparison of these experimental results and our theoretical results is shown in
figure and [1.4] From figure [4.3] we can see that the experimental results of fi(x) is
very close to —4.6log e +43 = O(—loge), and from figure [£.4] the experimental results of

f2(x) are very close to —4.7loge + 43.5 = O(—loge). The experimental results are very
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Figure 4.1: The experimental results of fi(x), the x-axis represents the value of € and
y-axis represents the mean number-of generation.
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Figure 4.2: The experimental results of f5(x), the x-axis represents the value of ¢ and
y-axis represents the mean number of generation.
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Figure 4.3: Comparison ofsexperimentaly resultis, and theoretical results from corollary
of f1(x), the x-axis represents the value of e and.y-axis.represents the mean number of
generation, the experimental results are very close to O(= loge).
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Figure 4.4: Comparison of experimental results and theoretical results from corollary
of fy(x), the x-axis represents the value of € and y-axis represents the mean number of
generation, the experimental results are very close to O(—loge).
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close to our estimation in corollary 5, the value of —Ine and the convergence time are
linearly related.

After examine corollary [5] now we examine corollary [(] The parameters we used in
PSO are given in the following: ¢, =1, ¢, = 1, w = 1/(2In2) and € = 107%, the swarm
size if from 50 to 1000 with step 5, for each swarm size we perform 100 runs, and records
the mean as before. The results are shown in figure [4.5 and [£.8] the x-axis
represents the swarm size and y-axis represents the mean number of generation.

The comparison of experimental and theoretical results is shown in figure [4.9]
and [£.12] From figure and [£.10] we can see that the convergence time is close to
—64.9/10g0.555(1 — 1/m) = O(—1/log (1 — 1/m)) where ¢ = 0.555, and in figure
and [4.12]the convergence time is close to —99.75/1og 0.405(1 — 1/m) = O(—1/log /(1 — 1/m))
where ¢ = 0.405. As we can see from these figurés; when the swarm size become large, the
increase of convergence time is very small which. conform with our estimation in corollary

(o
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Figure 4.5: The experimental results of f;(x)] x-axis represents the swarm size from 50
to 200 and y-axis represents the mean fumber. of generation.
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Figure 4.6: The experimental results of f;(x), x-axis represents the swarm size from 50
to 1000 and y-axis represents the mean number of generation.
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Figure 4.7: The experimental results of fo(xX)] x-axis represents the swarm size from 50
to 200 and y-axis represents the mean fumber. of generation.
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Figure 4.8: The experimental results of fy(x), x-axis represents the swarm size from 50
to 1000 and y-axis represents the mean number of generation.
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Figure 4.9: Comparison of experimental results-and .theoretical results from corollary @
of f1(x), x-axis represents,the swarm size from 50 to 200 and y-axis represents the mean
number of generation, thé experimental results are very close to O(—1/logc (1 —1/m))
with ¢ < 1.
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Figure 4.10: Comparison of experimental results and theoretical results from corollary @
of f1(x), x-axis represents the swarm size from 50 to 1000 and y-axis represents the mean
number of generation, the experimental results are very close to O(—1/logc (1 —1/m))
with ¢ < 1.
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Figure 4.11: Comparison of experimental results and theoretical results from corollary @ of
f2(x), the x-axis represents the swarm size from 50 to 200 and y-axis represents the mean
number of generation, thé experimental results are very close to O(—1/logc (1 —1/m))
with ¢ < 1.
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Figure 4.12: Comparison of experimental results and theoretical results from corollary @ of
f2(x), the x-axis represents the swarm size from 50 to 1000 and y-axis represents the mean
number of generation, the experimental results are very close to O(—1/logc (1 —1/m))
with ¢ < 1.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, a simplified statistical model of PSO which captures the behavior of particle
interaction is proposed. And convergenge.time of PSO is analyzed, our results reveals
the relationship between convergence time and the level of convergence, and relationship
between convergence timefand swarnysize.. The experimental results are obtained to verify

our results, which shows.that our estimation is very closesto real PSO.

5.2 Main conelusions

To capture the behavior ofyparticle interaction, the proposed model in this thesis does
not assumes fixed attractor, so the effect of particle interaction can remain on our model.
Although the dimensions are still treated independently like the other previous studies,
unlike the previous work, we do not analyze the particle trajectories, since the whole
swarm is seen as a distribution, we concentrate on the state of the swarm which is repre-
sented by a distribution. The criteria of convergence in our model is showed in this thesis,

and the relationships between parameters and convergence time are analyzed.

5.3 Future work

There are still some future works remain. First, the relation between PSO and number of

dimension, i.e. the relation between t and E[oy,)?] where o¢(,,)* = max{o, 0¢3, ..., 02}
Second, the results obtained in this thesis are independent of objective function, in chapter

we only use two different objective functions, more functions should be used to examine
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our estimation. Third, the distribution we used in this thesis is normal distribution,
but there might be some objective functions that make the swarm becomes different
probability distribution. If so, then our estimation will fail on these objective functions,
more sophisticated model is needed to provide good estimation. Finally, the model we
proposed in this thesis does not take personal experience in to consideration, again we need

a more sophisticated model to analyze the behavior influenced by personal experience.
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