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摘 要       

在本論文中，我們分析了粒子群最佳化中粒子交互作用的收斂時間。我們提

出了能夠描述粒子交互作用的統計模型，利用這個模型我們得到了關於收斂時間

的理論結果。在進行了理論分析之後，經由執行粒子群最佳化在某些測試函式

上，我們使用實驗來驗證我們推導出的結果。 
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ABSTRACT 

In this thesis we analyze the convergence time of particle swarm optimization 

(PSO) on the facet of particle interaction. We propose a statistical model of PSO 

which captures the behavior of PSO particle interaction, and we use it to obtain results 

about convergence time. After the theoretical analysis we use experiments to verify 

our results by running real PSO on benchmark functions. 
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Chapter 1

Introduction

1.1 Motivation

Particle swarm optimizer (PSO), introduced by James Kennedy and Russell C. Eberhart

in 1995[1, 2], is a stochastic, population-based algorithm for solving optimization problem.

It is kind of a swarm intelligence[3, 4, 5] based on social-psychological principles. In PSO,

each potential solution is considered as a particle flying through the n-dimensional search

space searching for the optimal solution, the velocity of each particle is determined by the

inertia, personal experience and particle interaction.

As [6] shows, PSO is an efficient optimization framework. Although PSO has been

widely applied in many fields[7, 8, 9, 10], the understanding of PSO in theoretical aspect is

still limited. Most of previous theoretical results [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

are derived under the system that assumes fixed attractor or single particle, which do

not take particle interaction into consideration. Due to the lack of theoretical analysis

of PSO particle interaction which is one of the most mechanism of PSO, we will propose

a simplified model of PSO with non-fixed attractors. And the behavior of PSO will be

analyzed under this model.

1.2 Thesis objectives

Due to the lack of theoretical analysis of PSO particle interaction, this thesis primarily

aims to provide a theoretical analysis of the behavior particle interaction. There are three

objectives in this thesis:

• To analyze the behavior of particle interaction, we will propose a model of PSO
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which captures the behavior of particle interaction.

• Using the proposed model, the convergence of PSO will be analyzed.

• The experimental results will be obtained to examine our model and results.

1.3 Road map

The thesis is composed by five chapters, the organization is given as follows:

• Chapter 1 consists of motivation, objective and organization of this thesis.

• Chapter 2 gives a detail description of standard PSO algorithm and survey of pre-

vious theoretical works of PSO.

• Chapter 3 describes the proposed statistical model of PSO and the analysis of PSO

convergence time.

• Chapter 4 provides experimental results obtained by running real PSO, and use

these results to verify the results obtained in chapter 3.

• Chapter 5 summaries and concludes this thesis, and some future objectives are

provided.
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Chapter 2

Background

In this chapter, we first give a detail description of PSO algorithm, and then we survey

previous theoretical works.

2.1 Particle swarm optimization

In this section, we will describe the framework of PSO in detail, the algorithm of standard

PSO is described in figure 2.1.

procedure PSO(Objective function F : Rn → R)
Initialize m particles
while the stopping criterion is not satisfied do

for i = 1, 2, . . . ,m do
if F(Xi) < F(Pbi) then

Pbi ← Xi

if F(Pbi) < F(Nb) then
Nb← Pbi

end if
end if

end for
for i = 1, 2, . . . ,m do

Vi ← wVi + Cp(Pbi −Xi) + Cn(Nb−Xi)
Xi ← Xi + Vi

end for
end while

end procedure

Figure 2.1: Standard PSO

Note, in this thesis we will use boldface to represent vectors, ex. Xi, Vi. And with-

out loss of generality we assume that the objective of PSO is to minimize the objective

function.
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According to figure 2.1, at first PSO will initialize the m particles where m is swarm

size which is a parameter of PSO algorithm, each particle contains three informations:

location(Xi), velocity(Vi) and personal best position(Pbi). In each generation, each

particle will update the personal best position(Pbi) and neighborhood best position(Nb)

according to the objective function’s return value. Nb can be updated by all members

within the neighborhood, but Pbi can only be updated by particle itself. After the

update of personal and neighborhood best position, each particle will update their velocity

according to Pbi and Nb, there are some parameters in the velocity update formula: w

is the weight of inertia which is a constant, Cp and Cn are random variable sampled from

uniform distribution U(0, cp) and U(0, cn) where cp and cn are acceleration coefficients of

PSO. Finally, each particle will update it’s position according to the velocity and then go

to next generation.

