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NFL 定理在離散化 Lipschitz 函數集合上之探討 

學生：江沛                                指導教授：陳穎平 

國立交通大學資訊科學與工程研究所 

 

摘     要 

 

    No-Free-Lunch(NFL)定理指出當對所有問題作平均時，所有最佳化演算

法的表現都是一致的，意即各個最佳化演算法的總體效能並無法定義孰優孰

劣。然而 NFL 定理並不意味著泛用型最佳化演算法(general-purpose 

optimizers)無用武之地，只要問題存在有可供演算法利用的結構，仍有可能

找到一最佳化演算法在某一問題集合上具有優勢。這份論文提出了一個問題

的集合，稱之為離散化 Lipschitz函數集合(discrete Lipschitz class，DLC)，

且此一集合可視為透過規範搜尋空間鄰近區域的差值來模擬連續性。此論文

探 討 了 DLC 和 NFL 定 理 間 之 關 係 ， 並 證 明 一 最 佳 化 演 算 法

subthreshold-seeker之推廣形式可在DLC上效能勝於random search。同時，

此論文也設計了一抽樣測試法透過實驗驗證在一更實際之架構下

subthreshold-seeker在 DLC上之表現明顯優於 random search。因此，這份

論文說明了儘管最佳化演算法並無法同時對所有問題都有優異的效能，但仍

然有可能在一廣泛且深具意義的問題集合上取得優勢。 

 

 

關鍵字：No-Free-Lunch 定理、Lipschitz 連續性、泛用型最佳化演算法、

subthreshold-seeker、抽樣測試法 



Abstract

The No-Free-Lunch theorem states that all algorithms have the identical performance

on average over all functions and there is no algorithm able to outperform others on all

problems. However, such a result does not imply that search heuristics or optimization al-

gorithms are futile if we are more cautious with the applicability of these methods and the

search space. In this paper, within the No-Free-Lunch framework, we firstly introduce the

discrete Lipschitz class by transferring the Lipschitz functions, i.e., functions with bounded

slope, as a measure to fulfill the notion of continuity in discrete functions. We then in-

vestigate the properties of the discrete Lipschitz class, generalize an algorithm called

subthreshold-seeker for optimization, and show that the generalized subthreshold-seeker

outperforms random search on this class. Finally, we propose a tractable sampling-test

scheme to empirically demonstrate the superiority of the generalized subthreshold-seeker

under practical configurations. This study concludes that there exists algorithms outper-

forming random search on the discrete Lipschitz class in both theoretical and practical

aspects and indicates that the effectiveness of search heuristics may not be universal but

still general in some broad sense.

keywords:

No-Free-Lunch Theorem, Lipschitz continuity, discrete Lipschitz class, subthreshold-seeker,

sampling-test scheme
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Chapter 1

Introduction

1.1 Motivation

Back to 1980s, in the field of evolutionary computation, there is a belief that while evo-

lutionary algorithms may not perform as well as the specialized algorithm for a specific

optimization problem, they are more widely applicable and have superior overall per-

formance. However, in 1995, Wolpert and Macready proposed the No-Free-Lunch (NFL)

theorem [1, 2] which formally states that every algorithm performs equally well on average

over all functions. A direct implication of NFL is that, given any performance measure,

the better performance of an algorithm on some problems always accompanies with the

worse performance on others. The number of problems on which the algorithm performs

well is exactly the number of those on which it does not perform well. In other words,

there is no such thing as robustness under the NFL framework, or all algorithms are

considered robust. Therefore, it is no surprise that the proposition of the NFL theorem

causes a great deal of controversy in the optimization and heuristic search community [3],

as the NFL theorem sets a limitation on the pursuit of general-purpose optimizers.

Indeed, the implications of the NFL theorem seem to disagree with empirical observa-

tions of the effectiveness of optimization algorithms and search heuristics, since general-

purpose optimizers such as gradient-based methods, simulated-annealing, and biologically

inspired algorithms do have their share of significance in real-world applications. On the

other hand, the NFL theorem is a mathematical theorem, which means that it is absolutely

true when all the hypotheses are given. As a consequence, previous studies intending to

address the incoherence between theoretical results and empirical observations are mostly

1



aiming at the hypotheses of the NFL theorem, especially the notion of “all functions”.

Droste et al. [4, 5] systematically described a few scenarios of functions and claimed that

the scope of the NFL theorem is too enormous to be realistic. Streeter [6] proved that

the NFL theorem does not hold over the problems with sufficiently bounded description

length. Beyond identifying a subset of problems to which the NFL result can not be ap-

plied, Christensen and Oppacher [7] started with a more direct standpoint by proposing

the submedian-seeker and demonstrated such an algorithm can outperform random search

on certain types of functions. Thereafter, Whitley and Rowe [8] simplified and extended

Christensen and Oppacher’s work and showed that a more generic subthreshold-seeker can

outperform random search on uniformly sampled polynomials in the sense of the number

of subthreshold points visited in a given time span.

In the aforementioned studies, the topics may be different, but a common goal is shared

– addressing the issue of how general optimization algorithms and search heuristics can

be. This study serves the same purpose. Borrowing the notion of Lipschitz functions

in real analysis, we introduce the discrete Lipschitz class as an attempt to capture the

continuity of a discrete search space and examine this class within the context of the NFL

theorem.

1.2 Research Objectives

The property of similarities in objective values within a neighborhood is possessed by

many real-world problems, and this thesis primarily aims to address how such a problem

structure facilitates the search process, especially in the aspects of:

1. The NFL theorem, as well as its relating studies, provides a pattern to investigate

the discrete Lipschitz class in the first place. Starting from the very definitions of

the NFL theorem, this study formulates the discrete Lipschitz class on an abstract

level as the groundwork from which succeeding inferences can be drawn.

2. As a class of optimization problems, the discrete Lipschitz class will be analyzed

under an algorithmic view. In particular, a generalized subthreshold-seeker is proved

to outperform random search on the discrete Lipschitz class in theory.
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3. Different from previous efforts on various subsets of functions, one major benefit of

the discrete Lipschitz class is that it can be regarded as a population from which

problems can be sampled. This thesis proposes a sampling-test scheme and conduct-

ing numerical experiments with comparisons, as well as demonstrates the theoretical

result can be carried over into practice.

1.3 Road Map

This thesis, which consists of seven chapters, is organized as follows:

• Chapter 1 comprises the motivation, objectives and the road map of this thesis so

as to adumbrate the contents in the following chapters.

• Chapter 2 briefly reviews the NFL framework to establish and unify the terminology

and definitions as preliminaries.

• Chapter 3 introduces the discrete Lipschitz class and describes the relationship

between the class and the theorem with a focus on the condition under which the

NFL theorem holds over the discrete Lipschitz class.

• Chapter 4 generalizes the subthreshold-seeker and discusses its performance on the

discrete Lipschitz class in comparison with random search.

• Chapter 5 proposes a sampling-test scheme on one-dimensional discrete Lipschitz

class as an alternative way to examine the effectiveness of optimizers in practice.

• Chapter 6 extends the results in Chapter 5 and explores the possibility of realistically

studying higher-dimensional discrete Lipschitz class.

• Chapter 7 summarizes this study and interprets its practical meanings, as well as

suggests possible future work.

3



Chapter 2

A Brief Review of NFL

The No-Free-Lunch (NFL) theorem, in short, states that all algorithms have the same

overall performance. As plain as this statement may seem, there are several aspects to be

clarified. Firstly, “algorithms” in the realm of NFL are restricted to the scope of “non-

repeating black-box algorithms”. The term “black-box algorithm”, referred to as “blind

search” in some literatures, is used to describe the class of evaluation-based algorithms

only employing the result of function evaluations as information. The requirement of non-

repeating ensures that the search process can be viewed as a permutation of the elements

in search space, and revisiting points merely increases the running time without rendering

any assistance for identifying the optimum. In fact, when the performance is averaged

over all functions, based on NFL, the best an algorithm can do is try not to re-sample.

The concept of “all functions” is another intriguing point for its inherent vagueness.

One of the fundamental results in computability is that the set of problems is uncountably

infinite. If we consider the the collection of feasible regions of optimization problems as a

language, we can easily use the diagonalization method to show that such a language is

not recursive. The NFL framework takes a more practical stand here and bypasses this

difficulty by considering those functions defined on a finite domain with a finite codomain.

2.1 NFL Framework

Within the NFL framework, the concepts of optimization problems and search algorithms

can be formalized in the following definitions:

4



Definition 1. Given two finite sets X and Y, the set of all functions FX ,Y , with

respect to X and Y, is defined as FX ,Y := {f | f : X → Y}.

Definition 2. A trace of length m is a sequence Tm := ((xi, yi))
m
1 = ((x1, y1), (x2, y2), . . . ,

(xm, ym)) ∈ (X × Y)m with distinct xi’s. “x ∈ Tm” denotes that x = xi for some i ∈
{1, 2, . . . , m}. Let T0 be the empty sequence and T ` be the set containing all the traces of

a length smaller than or equal to `.

Definition 3. Let AT , where T ∈ T |X |−1, be a random variable over X satisfying that

Prob{AT = x} = 0 for all x ∈ T . An algorithm A is a collection of such random

variables, i.e., A = {AT | T ∈ T |X |−1}.

A : algorithm

: visited solutions

: the solution A is visiting

A

: search space

: time steps

Figure 2.1: An illustration of an algorithm

Definition 4. The search process of A on f , S(A, f), is the stochastic process (Xi, Yi :=

f(Xi)) over X × Y defined by X1 ∼ AT0 and Xk+1 ∼ A((Xi,Yi))k
1
. Let S(A, f, k) :=

((Xi, Yi))
k
1, and Sy(A, f, k) := (Yi)

k
1 is called the performance vector.

Definition 5. Let V :=
⋃|X |

i=1 Y i be the set containing all possible performance vectors. A

performance measure is any function mapping V to R.

5



The terminology mostly follows those adopted in [2] and [9] with a few slight mod-

ifications applied to avoid the situation that an algorithm is undefinable on a complete

trace and to make search processes able to be expressed in a naturally stochastic way.

Even though the NFL framework does exert constraints upon the scope of optimization

algorithms and problems so that rigorous analysis can proceed, these conditions are not

unreasonable for the theorem’s intent. Most general-purpose optimizers, equipped with-

out problem-specific knowledge, are essentially black-box algorithms, and the finiteness

of the search space agrees with the nature of computer.

Example 1 demonstrates how to represent random search under the NFL framework.

It is noteworthy that the non-revisiting property confines random search to the scope of

random permutation.

Example 1 (Random search in NFL). Let RTm be a random variable that Prob{RTm =

x} = 1/(|X |−m) for all x /∈ Tm. In the NFL framework, random search can be accordingly

defined as RS := {RT | T ∈ T |X |−1}.

2.2 NFL Theorem

Now, the NFL theorem can be given as Theorem 1.

Theorem 1 (NFL theorem). If v ∈ V is a performance vector with length `, then

∑

f

Prob{Sy(A, f, `) = v} = c ,

where c is a constant independent of A.

The complete proof can be found in the original NFL papers [1, 2]. Also, both Droste

et al. [5] and Culberson [3] provide simplified proofs.

To rephrase the NFL theorem more plainly, for any performance vector, the expected

number of problems on which the performance vector will be generated in the search

process is identical for all algorithms. Since the performance measure is a function defined

on performance vectors, for any given “score”, the expected number of problems on which

the score is achieved is exactly the same for all algorithms. Therefore, averaging over all

problems, all algorithms performs identically in expectation.

6



Chapter 3

Discrete Lipschitz Class

3.1 Definition of the Discrete Lipschitz Class

In real analysis, Lipschitz functions refer to the functions with bounded slope. Given a

set C ⊆ R, f : C → R is a Lipschitz function if there exists a constant K > 0 such that

|f(a) − f(b)| ≤ K|a − b| for all a, b ∈ C. The Lipschitz condition is a stronger condition

than normal continuity, because any Lipschitz function is uniformly continuous. On the

other hand, the functions that are not everywhere differentiable may still be Lipschitz,

e.g., f(x) = |x|. On a closed interval, the Lipschitz class lies between continuous functions

and the functions having continuous derivatives [10].

For the discrete space, there is no such thing as continuity. However, if there is some

sort of distance defined in some discrete space, the Lipschitz condition can still be applied,

and therefore a natural way to simulate continuity in the discrete space can be obtained.

In combinatorics, the spatial structures are typically formed via graph theory. If we view

the vertex set as the search space and the edge set as the specification of the geometry,

the Lipschitz condition can be transferred here by restricting the difference of objective

values between any two adjacent vertexes. The merit of such definition is that we do not

put any constraints on the global structure directly such as to demand the functions to

be polynomial or the description length to be bounded. Instead, we only expect some

similarities of the objective values within a neighborhood in the search space.

Since we will focus on the discrete Lipschitz class in the remainder of this paper, the

domain X is always the vertex set V (G) of a graph G, representing the spatial structure.

Hence, the two notations X and V (G) are used exchangeably. The discrete Lipschitz class

7



(DLC) can now be introduced.

Definition 6 (Discrete Lipschitz class, DLC). Given a connected graph G and a finite

set Y ⊂ R, the corresponding discrete Lipschitz class with Lipschitz constant K is defined

as

L(G,Y , K) := {f : V (G) → Y | ∀v1v2 ∈ E(G), |f(v1)− f(v2)| ≤ K} .

Throughout this thesis, the property of Y of interest is the ordering, so, without loss

of generality, Y is assumed to be a subset of N of the form {0, 1, . . . , m} unless specified

otherwise. deg(v) and N(v) are used to denote the degree and the neighborhood of a

vertex v, respectively.

3.2 DLC as Representation

In this section, we discuss the connection between DLC and real-world optimization prob-

lems in order to manifest the broadness and the practicality of DLC.

3.2.1 Real-parameter Optimization Problems

The definition of DLC provides a means to represent the intrinsically real-parameter

optimization problems through discretization (for practical computing devices). For in-

stance, if a cube C ⊂ Rn is discretized uniformly into a set of grid points, V (G) =

{x1, x2, . . . , xM}n ⊂ Rn with xi+1 − xi = u > 0, we can let E(G) = {vivj | vi, vj ∈
V (G) and ‖vi−vj‖1 = u}. L(G,Y , K) then forms a class containing all functions, defined

on C with the absolute values of partial derivatives upper bounded by K/u, discretized

over V (G). Furthermore, since Y is bounded, this class contains all functions mapping

V (G) to Y with sufficient large K (e.g., K = maxY −minY).