2.2 Literature review

In this section, we will review previous theoretical works of PSO. The model used in these

theoretical works all assume global structure which means all particles are within the

same neighborhood, every particle update the same Nb, in here we denote this global

attractor by Gb.

To the best we know, the first analysis is [11] proposed by Kennedy, in this work some

simplification are used:

Gb = Pbi = p where p is a constant,m = 1, w = 1, n = 1

the update rules thus become

V ← V + ϕ(p− x)

x← x+ V

where ϕ = Cp +Cn, in this work Kennedy further assumed that ϕ = cp + cn is a constant,

the particle trajectories under different ϕ are plotted. The particle trajectories are sinu-

soidal waves, for ϕ = 4.0 the trajectory explodes linearly and for ϕ > 4.0 the explosion
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becomes exponential, this suggests user to set cp and cn smaller than 2.0. Another be-

havior mentions in this study is ”drunkard’s walk”, since the initial velocity, location and

the fixed attractor p scale the amplitude of the system, when a trajectory is headed away

from p and approaching the extreme of its cycle, the effect of decreasing V as a function

of increasing (p − x) eventually causes the particle to slow down and turn around. If

(p−x) is weighted by a very small(or, in some case, very large) random number, then the

movement toward the extreme will continue farther than it would have which results in a

larger value of x, as the particle is hurled outside its previous bound and v is a function

of of previous velocity and (p−x), the further x travels from p the greater will v be. This

will cause the cycles approach the new limit and then inevitably exceed it again, a fix

proposed in this study is set the limit of velocity Vmax.

Shi and Eberhart[22] analyzed the impact of the inertia weight(w) and maximum

velocity(Vmax), they conducted a number of experiments to find good settings of w and

Vmax. When we lack of knowledge regarding the selection of Vmax, this study suggests

that set Vmax = Xmax and inertia weight w = 0.8 is a good starting point. Furthermore

if a time varying inertia weight is employed , even better performance can be expected.

Using the same simplified system in [11], Ozcan and Mohan[12] analyzed the particle

trajectories by solving the equations:

V (t+ 1) = V (t) + ϕ(p− x(t− 1))

x(t+ 1) = x(t− 1) + v(t)

the conclusion of this study is there are four search types according to the value of ϕ.

Using type 1(ϕ = 0 or ϕ ≥ 4), search is conducted by increasing step sizes in the space.

For other types, a particle follows a path on a sinusoidal wave searching a space bounded

by the amplitude of the sine wave. In type 3(2 −
√

3 < ϕ ≤ 2 +
√

3) the amplitude

of the sine wave is approximately the initial velocity, and in type 2(0 < ϕ ≤ 2 −
√

3)

and type 4(2 +
√

3 < ϕ < 4) the amplitude decrease and increase respectively as ϕ

increase. The simulations in [11] correspond exactly to the analytical results in this work.

Later Ozcan and Mohan[13] generalized their results to a multiple multi-dimensional

particles(m ≥ 1, n ≥ 1) with Gb = pn,Pbi = pi where pn and pi are not necessary the
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same, similar results were obtained. And due to the increasing step sizes, the setting of

velocity limit(Vmax) is suggested in both [12, 13].

With the same simplified system in [13], Clerc and Kennedy[14] defined a simplified

dynamic system:

v(t+ 1) = v(t) + ϕy(t)

y(t+ 1) = −v(t) + (1− ϕ)y(t)

where y(t) = p − x(t) and p = cpPbi+cnGbi

cp+cn
the weight average of the two best which is

assumed to be a constant. Let

Pt =

v(t)

y(t)


be the current point in R2 and

M =

 1 ϕ

−1 1− ϕ


the matrix of the system, we have Pt = M tP0. The eigenvalues of M are

e1 = 1− ϕ

2
+

√
ϕ2 − 4ϕ

2

e2 = 1− ϕ

2
−
√
ϕ2 − 4ϕ

2
.

The behavior of this system is governed by the two eigenvalue e1,e2 of this system. The

system converges when e1 < 1 and e2 < 1. Another contribution of this work is the

introduction of the constriction coefficient and different classes of constriction models.

The objective of this theoretically derived constriction coefficient is to prevent the velocity

to grow out of bounds, with the advantage that, theoretically, velocity clamping(Vmax) is

no longer required. According to this study, the velocity equation changes to

V (t+ 1) = χ [V (t) + cp(Pbi − x(t)) + cn(Gbi − x(t))]

where χ is the constriction coefficient calculated as

χ =
2κ

|2− ϕ−
√
ϕ2 − 4ϕ|

6



with ϕ ≥ 4 and κ ∈ [0, 1]. The constant κ controls the speed of convergence, for κ ≈ 0

fast convergence to a stable point is obtained, while κ ≈ 1 results in slow convergence.

Trelea[18] analyzed the stability under the similar dynamic system in [14], the update

rules in this work are

V (t+ 1) = aV (t) + Cp(Pbi − x(t)) + Cn(Gbi − x(t))

x(t+ 1) = cx(t) + dV (t+ 1).

To simplify the analysis, the acceleration coefficients are set to their expected value. Thus,

the update rules can be expressed as

V (t+ 1) = aV (t) + b(p− x(t))

x(t+ 1) = cx(t) + dV (t+ 1),

where

b =
cp + cn

2

p =
cp

cp + cn
Pbi +

cn
cp + cn

Gbi.

The dynamic system is defined as follows:

y(t+ 1) = Ay(k) +Bp

with

y(t) =

x(t)

V (t)

 , A =

1− b a

−b a

 , B =

b
b

 .
The eigenvalues of the system λ1 and λ2 are the solution of the equation:

λ2 − (a− b+ 1)λ+ a = 0.

The system will converge if the parameters satisfy following condition:

a < 1, b > 0, 2a− b+ 2 > 0.

which is a triangle in the (a, b) plane. Trelea also conducts some experiments to examine

the effect of the parameters a and b.
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Keiichiro, et al.[16] also analyzed the particle trajectories using similar dynamic system

in [14] but take inertia weight into consideration. The update equations in this work are

V (t+ 1) = wV (t) + ϕy(t)

y(t+ 1) = −wV (t) + (1− ϕ)y(t)

where y(t) = p− x(t). The system is defined asV (t+ 1)

y(t+ 1)

 =

 w ϕ

−w 1− ϕ


V (t)

y(t)

 = M

V (t)

y(t)


where M is the matrix of the system. The eigenvalues of M are

λ1 =
w + 1− ϕ+

√
(w + 1− ϕ)2 − 4w

2

λ2 =
w + 1− ϕ−

√
(w + 1− ϕ)2 − 4w

2
.

According to the stability theory, the behavior of the particle is stable if and only if λ1 < 1

and λ2 < 1. Since the value of eigenvalues are function of w and ϕ, there are four cases:

• w = 0 : The system is stable when 0 < ϕ < 2, and each particle converges to p.

• ϕ < w + 1 − 2
√
w : The system is stable when 0 ≤ w < 1, and each particle

converges to p.

• w+ 1− 2
√
w < ϕ < w+ 1 + 2

√
w : The system is stable when 0 ≤ w < 1, and each

particle converges to p.

• w + 1 + 2
√
w < ϕ : Under the condition w + 1 + 2

√
w < ϕ < 2w + 2, the system is

stable when 0 ≤ w < 1, and each particle converges to p.

In the third case, ϕ can be expressed as ϕ = w + 1− 2
√
w + 4κ1

√
w, and let κ2 = cp

cp+cn
.

The velocity update rule become

V (t+ 1) = wV (t) + 2(1− κ2)ϕ(Pbi − x) + 2κ2ϕ(Gbi − x).

The relation between the particle trajectories of the system and the parameters is sum-

marized as follows:
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• w : If 0 ≤ w < 1, the convergence tendency of the system strengthens as w become

small. If 1 < w, the divergence tendency strengthens as w becomes large.

• κ1 : 0 < κ1 < 1, the system becomes vibrational as κ1 becomes large.

• κ2 : 0 < κ2 < 1, p is put in the neighborhood of Pbi if κ2 ≈ 0, and p is put in the

neighborhood of Gb if κ2 ≈ 1.

Keiichiro also examined the relationship between particle trajectories of the system and

the parameters w, κ1 and κ2 through experiments.