The simplest case of DLC is the class of functions defined on R, in which the graph

representing the spatial structure is a simple path. Figure 3.1 gives an illustrative example

of such functions.

Definition 7 (Pathwise discrete Lipschitz class, PDLC). Given a finite set Y ⊂ R and a

simple path G = v1v2 . . . vn, the pathwise discrete Lipschitz class with Lipschitz constant

K is defined as L(G,Y , K).

8
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Figure 3.1: A function instance of PDLC with 10 vertexes and K = 10.

Higher-dimensional cases can be defined in a similar way and will be addressed later

in Chapter 6.

3.2.2 Combinatorial Optimization Problems

Since DLC is discrete in nature, if a combinatorial problem can be represented by a

solution-based form, then we can characterize it as DLC by specifying the neighborhood

structure and the Lipschitz constant. For instance, the search space of the Traveling

Salesman Problem(TSP)[11] consists of all possible tours, i.e. Hamiltonian cycles, and for

each tour there is a corresponding edge set containing all edges the tour passes through.

Therefore, we can define the neighborhood of a tour as the set of tours which agree on all

but two edges with the original path, and the Lipschitz constant can be written in terms

of the maximum weight, as shown in the following example:

Example 2 (TSP and DLC). If the weights of edges are non-negative and upper-bounded

by a constant K, then every traveling salesman problem is an instance of L(G,Y , 2K),

where each vertex of G corresponds to a tour in the original graph and if two tours differ

in only two edges, they are considered neighbors.

Note that G is not the original graph on which the TSP defined.

Also, the minimum spanning tree(MST) problem[11] can be associated to DLC simi-

larly.

9



Example 3 (MST and DLC). If the weights of edges are non-negative and upper-bounded

by a constant K, then every MST problem is an instance of L(G,Y , 2K), where each vertex

of G corresponds to a spanning tree in the original graph and if two spanning trees differ

in only two edges, they are considered neighbors.

In addition to graph problems, the optimization version of the set-partition problem[11],

which is to partition a set into two equally weighted subsets, can also be connected to

DLC. For a set S ⊂ N, we denote the sum of elements in S as MS, i.e.
∑

x∈S x = MS.

Example 4 (Set-partition problem and DLC). Given a finite set S ⊂ N with max S = K,

the solution space of the set-partition problem is the power set of S. For a subset U of

S, the corresponding objective value is f(U) = |MU −MS/2|. Two subsets A and B of

S, where A ⊂ B, are considered neighbors if |B − A| = 1, and thus f(A) ≤ f(B) =

|MB −MA + MA−MS/2| ≤ f(A) + |MA−MB| ≤ f(A) + K. Therefore, the set-partition

problem on S is an instance of DLC with Lipschitz constant K.

Generally speaking, if a combinatorial optimization problem involves a weight set,

then normally it can be transformed into DLC. In the following section, we will show

that mostly the NFL theorem does not hold over DLC, so it is possible to contrive an

algorithm outperforming random search on these combinatorial problems.

3.3 DLC and NFL

In this section, we will investigate DLC within the NFL framework and derive a condition

under which the the NFL theorem holds. In order to determine whether the NFL theorem

holds over a problem class, Schumacher et al. [9] provided a criterion for the NFL theorem

based on permutation closure.

Definition 8 (Permutation closure). If π is a permutation on X , define fπ as fπ(x) :=

f(π(x)) for all x ∈ X . F ⊆ FX ,Y is closed under permutation if for all f ∈ F and for

every permutation π on X , fπ ∈ F .

Lemma 1. The NFL theorem holds over F if and only if F is closed under permutation.
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Although in [9], this criterion is proposed for deterministic algorithms, since a random-

ized algorithm is simply a mixed strategy, i.e., a distribution over all possible deterministic

strategies [12, 5], this criterion still holds for randomized algorithms in the sense of ex-

pectation. Utilizing Lemma 1, a simple criterion for whether or not the NFL result can

be applied to a DLC can be obtained.

Theorem 2 (Criterion for NFL on DLC). Let L(G,Y = {0, 1, . . . , m}, K) with m > K

be a DLC. NFL holds over L(G,Y , K) if and only if G is complete.

Proof. By Lemma 1, it is sufficient to show that L(G,Y , K) is closed under permutation

if and only if G is complete.

• If G is complete, for every f ∈ L(G,Y , K), we have |f(vi) − f(vj)| ≤ K for all

vi and vj ∈ V (G). For any permutation π on X and for all vi and vj ∈ V (G),

|fπ(vi)− fπ(vj)| = |f(π(vi))− f(π(vj))| ≤ K. Therefore, fπ ∈ L(G,Y , K).

• If L(G,Y , K) is closed under permutation, suppose for contradiction that G is not

complete. The incompleteness and connectivity of G imply that there exist vi and

vj ∈ V (G) with vivj /∈ E(G). Select vk ∈ N(vi), where N(vi) is the neighborhood

of vi. Obviously, vk 6= vj. Consider the function f ∈ L(G,Y , K):

f(v) =





0 if v = vi ;

K + 1 if v = vj ;

K otherwise.

and the permutation π:

π(v) =





vk if v = vj ;

vj if v = vk ;

v otherwise.

|fπ(vk)−fπ(vi)| = |f(π(vk))−f(π(vi))| = |f(vj)−f(vi)| = K+1, so fπ /∈ L(G,Y , K),

a contradiction.
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The completeness of a graph implies that the entire search space is in the same neigh-

borhood. However, such a case is rare in real-world applications, because the degree can be

viewed as an indication of dimensions, and the size of search space typically surpasses the

number of dimensions significantly. For example, for discretized real-parameter optimiza-

tion problems, the cardinality of the domain is usually notably larger than the number of

dimensions, and hence the corresponding graphs are not complete in most cases. Taking

PDLC as an example, when m > K, the NFL theorem sustains over a PDLC only if there

are merely two vertexes in the problem.
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Chapter 4

DLC and Subthreshold-seeker

The subthreshold-seeker (STS), introduced by Whitley and Rowe [8] and proved to outper-

form random search on uniformly sampled polynomials of one variable, is a metaheuristic

that employs the threshold as a switch of local search. In essence, it is a selective local

search method as it conducts local search if a given condition is satisfied. In this section,

a generalization of subthreshold-seeker is firstly presented, and we will demonstrate that

the generalized subthreshold-seeker can outperform random search on DLC.

4.1 Generalized Subthreshold-seeker

In Whitley and Rowe’s work, the subthreshold-seeker is an optimization algorithm aiming

at functions with a one-dimensional domain, i.e., functions defined on a subset C ⊆ R.

The subthreshold-seeker will successively select a point from the search space uniformly

at random (u.a.r.) until a subthreshold point is encountered. Once encountering a sub-

threshold point, the subthreshold-seeker will search through the quasi-basin where that

subthreshold point resides. In Whitley and Rowe’s definition, a quasi-basin is a set of

contiguous points with objective values below the threshold. In other words, the threshold

is used to determine whether the subthreshold-seeker enters the local search phase, and

the subthreshold-seeker can be viewed as an optimizer with an exhaustively local search

operator.