Zheng[17] analyzed the same dynamic system in [16], let ∆ = (ϕ−1)2−2(ϕ−1)+w2,

the conclusions of the analysis are summarized as follows:

• w = 1 : The particle trajectories are sinusoidal waves which are consist with [12, 13].

• ∆ < 0 : The particle trajectories converge.

• ∆ > 0 : The particle trajectories diverge.

Since a large inertia weight facilitates a global search while a small inertia weight facilitates

a local search, a novel PSO is proposed in this work:

Vi ← wV + ϕ1(Pbi −Xi) + ϕ2(Gb−Xi)

Xi ← Xi + Vi

where ϕi = biri + di, bi = 1.5, ri ∼ U(0, 1) and di = 0.5 for i = 1, 2. w is an inertia weight

linearly increasing from 0.4 to 0.9. In the experiment section of this study, the novel PSO

outperform the standard PSO.

All works above assume the acceleration coefficients as constants, Kadirkamanathan,

et al.[20] analyzed the system similar in [14] which take stochastic acceleration coefficients

and inertia weight in to consideration. The update rules in this work are:

V (t+ 1) = wV (t) + α
(l)
t (Pbi − x(t)) + α

(g)
t (Gb− x(t))

x(t+ 1) = x(t) + V (t+ 1)

9



where α
(l)
t ∼ U(0, cp) and α

(g)
t ∼ U(0, cn). Let αt = α

(l)
t + α

(g)
t and

p =
α

(l)
t Pbi + α

(g)
t Gb

αt
,

we have

V (t+ 1) = wV (t) + αt(p− x(t))

x(t+ 1) = x(t) + V (t+ 1).

The state-space representation of the PSO system is given by

ξ(t+ 1) = Aξ(t) +But

yt = Cξt

where

yt =

[
1 0

]x(t)

V (t)

 , ut = −αt(yt − p), ξ(t) =

x(t)− p

V (t)

 ,
A =

1 w

0 w

 , B =

[
1 1

]
, C =

[
1 0

]
.

The main result of this work is when |w| < 1 and w 6= 0, if

cp + cn <

(
2(1− 2|w|+ w2)

1 + w

)
the system is asymptotically stable.

Jiang, et al. [21] also analyzed the stochastic acceleration coefficients with similar sys-

tem in [20], by calculating the expected value, E[X(t)] they showed that given w, cp, cn ≥

0, the iterative process E[X(t)] is guaranteed to converge to (cpPbi + cnGb)/(cp + cn)

if and only if 0 ≤ w < 1 and 0 < cp + cn < 4(1 + w). And by more advanced analysis

of the iterative process E[X(t)] they obtained some convergence criteria for parameters

w, cp and cn.

A good survey about PSO particle trajectories analysis is provided in [15, 19]. As

we can see, all the results mentioned above assumes fixed attractor, although in [20, 21]

the attractor p is time variant, but the local best(Pbi) and global best(Gb) are still
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constants. Since the particles interaction of PSO progresses through update of global

best or neighborhood best, this assumption eliminate all effect of the particle interaction.

Thus, the behavior of particle interaction is shown in none of these studies.
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Chapter 3

Analysis of PSO convergence time

In this chapter, we first propose our statistical model of PSO, and then we use it to

analyze the convergence time of PSO.

3.1 Statistical model of PSO

From the above section, we can see that particle interaction is an important part of PSO,

but there are not too much literature discussed about this. Although there are some

theoretical studies have discussed about particle interaction and the behavior of PSO,

most of these studies are based on the assumption that the attractor is fixed. It seems to

be inevitable to assume that the attractor is fixed, since each particle not only keeps its

own experience(inertia and Pbi) but shares collective knowledge(Nb), any slight change

in these quantities will result in a new state. The analysis of the overall behavior thus

become intractable due to the complication of state transition, and fixed attractor thus

becomes necessary simplification.

In order to take particle interaction into consideration, we use an alternative view of

PSO that regards the swarm as a unity. Instead of consider the detail configuration of

each particle in the swarm, we consider the overall behavior of the swarm. To do this, we

convert the state of the entire swarm into a statistical abstraction. The exact locations

of particles are not traced but modeled with a distribution θ over Rn, and velocities are

viewed as random vector V ∈ Rn. To concentrate on the particle interaction, we use

the social-only model of PSO[23] which works without personal experience. The swarm

size m is considered as the number of samples from distribution θ, since the geographic
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knowledge is embodied in the distribution, the neighborhood attractor can be viewed as

the best of the m samples.