According to this point of view, we generalize the subthreshold-seeker to the extent

that it is applicable to any function of which the domain possesses a neighborhood struc-

ture as in Algorithm 1.
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Algorithm 1 (Generalized subthreshold-seeker).

procedure Subthreshold-seeker(X , Y, N : X → 2X , f : X → Y)

while the stopping criterion is not satisfied do

if Queue is not empty then

x ← Queue.pop();

else

Select x from X u.a.r.

end if

if f(x) ≤ θ then

Queue.push(N(x))

end if

end while

end procedure

Following the NFL framework, the parts of selecting and pushing are both restricted

to unvisited points. Such a task can be achieved by a bookkeeping manner. Since the

performance of an algorithm is judged by the performance vector, all overheads other

than function evaluations will not count under the NFL framework.

The only control parameter of the subthreshold-seeker is the threshold. The elegance

of the subthreshold-seeker is that it comprises the two fundamental operations of search

heuristics, local search and global restart, and yet still stays in a simple form.

4.2 Subthreshold-seeker on DLC

Christensen and Oppacher [7] defined the performance measure as the number of subme-

dian points visited by an algorithm, and Whitley and Rowe [8] generalized this notion to

any threshold less than or equal to the median. That is, given a predefined stopping time

L and α ∈ (0, 1/2], the performance measure is the number of points visited in the first

L function evaluations with the top α|X | values in the objective space.
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This performance measure may seem odd at the first glance, for typically the perfor-

mance of an optimizer is measured in terms of the time in which the optimum is located.

However, even focusing on functions as simple as unimodal functions that are monotone

with respect to the distance from the optimum, the time complexity analysis is still a

difficult task. For instance, to the best of our limited knowledge, the time complexity of

(1+1)-ES [13] on such functions has not been analyzed until recently [14]. Hence, it seems

unlikely to analyze the runtime of an algorithm that is more sophisticated than random

search over a broad class of problems. Furthermore, as mentioned in Chapter 2, within

the NFL framework, the performance measure can be any function defined on the set

containing all performance vectors, and roughly speaking, with more subthreshold points

visited, it is more likely to identify a point with a satisfiable objective value. Therefore,

Whitley and Rowe’s notion appears in between theoretically analyzable and practically

meaningful.

For any function f , we define βα(f) be the maximum objective value below the per-

formance threshold, i.e.,

βα(f) := max

{
y ∈ Y

∣∣∣∣∣
y∑

i=0

|{x ∈ X | f(x) = i}| ≤ α|X |
}

.

If the set following the “max” notation is empty, then βα(f) is defined to be −∞. Let

Ψα,f (v) be a performance measure that maps a performance vector v to the number of

components of v below performance threshold, i.e., Ψα,f ((v1, v2, . . . , vL)) = |{vi | vi ≤
βα(f)}|. It is noteworthy that the performance threshold should be distinguished from

the algorithmic threshold. The latter should be regarded as a control parameter of the

algorithm and hence is not related to the performance measure.

Whitley and Rowe showed that if f is a uniformly sampled polynomials of one vari-

able, and βα(f) is known in advance, setting θ = βα(f), under certain conditions the

subthreshold-seeker outperforms random search on f . In this thesis, we will show that

the subthreshold-seeker with θ within some range of codomain, rather than a specific

value, will outperform random search in the sense that for all functions in the DLC, the

expected number of points below the performance threshold visited by the subthreshold-

seeker is greater than or equal to that by random search, and there does exist a function
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such that the inequality is strict.

Theorem 3 (Equal or better performance of STS on DLC). Let L(G,Y = {0, 1, . . . ,m}, K)

with m > K be a DLC. For all f ∈ L(G,Y , K) if the algorithmic threshold θ of a

subthreshold-seeker satisfies θ ≤ βα(f)−K, then

E[Ψα,f (Sy(STS, f, L))] ≥ E[Ψα,f (Sy(RS, f, L))]

for all L with 1 ≤ L ≤ |X |.

Proof. Let f be any function belonging to L(G,Y , K). Suppose S(STS, f, L) = ((Xsi, Ysi))
L
i=1

and S(RS, f, L) = ((Xri, Yri))
L
i=1. Define the indicator variable Isi as Isi = 1 when

Ysi ≤ βα(f) and Isi = 0 otherwise, and Iri is defined in a similar way for random search.

We can obtain that Ψα,f (Sy(STS, f, L)) =
∑L

i=1 Isi and Ψα,f (Sy(RS, f, L)) =
∑L

i=1 Iri.

We prove the theorem by induction on L. Let U := |{x ∈ V (G) | f(x) ≤ βα(f)} be

the total number of points below the performance threshold. When L = 1, since both

strategies select a point u.a.r. from X in the first move, clearly E[Is1] = U/|X | = E[Ir1].

Suppose E[
∑L

i=1 Isi] ≥ E[
∑L

i=1 Iri] for 1 ≤ L < |X |. Then,

E[
L+1∑
i=1

Isi]

= E[
L∑

i=1

Isi] + E[IsL+1] (4.1)

= E[
L∑

i=1

Isi] +
∑

(xi)L
i=1∈XL

E
[
IsL+1 | (Xsi)

L
i=1 = (xi)

L
i=1

]
Prob{(Xsi)

L
i=1 = (xi)

L
i=1}

If Xsi is popped out from the queue, f(Xsi) ≤ θ + K ≤ βα(f) − K + K = βα(f),

and hence, Isi = 1. Otherwise, if Xsi is selected from X u.a.r., then Prob{Isi = 1} =

(U − k)/(|X | − i + 1), where k is the number of points visited in the first i − 1 steps

with objective values smaller than or equal to βα(f). Let CL be the set collecting all

(xi)
L
i=1 ∈ X L such that if (Xsi)

L
i=1 = (xi)

L
i=1, the queue will be nonempty in the (L+1)-th

16



move. Therefore,

∑

(xi)L
i=1∈XL

E
[
IsL+1 | (Xsi)

L
i=1 = (xi)

L
i=1

]
Prob{(Xsi)

L
i=1 = (xi)

L
i=1}

=
∑

(xi)L
i=1∈CL

E[IsL+1 | (Xsi)
L
i=1 ∈ CL]Prob{(Xsi)

L
i=1 = (xi)

L
i=1}+

∑

(xi)L
i=1 /∈CL

E[IsL+1 | (Xsi)
L
i=1 /∈ CL]Prob{(Xsi)

L
i=1 = (xi)

L
i=1}

=
∑

(xi)L
i=1∈CL

1 · Prob{(Xsi)
L
i=1 = (xi)

L
i=1}+ (4.2)

∑

(xi)L
i=1 /∈CL

U −
∣∣{xi ∈ (xi)

L
i=1 | f(xi) ≤ βα(f)}

∣∣
|X | − L

Prob{(Xsi)
L
i=1 = (xi)

L
i=1}

≥
∑

(xi)L
i=1∈XL

U −
∣∣{xi ∈ (xi)

L
i=1 | f(xi) ≤ βα(f)}

∣∣
|X | − L

Prob{(Xsi)
L
i=1 = (xi)

L
i=1}

=
L∑

k=0

U − k

|X | − L
Prob{

L∑
i=1

Isi = k}

Substituting into (4.1),

E[
L+1∑
i=1

Isi] ≥
L∑

k=0

kProb{
L∑

i=1

Isi = k}+
L∑

k=0

U − k

|X | − L
Prob{

L∑
i=1

Isi = k}

=
U

|X | − L
+
|X | − L− 1

|X | − L

L∑

k=0

kProb{
L∑

i=1

Isi = k}

=
U

|X | − L
+
|X | − L− 1

|X | − L
E[

L∑
i=1

Isi]

≥ U

|X | − L
+
|X | − L− 1

|X | − L
E[

L∑
i=1

Iri] (4.3)

=
L∑

k=0

kProb{
L∑

i=1

Iri = k}+
L∑

k=0

U − k

|X | − L
Prob{

L∑
i=1

Iri = k}

= E[
L∑

i=1

Iri] +
L∑

k=0

E[IrL+1 |
L∑

i=1

Iri = k]Prob{
L∑

i=1

Iri = k}

= E[
L+1∑
i=1

Iri]

Inequality (4.3) follows from the induction hypothesis.