More specifically, each particle Pi is a random vector sampled from θ, and its velocity

Vi is sampled from V . The neighborhood attractor is defined as

Pa := min
Pi

{F(P1),F(P2), . . . ,F(Pm)}.

At each generation particle Pi its position to Pi+wVi+C(Pa−Pi), the distributions of

next time step are thus the statistical characterization which can be denoted by functions

of the observed value:

θ ← Tp(P1, . . . ,Pm),

V ← Tv(P1, . . . ,Pm,V1, . . . ,Vm).

Since w is a constant the distribution V can be removed because given two random vectors

X ∼ θ and V ∼ V , we can simply let θ′ be the distribution of X′ := X + wV.

Now the only question remain is which distribution is suitable for description of the

swarm and how to update the distribution. For simplicity, we use product distribution

in this thesis i.e. the position of each dimension is independently sampled from the

distribution θi. Now consider the random variable X ∼ θi and let E[X] = µ. If we divide

the support of θi into s disjoint regions R1, . . . , Rs such that Prob[X ∈ Ri] = 1/s for

i = 1, 2, . . . , s, and each region is associated with a random variable of velocity Vi ∼ Vi.

Pick xi ∈ Ri for each region, when s is sufficiently large the swarm can be characterized

by

s∑
i=1

1

s
(xi + Vi) =

s∑
i=1

xi
s

+
s∑
i=1

Vi
s

≈ µ+
s∑
i=1

Vi
s
,

and each component of
∑s

i=1 Vi/s can be approximated with a normal distribution by

central limit theorem. Therefore normal distribution seems to be a reasonable choice.

We let the distribution of i-th dimension, θi be N(µi, σ
2
i ) where N(µi, σ

2
i ) is the normal

distribution with mean µi and variance σ2
i . Now the update of distribution becomes simply

13



calculate the mean and the variance. The mean can be calculated intuitively by take

the average of updated positions, and the variance is calculated by maximum likelihood

estimation(MLE) which will be describe in next section. The statistical model of PSO

is summarized in figure 3.1, the distribution θ is represented by µ = (µ1, µ2, . . . , µn) and

σ = (σ1, σ2, . . . , σn), and the acceleration coefficient C ∼ U(0, c).

procedure Statistical model of PSO(Objective function F : Rn → R)
Initialize:σ ← σ0,µ← µ0

while the stopping criterion is not satisfied do
for i = 1, 2, . . . ,m do

for j = 1, 2, . . . , n do
Pij ∼ N(µj, σ

2
j )

end for
end for
Pa = minPi

{F(Pi)}
for i = 1, 2, . . . ,m do

P′i ← Pi + C(Pa −Pi)
end for
µ← (

∑m
i=1 P′i)/m

σ2 ← MLE(P′1,P
′
2, . . . ,P

′
m)

end while
end procedure

Figure 3.1: Statistical model of PSO

3.2 Convergence time analysis

In this section we first describe the maximum likelihood estimation which used in the

update of distribution, and then we obtain the results about PSO convergence time.

Let σt
2
i and µt

2
i be the variance and mean of i-th dimension in t-th generation, let

yj = Pji and y′j = P′ji for j = 1, 2, . . . ,m and let ya = Pai, y = (1/m)
∑m

j=1 y
′
j. To

estimate the variance of i-th dimension for t+1-th generation, we use maximum likelihood

estimation (MLE), the likelihood function L(σt
2
i ) is defined as the joint probability:

L(σt
2
i ) :=

m∏
j=1

(
1√

2πσt+1
2
i

) exp(
−(y′j − y)2

2σt+1
2
i

) = (
1√

2πσt+1
2
i

)m exp(
−
∑m

j=1(y
′
j − y)2

2σt+1
2
i

).