Furthermore, next theorem guarantees that for any f ∈ L(G,Y , K), if there exists

a point above performance threshold and the subthreshold-seeker ever enters the local
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search phase, the subthreshold-seeker will outperform random search strictly in expecta-

tion according to the performance measure Ψα,f .

Theorem 4 (Strictly better performance of STS on DLC). Let L(G,Y = {0, 1, . . . , m}, K)

with m > K be a DLC. For all f ∈ L(G,Y , K) and for every subthreshold-seeker STS

with θ ≤ βα(f)−K satisfy:

1. ∃v ∈ V (G) with f(v) > βα(f), and

2. ∃v ∈ V (G) with f(v) ≤ θ,

E[Ψα,f (Sy(STS, f, L))] > E[Ψα,f (Sy(RS, f, L))] for all L ∈ [2, |X | − 1].

Proof. If there are no such functions in L(G,Y , K), the theorem holds vacuously. Oth-

erwise, let f be any function satisfying the two conditions and define ((Xsi, Ysi))
L
i=1,

((Xri, Yri))
L
i=1, Isi, Iri, U , and CL in the same way as in Theorem 3. We prove by in-

duction on L. When L = 2, since in the second step, the queue is nonempty if and only

if f(Xsi) ≤ θ, C1 = {v ∈ V (G) | f(v) ≤ θ} 6= ∅ by Condition (2). Therefore,

E[Is1 + Is2]

=E[Is1] +
∑
x∈X

E[Is2 | Xs1 = x]Prob{Xs1 = x}

=E[Is1] +
∑

x:f(x)≤θ

1 · Prob{Xs1 = x}+
∑

x:θ<f(x)≤βα(f)

U − 1

|X | − 1
Prob{Xs1 = x}

+
∑

x:f(x)>βα(f)

U

|X | − 1
Prob{Xs1 = x}

>E[Is1] +
∑

x:f(x)≤βα(f)

U − 1

|X | − 1
Prob{Xs1 = x}+

∑

x:f(x)>βα(f)

U

|X | − 1
Prob{Xs1 = x}

=E[Is1] +
∑

k∈{0,1}

U − k

|X | − 1
Prob{Is1 = k}

=E[Ir1] +
∑

k∈{0,1}

U − k

|X | − 1
Prob{Ir1 = k}

=E[Ir1 + Ir2]

The inequality follows from C1 6= ∅ and (U − 1)/(|X | − 1) < 1, for Condition (1) implies

U < |X |. For induction hypothesis, suppose E[
∑L

i=1 Isi] > E[
∑L

i=1 Iri] for L with 2 ≤
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L < |X | − 1. In the (L + 1)-th step, from the proof of Theorem 3, we always have

E[
L+1∑
i=1

Isi] ≥ U

|X | − L
+
|X | − L− 1

|X | − L
E[

L∑
i=1

Isi]

>
U

|X | − L
+
|X | − L− 1

|X | − L
E[

L∑
i=1

Iri] (4.4)

= E[
L+1∑
i=1

Iri]

Since (|X | −L− 1)/(|X | −L) > 0 when L < |X | − 1, and E[
∑L

i=1 Isi] > E[
∑L

i=1 Iri] from

the induction hypothesis, Inequality (4.4) is strict.

Let d := max{deg(v) | v ∈ V (G)} be the maximum degree of the graph and dis(u, v)

be the length of the shortest path from u to v. For any subthreshold-seeker, if we are

able to set its θ within some interval, the following corollary gives a sufficient condition of

the existence of functions on which the subthreshold-seeker strictly outperforms random

search.

Corollary 1. Let L(G,Y = {0, 1, . . . , m}, K) be a DLC. Given α ∈ (0, 1/2] and an

integer C > 1 with CK + 1 ≤ m, if

α|V (G)| > d(d− 1)C − 2

d− 2
,

then there exists a function f ∈ L(G,Y , K) such that

E[Ψα,f (Sy(STS, f, L))] > E[Ψα,f (Sy(RS, f, L))]

for all L with 2 ≤ L ≤ |X | − 1, where STS is a subthreshold-seeker with θ ∈ βα(f) −
[K,CK].

Proof. We prove this corollary constructively. Select a vertex v0 from V (G) arbitrarily.

Consider the function f defined as

f(v) =





0 if v = v0 ;

dis(v, v0)K if 1 ≤ dis(v, v0) ≤ C ;

CK + 1 otherwise.
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Since

|vo|+ |{v ∈ V (G) | 1 ≤ dis(v, v0) ≤ C}|

≤ 1 +
(
d + d(d− 1) + d(d− 1)2 + . . . + d(d− 1)C−1

)

= 1 +
d

[
(d− 1)C − 1

]

(d− 1)− 1

=
d(d− 1)C − 2

d− 2
< α|V (G)| ,

from the definition of βα(f), βα(f) = CK. Furthermore, there must exist v1 ∈ V (G) that

f(v1) = CK + 1, for |vo| + |{v ∈ V (G) | 1 ≤ dis(v, v0) ≤ C}| < |V (G)|. Therefore, we

have f(v0) ≤ θ and f(v1) > βα(f). Thereby Theorem 4 can be applied.

Combining Theorem 3 and Theorem 4, if we manage to set θ ≤ βα(f) − K, the

subthreshold-seeker will perform at least as good as random search on a DLC. If the

subthreshold-seeker has a chance to conduct local search, it will strictly outperform ran-

dom search. Estimating a θ within some range should be more practical than gauging a

specific value such as βα(f). In next section, we will explore this possibility and empiri-

cally confirm the theoretical results obtained in this section by proposing and adopting a

sampling-test scheme.
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Chapter 5

Sampling-test Scheme for PDLC

Conventionally, the effectiveness of an optimizer is examined via experiments on a suite of

test functions that serves as a benchmark. These test functions are selected according to

some prior knowledge of the importance thereof. Here we propose and adopt a different

approach in order to confirm the theoretical results obtained in the previous section from

an empirical aspect. We draw a sample of functions randomly from PDLC in a manner

similar to select respondents in a campaign survey and conduct experiments on these

sampled functions. There is no bias in favor of which functions should be selected. We

expect the arbitrariness delivers information about the composition of the problem class.

A uniform sampler for PDLC is firstly given in Section 5.1. Experiments are then pre-

sented to summarize this section and demonstrate how the Lipschitz condition facilitates

the search process in a practical standpoint.

5.1 A Uniform Sampler for PDLC

In order to conduct the sampling test, we need a uniform sampler in the first place. The

following algorithm generates problem instances of PDLC with Lipschitz constant K uni-

formly at random (u.a.r.)

Algorithm 2 (Uniform PDLC Sampler).

procedure Uniform PDLC Sampler(v1v2 . . . vn, Y = {0, 1, . . . , m}, K)

f(v1) ← Uniform([0,m])

i ← 2
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while i ≤ n do

f(vi) ← f(vi−1) + Uniform([−K, K])

i ← i + 1

if f(vi) > m or f(vi) < 0 then

f(v1) ← Uniform([0,m])

i ← 2;

end if

end while

return f

end procedure

Remark 1. The sequence of objective values, f(vi), forms a martingale.

Here Uniform([a, b]) denotes the function that selects an integer u.a.r. from the closed

interval [a, b]. Such a sampler belongs to the category of accept-reject algorithms [15]. It

generates a problem instance with bounded difference between any two successive vertexes

u.a.r., and if the instance at hand exceeds the range of the codomain, the sampler rejects

the instance. The accept-reject mechanism guarantees the uniformity. Once the sampler

halts, the output is always an instance of the PDLC.

Since this sampler is Las Vegas, we need to address its time complexity for the prac-

ticality. For each candidate instance, the sampler will go through at most |X | steps to

assign all the vertex objective values, so it remains to show how many candidate instances

it takes to generate a legit instance successfully. The accept-reject process is geometrically

distributed, and therefore the expected number of instances consumed is the inverse of the

acceptance probability. The following theorem provides an upper bound for the rejection

probability.

Lemma 2. Suppose |Y| = 2m + 1, where m is an integer, and |X | = n. If

m >

√
(n− 1)(K2 + K)

3
≥ 2 ,

then the rejection probability is less than

4
√

(n− 1)(K2 + K)√
3|Y| − 4(n− 1)(K2 + K)

3|Y|2 +
5

|Y| .
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Proof. Without loss of generality, suppose Y = {−m,−m + 1, . . . , m}. Let (Ki) be a

sequence of i.i.d. random variables that Ki = j with probability 1/(2K + 1) for j ∈
{−K,−K + 1, . . . , K} and Sj :=

∑j
i=1 Ki. When f(v1) = i, the instance is rejected if

and only if i + Sj ≥ m + 1 or i + Sj ≤ −m− 1 for some 1 ≤ j ≤ n− 1, so the occurrence

of rejection always implies max1≤j≤n−1 |Sj| ≥ min{|m + 1− i|, | −m− 1− i|}. Moreover,

the symmetry indicates that Prob{rejection | f(v1) = i} = Prob{rejection | f(v1) = −i}
for |i| ≤ m. Therefore,

Prob{rejection}

=
m∑

i=−m

Prob{rejection | f(v1) = i}Prob{f(v1) = i}

=

∑m
i=−m Prob{rejection | f(v1) = i}

2m + 1

≤ Prob{max1≤j≤n−1 |Sj| ≥ m + 1}+ 2
∑m

i=1 Prob{max1≤j≤n−1 |Sj| ≥ m + 1− i}
2m + 1

=
Prob{max1≤j≤n−1 |Sj| ≥ m + 1}+ 2

∑m
i=1 Prob{max1≤j≤n−1 |Sj| ≥ i}

2m + 1
.

Using Kolmogorov’s inequality [16], we can get

Prob{ max
1≤j≤n−1

|Sj| ≥ i} ≤ min

{
V ar[Sn−1]

i2
, 1

}
.

Since V ar[Ki] = 2(12 + 22 + . . . + K2)/(2K + 1) = (K2 + K)/3, V ar[Sn−1] = (n −
1)V ar[Ki] = (n − 1)(K2 + K)/3. Moreover, V ar[Sn−1]/i

2 ≤ 1 if and only if i ≥
√

V ar[Sn−1], we have

Prob{rejection}

≤
V ar[Sn−1]
(m+1)2

+ 2

(∑⌈√
V ar[Sn−1]

⌉
−1

i=1 1 +
∑m

i=
⌈√

V ar[Sn−1]
⌉ V ar[Sn−1]

i2

)

2m + 1

≤
V ar[Sn−1]
(m+1)2

+ 2

(⌈√
V ar[Sn−1]

⌉
− 1 + V ar[Sn−1]

∫ m

x=
⌈√

V ar[Sn−1]
⌉
−1

x−2dx

)

2m + 1

≤
V ar[Sn−1]
(m+1)2

+ 2

(√
V ar[Sn−1]− V ar[Sn−1]

m
+ V ar[Sn−1]⌈√

V ar[Sn−1]
⌉
−1

)

2m + 1
.
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Since x/(x− 1) decreases when x > 1, we obtain

V ar[Sn−1]⌈√
V ar[Sn−1]

⌉
− 1

≤ V ar[Sn−1]√
V ar[Sn−1]− 1

=
√

V ar[Sn−1] +

√
V ar[Sn−1]√

V ar[Sn−1]− 1

≤
√

V ar[Sn−1] + 2 .

According to the hypothesis that V ar[Sn−1]/(m + 1)2 < 1,

Prob{rejection} <
4
√

V ar[Sn−1]− 2V ar[Sn−1]
m

+ 5

2m + 1

=
4
√

(n− 1)(K2 + K)√
3(2m + 1)

− 2(n− 1)(K2 + K)

3m(2m + 1)
+

5

2m + 1

<
4
√

(n− 1)(K2 + K)√
3|Y| − 4(n− 1)(K2 + K)

3|Y|2 +
5

|Y| .

Theorem 5 (Upper bound for the rejection probability). Define m := b(|Y| − 1)/2c. If

m >
√

(n− 1)(K2 + K)/3 ≥ 2 , then the rejection probability is less than

4
√

(n− 1)(K2 + K)√
3|Y| − 4(n− 1)(K2 + K)

3|Y|2 + O
(|Y|−1) .

Proof. If |Y| = 2m + 1, then we are done by the previous lemma. Otherwise, if |Y| =

2m + 2, without loss of generality, suppose that Y = {−m,−m + 1, . . . ,m + 1} and let

Y ′ = {−m,−m + 1, . . . , m}. Therefore,

Prob{rejection}

=Prob{f(v1) ∈ Y ′}Prob{rejection | f(v1) ∈ Y ′}

+ Prob{f(v1) /∈ Y ′}Prob{rejection | f(v1) /∈ Y ′}

=

(
2m + 1

2m + 2

)
Prob{rejection | f(v1) ∈ Y ′}

+

(
1

2m + 2

)
Prob{rejection | f(v1) = m + 1} .

When f(v1) ∈ Y ′, if f exceeds the range of Y , then f also exceeds the range of Y ′, so

from the previous lemma we have

Prob{rejection | f(v1) ∈ Y ′} <
4
√

(n− 1)(K2 + K)√
3(2m + 1)

− 4(n− 1)(K2 + K)

3(2m + 1)2
+

5

2m + 1
.
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As a result,

Prob{rejection}

≤
(

2m + 1

2m + 2

)
Prob{rejection | f(v1) ∈ Y ′}+

(
1

2m + 2

)

<
4
√

(n− 1)(K2 + K)√
3(2m + 2)

− 4(n− 1)(K2 + K)

3(2m + 1)(2m + 2)
+

6

2m + 2

<
4
√

(n− 1)(K2 + K)√
3|Y| − 4(n− 1)(K2 + K)

3|Y|2 + O
(|Y|−1)

Corollary 2. If |Y| = C
√

(n− 1)(K2 + K) > C · 2√3 for some constant C ≥ √
3, then

the rejection probability is less than

4
√

3C − 4

3C2
+ O

(|Y|−1) .