14



To find σt+1
2
i that maximizes L(σt

2
i ), we differentiate L(σt

2
i ) with respect to σt+1

2
i :

L′(σt
2
i ) = −(

m

2
)(

1√
2π

)mσt+1
−m−2
i · exp(

−
∑m

j=1(y
′
j − y)2

2σt+1
2
i

)

+(
1√
2π

)m ·
∑m

j=1(y
′
j − y)2

2
σt+1

−m−4
i · exp(

−
∑m

j=1(y
′
j − y)2

2σt+1
2
i

),

the value of σt+1
2
i that maximizes L(σt

2
i ) is

∑m
j=1(y

′
j− y)2/m, so in our model of PSO the

results of MLE is σt+1
2
i =

∑m
j=1(y

′
j − y)2/m for i = 1, 2, . . . , n.

After introduce MLE, we now discuss about the convergence time of PSO. There are

many different definitions of convergence, in here we define the state of swarm is converge

if all particles crowd into some specific location. Since in our viewpoint, the swarm is seen

as a distribution, so the state of particles crowd into some specific location is refer to the

variance of the distribution becomes very small. Here comes another problem, what’s the

definition of “very small”? Since under difference circumstances the definition of “very

small” is different, so in here we do not give exact value, instead we define the variance is

“very small” if the variance is less than some constant ε > 0. So the state of convergence

refer to the variance for every dimension is less than ε. Use this definition, now we start

our analysis of convergence time.

To estimate the variance after distribution update, we need following lemma from [24]:

Lemma 1. Let X1, X2, . . . , Xm ∼ N(µ, σ2), define S =
∑m

i=1(Xi − X)2/(m − 1) where

X =
∑m

i=1Xi/m. We have (m− 1)S ∼ σ2χ2
m−1 where χ2

m−1 is the chi-square distribution

with m− 1 degrees of freedom.

Using this lemma we can obtain the following result:

Lemma 2. Given the swarm size m, acceleration coefficient c and variance of i-th di-

mension at t-th generation σt
2
i we have E[σt+1

2
i ] = [1

3
c2 − c+ 1][(m− 1)/m]σt

2
i .
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Proof. From above we know σt+1
2
i =

∑m
j=1(y

′
j − y)2/m, the expected value is

E[
1

m

m∑
j=1

(y′j −
∑m

k=1 y
′
k

m
)2] =

1

m
E[

m∑
j=1

(yj + C(ya − yj)−
∑m

k=1 yk + C(ya − yk)
m

)2]

=
1

m
E[

m∑
j=1

(
m(1− C)yj − (1− C)

∑m
k=1 yk

m
)2]

=
1

m3
E[(1− C)2

m∑
j=1

(myj −
m∑
k=1

yk)
2]

=
1

m
E[(1− C)2]E[

m∑
j=1

(yj −
1

m

m∑
k=1

yk)
2],

Let S =
∑m

j=1(yj −
1
m

∑m
k=1 yk)

2, since yj ∼ N(µt+1i, σt+1
2
i ) for j = 1, 2, . . . ,m and

y1, y2, . . . , ym are i.i.d., by lemma 1 S ∼ σt
2
iχ

2
m−1, thus E[S] = (m− 1)σt

2
i . Using this, we

can obtain

E[σt+1
2
i ] =

1

m
E[(1− C)2]E[

m∑
j=1

(yj −
1

m

m∑
k=1

yk)
2]

=
1

m
E[1− 2C + C2]E[S]

=
1

m
(
1

3
c2 − c+ 1)(m− 1)σt

2
i

= (
1

3
c2 − c+ 1)

m− 1

m
σt

2
i

Lemma 2 is derived under the situation that σt
2
i is given, the following lemma will

derive the relationship between E[σt
2
i ] and E[σt+1

2
i ].

Lemma 3. E[σt+1
2
i ] = (1

3
c2 − c+ 1)m−1

m
E[σt

2
i ].

Proof.

E[σt
2
i ] =

∫
σ2∈R+

E[σt+1
2
i |σt

2
i = σ2]Prob{σt

2
i = σ2}dσ2

=

∫
σ2∈R+

(
1

3
c2 − c+ 1)

m− 1

m
σ2Prob{σt

2
i = σ2}dσ2 (by lemma 2)

= (
1

3
c2 − c+ 1)

m− 1

m

∫
σ2∈R+

σ2Prob{σt
2
i = σ2}dσ2

= (
1

3
c2 − c+ 1)

m− 1

m
E[σt

2
i ].
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Using all the previous results, we can obtain the relationship of convergence time and

parameters of PSO:

Theorem 4. Given swarm size m, acceleration coefficient c, ε and σ0, let h = maxi{σ0
2
i }

we have E[σt
2
i ] < ε for i = 1, 2, . . . , n when [1

3
c2 − c + 1][(m − 1)/m] < 1 and t >

log(ε/σ0
2
h)/ log([1

3
c2 − c+ 1][(m− 1)/m]).