Proof. If C ≥ √
3,

m =

⌊ |Y| − 1

2

⌋
≥ |Y|

2
− 1

≥
√

3(n− 1)(K2 + K)

2
− 1

=

√
(n− 1)(K2 + K)

3
+

√
(n− 1)(K2 + K)

2
√

3
− 1

>

√
(n− 1)(K2 + K)

3
.

Substituting
√

(n− 1)(K2 + K)/|Y| by 1/C and applying Theorem 5, the corollary is

proved.

For instance, if C =
√

3 and |Y| is so large that O(|Y|−1) is negligible, the expected

number of instances consumed is no more than 9. Multiplying the time to assign all

vertexes values, the expected runtime, in terms of the number of assignments, is no more

than 9|X |. In other words, asymptotically speaking, if |X | and |Y| are about equal and

|Y| is larger than K2 to some extent, then the expected runtime is approximately linear.

5.2 Experimental Settings and Results

As demonstrated in Chapter 4, the virtues of the subthreshold-seeker rely on a proper

algorithmic threshold. Although the main results in Chapter 4 hold when θ ≤ βα(f)−K,
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because we do not set a performance threshold literally to scrutinize how many sub-

threshold points are visited in real-world applications, in an experimental setting, we can

examine the subthreshold-seeker more practically in terms of the time to identify the op-

timum. Therefore, the algorithmic threshold should be utilized for optimization, or more

specifically, to minimize the objective function in this case.

We will compare the subthreshold-seeker with random search. Here we present three

different subthreshold-seekers. For the theoretical purpose, the first one uses the actual

median of all objective values, in the form of exterior knowledge, as θ. The second one

firstly selects a 100 points u.a.r. and then employs the calculated median as θ. The

third one also starts with obtaining 100 points u.a.r., but it computes the mean and the

standard deviation of these points and sets θ to the mean minus the standard deviation.

Moreover, the three subthreshold-seekers and random search obey the NFL framework

and hence are non-repeating.

In advance of experiments, we need to determine the size of the set PDLC problems to

be sampled. Suppose we want to estimate a population proportion q ∈ [0, 1]. We draw a

sequence of samples uniformly and independently from the population with replacement.

For each sample, we observe if it belongs to the variety of interest. With a large sample

size, we expect the proportion in the sample approximates the real proportion. The

following theorem depicts the relationship between the sample size and the error bound.

Theorem 6 (Sample size and error bound). Let (Zi) be a sequence of i.i.d. indicator

variables with E[Zi] = q. For all δ, ε ∈ (0, 1), if

n ≥ − ln(δ/2)

2ε2
,

then

Prob

{∣∣∣∣
∑n

i=1 Zi

n
− q

∣∣∣∣ > ε

}
≤ δ .

Proof. Let Z = (
∑n

i=1 Zi)/n. Applying Hoeffding’s inequality [17], for 0 < ε < 1− q, we

have

Prob{Z − q > ε} ≤ e−2nε2 ,

26



and for 0 < ε < q,

Prob{Z − q < −ε} ≤ e−2nε2 .

Moreover, if ε ≥ 1− q,

Prob{Z − q > ε} ≤ Prob{Z > 1} = 0 ≤ e−2nε2 .

Similarly, if ε ≥ q,

Prob{Z − q < −ε} ≤ Prob{Z < 0} = 0 ≤ e−2nε2 .

Hence, we conclude that for all ε ∈ (0, 1),

Prob{|Z − q| > ε} ≤ 2e−2nε2 .

Finally,

n ≥ − ln(δ/2)

2ε2

implies 2e−2nε2 ≤ δ, and we complete the proof.

In particular, with the conventional setting of (ε, δ) = (0.03, 0.05), a sample of size

2, 050 suffices. In other words, if we draw a sample of size 2, 050, [Z − 0.03, Z + 0.03]

forms a confidence interval for q with confidence level at least 95%.

The sampler generates 2,050 instances of PDLC with (|X |, |Y|) = (104, 104), (105, 105),

and (106, 106), respectively. The Lipschitz constant K is set to 100 for the concern of

execution time, as previously discussed. For each problem instance, we test each algorithm

for 50 independent runs. If the average time of a subthreshold-seeker to find the optimum

is less than that of random search, the instance is counted as a success. We also count

the number of instances that a subthreshold-seeker outperforms random search by a 20%

margin, i.e., the instance where the average optimization time of a subthreshold-seeker is

less than 80% of that of random search. Table 5.1 displays the empirical results.

All three subthreshold-seekers outperform random search in most of the sampled prob-

lem instances. Furthermore, the subthreshold-seeker with θ = µ̂− σ̂ outperforms random

search in all 2,050 instances sampled, even with the requirement of a 20% margin. The

statistical significance of such results is obvious to see: Suppose the population proportion
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Table 5.1: Successful rate of STS

θ category (|X |, |Y|)
(104, 104) (105, 105) (106, 106)

γ > 0.9995 (2,049) 0.9985 (2,047) 0.9976 (2,045)
> .2 0.9951 (2,040) 0.9620 (1,972) 0.9624 (1,973)

γ̂ > 0.9995 (2,049) 0.9990 (2,048) 0.9985 (2,047)
> .2 0.9937 (2,037) 0.9620 (1,972) 0.9732 (1,995)

µ̂− σ̂ > 1.0000 (2,050) 1.0000 (2,050) 1.0000 (2,050)
> .2 1.0000 (2,050) 1.0000 (2,050) 1.0000 (2,050)

γ: median. γ̂: estimated median. µ̂: estimated mean. σ̂: estimated standard deviation.
”>”: proportion of instances where the subthreshold-seeker outperforms random search.
”> .2”: proportion of instances where the subthreshold-seeker outperforms random search
by a 20% margin.

Table 5.2: Mean time steps to locate the minimum

algorithm (|X |, |Y|)
(104, 104) (105, 105) (106, 106)

STS, θ = γ 2037.58 22913.23 229232.26
STS, θ = γ̂ 2221.44 23170.58 229532.04
STS, θ = µ̂− σ̂ 918.29 8095.78 80322.92
random search 4972.50 49724.74 496912.49

γ: median. γ̂: estimated median. µ̂: estimated mean. σ̂: estimated standard deviation.

that the subthreshold-seeker with θ = µ̂ − σ̂ outperforms random search is q. To obtain

the result that random search is outperformed in all instances, the probability is q2050.

Even if q is as high as 0.995, the above probability is just 0.000034. To more formally

rephrase, if the null hypothesis is “q ≤ 0.995”, the p-value is merely 0.000034.

Table 5.2 displays the averaged optimization time over the 2,050 sampled problem

instances. The subthreshold-seeker with θ = µ̂ − σ̂ outperforms others by a significant

margin. Random search averages approximately |X |/2 to find the minimum, which is

expected. The subthreshold-seeker using the actual median and the one using the sample

median both take about half time steps of that needed by random search to optimize the

function.