Proof. From lemma 3 we know

E[σt
2
i ] = (

1

3
c2 − c+ 1)t(

m− 1

m
)tE[σ0

2
i ]

= (
1

3
c2 − c+ 1)t(

m− 1

m
)tσ0

2
i

Since [1
3
c2 − c+ 1][(m− 1)/m] < 1 we have

E[σt
2
i ] = (

1

3
c2 − c+ 1)t(

m− 1

m
)tσ0

2
i

< (
1

3
c2 − c+ 1)t(

m− 1

m
)tσ0

2
h

< ε

The last inequality is hold because

log

(
(
1

3
c2 − c+ 1)t(

m− 1

m
)tσ0

2
h

)
=t log

(
(
1

3
c2 − c+ 1)(

m− 1

m
)

)
+ log σ0

2
h

< log(ε/σ0
2
h) + log σ0

2
h

= log ε

We have two corollaries immediately from theorem 4:

Corollary 5. Given swarm size m, acceleration coefficient c, and level of convergence ε

such that [1
3
c2 − c + 1][(m − 1)/m] < 1 and ε < 1, we have E[σt

2
i ] < ε for i = 1, 2, . . . , n

for t = O(− log ε).
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Corollary 6. Given swarm size m, c, and ε such that [1
3
c2 − c+ 1][(m− 1)/m] < 1 and

ε < 1, there exist a constant c′ < 1 such that for t = O(−1/ log c′(1− 1/m)) we have

E[σt
2
i ] < ε for i = 1, 2, . . . , n.

Corollary 5 reveals the linear relationship between the level of convergence and con-

vergence time, and the interpretation of corollary 6 is that when the swarm size is large

enough, enlarge swarm size can only influences convergence time slightly. In next chapter,

We will examine the above two corollaries.
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Chapter 4

Experiments

In tis section, we examine corollary 5 and 6 by running standard PSO, we use two objective

functions in our experiments:

• Sphere function [25]:

f1(x) =
D∑
i=1

x2
i where x ∈ [−100, 100]D.

• Schwefel’s problem 1.2 [25]:

f2(x) =
D∑
i=1

(
i∑

j=1

x2
j

)
where x ∈ [−100, 100]D.

We set D = 10 for both f1(x) and f2(x) in the following experiments.

First, we examine the corollary 5, the parameters we used in PSO are given in the

following: cp = 1, cn = 1, w = 1/(2 ln 2) and swarm size = 50. The value of ε is from 10−1

to 10−10, for each value of ε we perform 100 runs, for each run we count the number of

generations from initialization to the state that all dimension’s variance is smaller than

ε, and then we calculate the mean number of generations from the 100 runs. The result

of f1(x) and f2(x) are shown in figure 4.1 and 4.2 respectively, the x-axis represents the

value of ε and the y-axis represent the mean number of generation.

The comparison of these experimental results and our theoretical results is shown in

figure 4.3 and 4.4. From figure 4.3, we can see that the experimental results of f1(x) is

very close to −4.6 log ε+ 43 = O(− log ε), and from figure 4.4, the experimental results of

f2(x) are very close to −4.7 log ε + 43.5 = O(− log ε). The experimental results are very
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Figure 4.1: The experimental results of f1(x), the x-axis represents the value of ε and
y-axis represents the mean number of generation.
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Figure 4.2: The experimental results of f2(x), the x-axis represents the value of ε and
y-axis represents the mean number of generation.
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-4.6log(ǫ) + 43

Figure 4.3: Comparison of experimental results and theoretical results from corollary 5
of f1(x), the x-axis represents the value of ε and y-axis represents the mean number of
generation, the experimental results are very close to O(− log ε).
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Figure 4.4: Comparison of experimental results and theoretical results from corollary 5
of f2(x), the x-axis represents the value of ε and y-axis represents the mean number of
generation, the experimental results are very close to O(− log ε).
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close to our estimation in corollary 5, the value of − ln ε and the convergence time are

linearly related.

After examine corollary 5, now we examine corollary 6. The parameters we used in

PSO are given in the following: cp = 1, cn = 1, w = 1/(2 ln 2) and ε = 10−6, the swarm

size if from 50 to 1000 with step 5, for each swarm size we perform 100 runs, and records

the mean as before. The results are shown in figure 4.5, 4.6, 4.7 and 4.8, the x-axis

represents the swarm size and y-axis represents the mean number of generation.

The comparison of experimental and theoretical results is shown in figure 4.9, 4.10,4.11

and 4.12. From figure 4.9 and 4.10, we can see that the convergence time is close to

−64.9/ log 0.555(1− 1/m) = O(−1/ log c′(1− 1/m)) where c′ = 0.555, and in figure 4.11

and 4.12 the convergence time is close to−99.75/ log 0.405(1− 1/m) = O(−1/ log c′(1− 1/m))

where c′ = 0.405. As we can see from these figures, when the swarm size become large, the

increase of convergence time is very small which conform with our estimation in corollary

6.
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Figure 4.5: The experimental results of f1(x), x-axis represents the swarm size from 50
to 200 and y-axis represents the mean number of generation.
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Figure 4.6: The experimental results of f1(x), x-axis represents the swarm size from 50
to 1000 and y-axis represents the mean number of generation.
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Schwefel ś problem 1.2

Figure 4.7: The experimental results of f2(x), x-axis represents the swarm size from 50
to 200 and y-axis represents the mean number of generation.
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Figure 4.8: The experimental results of f2(x), x-axis represents the swarm size from 50
to 1000 and y-axis represents the mean number of generation.
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Figure 4.9: Comparison of experimental results and theoretical results from corollary 6
of f1(x), x-axis represents the swarm size from 50 to 200 and y-axis represents the mean
number of generation, the experimental results are very close to O(−1/ log c′(1− 1/m))
with c′ < 1.
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Figure 4.10: Comparison of experimental results and theoretical results from corollary 6
of f1(x), x-axis represents the swarm size from 50 to 1000 and y-axis represents the mean
number of generation, the experimental results are very close to O(−1/ log c′(1− 1/m))
with c′ < 1.
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Figure 4.11: Comparison of experimental results and theoretical results from corollary 6 of
f2(x), the x-axis represents the swarm size from 50 to 200 and y-axis represents the mean
number of generation, the experimental results are very close to O(−1/ log c′(1− 1/m))
with c′ < 1.
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Figure 4.12: Comparison of experimental results and theoretical results from corollary 6 of
f2(x), the x-axis represents the swarm size from 50 to 1000 and y-axis represents the mean
number of generation, the experimental results are very close to O(−1/ log c′(1− 1/m))
with c′ < 1.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, a simplified statistical model of PSO which captures the behavior of particle

interaction is proposed. And convergence time of PSO is analyzed, our results reveals

the relationship between convergence time and the level of convergence, and relationship

between convergence time and swarm size. The experimental results are obtained to verify

our results, which shows that our estimation is very close to real PSO.

5.2 Main conclusions

To capture the behavior of particle interaction, the proposed model in this thesis does

not assumes fixed attractor, so the effect of particle interaction can remain on our model.

Although the dimensions are still treated independently like the other previous studies,

unlike the previous work, we do not analyze the particle trajectories, since the whole

swarm is seen as a distribution, we concentrate on the state of the swarm which is repre-

sented by a distribution. The criteria of convergence in our model is showed in this thesis,

and the relationships between parameters and convergence time are analyzed.

5.3 Future work

There are still some future works remain. First, the relation between PSO and number of

dimension, i.e. the relation between t and E[σt(n)
2] where σt(n)

2 = max{σt
2
1, σt

2
2, . . . , σt

2
n}.

Second, the results obtained in this thesis are independent of objective function, in chapter

4 we only use two different objective functions, more functions should be used to examine
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our estimation. Third, the distribution we used in this thesis is normal distribution,

but there might be some objective functions that make the swarm becomes different

probability distribution. If so, then our estimation will fail on these objective functions,

more sophisticated model is needed to provide good estimation. Finally, the model we

proposed in this thesis does not take personal experience in to consideration, again we need

a more sophisticated model to analyze the behavior influenced by personal experience.
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