The subthreshold-seekers with θ = µ̂− σ̂ and θ = γ̂ are indeed black-box algorithms,

for there is no exterior knowledge exerted and the only information they can use are

function evaluations, but they outperform random search by a remarkable difference.

28



5.3 The Estimation of Median

In this section, we address the issue of the estimation of median as an echo to Section 5.2

section and Corollary 1 in Chapter 4.

The performance difference between θ = γ̂ and θ = γ is insignificant, suggesting that

in this case, an estimation of median may be adequate. Suppose that P with |P | = N is a

subset of real numbers, and for all i ∈ P , R(i) is defined to be the rank (i.e., ordering) of

i in P . For instance, R(min P ) = 1 and R(max P ) = N . For simplicity, we assume that

N is odd and hence the median of P is the element i with R(i) = dN/2e. Now we want

to estimate the median of P . If a point sample S of size n, where n is assumed odd, is

drawn by successively selecting an element u.a.r. from P with replacement, the estimated

median, γ, is presumed to be the sampled median, and we want the error is bounded by

ε > 0, i.e., |R(γ)− dN/2e | ≤ εN .

If R(γ) < dN/2e−εN , there are at least dn/2e selections with ranks less than dN/2e−
εN . Let Xi be the indicator variable that indicates if the i-th selection is less than

dN/2e − εN , Xi = 1 with probability p := (dN/2e − bεNc − 1)/N . R(γ) < dN/2e − εN

if and only if
∑n

i=1 Xi ≥ dn/2e. Since E[
∑n

i=1 Xi] = np, applying another form of

Hoeffding’s inequality [17], we have

Prob

{
R(γ) <

⌈
N

2

⌉
− εN

}
= Prob

{
n∑

i=1

Xi ≥
⌈n

2

⌉}

≤ Prob

{
n∑

i=1

Xi ≥ n

2

}

= Prob

{
1

n

n∑
i=1

Xi ≥ p + (
1

2
− p)

}

≤
[(

p

p + 1
2
− p

)p+ 1
2
−p (

1− p

1− p− (1
2
− p)

)1−p−( 1
2
−p)

]n

= [4p(1− p)]
n
2 .

Moreover, the symmetry implies that

Prob

{
R(γ) >

⌈
N

2

⌉
+ εN

}
≤ [4p(1− p)]

n
2 .
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Therefore,

Prob

{∣∣∣∣R(γ)−
⌈

N

2

⌉∣∣∣∣ > εN

}
≤ 2 [4p(1− p)]

n
2 .

Now the only quantity left is p. By definition,

p =

⌈
N
2

⌉− bεNc − 1

N
≈ 1

2
− ε .

For instance, if we set ε = 0.1 and n = 100, the probability of exceeding the error bound

is less than 0.26. If the sample size n increases to 2, 000, even with a small ε = 0.03, the

probability reduces to just 0.054. It is noteworthy that the effect of the population size

N is negligible. Therefore, the required number of samples remains the same, even if the

search space is immense. Although in real-world applications P is usually a multiset, if

the multiplicities of P are not too large, such a gauge should not diverge significantly.
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Chapter 6

Toward Higher Dimensions

In this chapter, we attempt to extend the sampling-test scheme proposed in Chapter

5 to higher dimensions and examine a few methods to generate planar DLC, i.e. two-

dimensional DLC.

Definition 9 (Planar DLC). Suppose the graph G is defined as V (G) = [n]2 and E(G) =

{v1v2 | ‖v1 − v2‖1 = 1} and the codomain is a finite set Y ⊂ R. The planar discrete

Lipschitz class with Lipschitz constant K is defined as L(G,Y , K).

Here the notation [n] signifies the set {1, 2, . . . , n}.
Figure 6.2 illustrates an instance of planar DLC.
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Figure 6.1: An instance of planar DLC with 202 vertexes and K = 10
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In this chapter, the graph G is defined as V (G) = [n]2 and E(G) = {v1v2 | ‖v1−v2‖1 =

1} unless specified otherwise.

6.1 Accept-reject Sampler for Planar DLC

In this section, we adopt the accept-reject algorithm proposed in Chapter 5 and modify

it into an uniform sampler for planar DLC.

Algorithm 3 (Uniform Planar DLC Sampler).

procedure Uniform Planar DLC Sampler(G, Y = {0, 1, . . . , m}, K)

Fix a rooted spanning tree T of G

f(root) ← Uniform([0,m])

for each node v do

f(v) ← f(parent(v)) + Uniform([−K, K])

end for

if ∃vi, vj ∈ V (G) such that vivj ∈ E(G) and |f(vi)− f(vj)| > K then

Reject and restart

end if

if ∃v ∈ V (G) such that f(v) /∈ Y then

Reject and restart

end if

Return f

end procedure

This sampler uniformly generate instances of DLC defined on T , and if the instance at

hand is in L(G,Y , K), the sampler will halt and output the instance. In fact, Algorithm

3 can be applied to generate not only planar DLC but also all DLC in general, since the

requirement of connectivity in Definition 6 guarantees the existence of a spanning tree.

However, in addition to rejecting out-of-codomain instances, for cyclic graphs, this

sampler needs to check additionally that for any edge not in the spanning tree the dif-

ference between its two endpoints is less than or equal to K. Therefore, the acceptance

probability decreases exponentially with respect to |E(G)| − |E(T )|, which implies that
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Figure 6.2: an instance of planar DLC generated by Algorithm 3

the expected runtime is exponential of |E(G)| − |E(T )|. For planar DLC, since there are

(n− 1)2 = Θ(|V (G)|) non-spanning-tree edges in total, this sampler is impractical for its

intractability. Empirically, this sampler even fails to generate an instance of planar DLC

with mere 102 vertexes.

order of assignment

condition checking

Figure 6.3: the order of assignment and condition checking of a planar DLC sampler

Furthermore, for planar DLC, there exists a Hamiltonian path in G. Therefore, We can

arrange the order of vertexes such that the assignment of objective values and condition

checking can be done in the same pass, and each vertex only needs to be checked once,

as shown in Figure 6.3. That is to say, the generation of planar DLC can be transformed

into the generation of PDLC on a Hamiltonian path provided with some overheads of

inspecting. Such a result suggests that the number of problems in planar DLC is signifi-
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cantly less than that of PDLC. In consequence, to generate planar DLC via the sampler

of PDLC appended with further sieving mechanism is infeasible.

Similar to Section 5.2, we examine the performances of subthreshold-seekers and ran-

dom search, as shown in Table 6.1 and Table 6.2. The sample size for estimating the

algorithmic threshold is 6 for |X | = 62 and 10 for |X | = 72. In spite of the diminutive

search space, the two subthreshold-seekers still outperform random search in above 80%

instances sampled.

Table 6.1: Experimental results on planar DLC with |X | = 62,K = 10

algorithm category
> > .2 time

STS, θ = γ̂ 0.8190(1,679) 0.3346(686) 14.70
STS, θ = µ̂− σ̂ 0.8015(1,643) 0.3312(679) 14.77
random search 17.02

γ̂: estimated median. µ̂: estimated mean. σ̂: estimated standard deviation.

Table 6.2: Experimental results on planar DLC with |X | = 72,K = 10

algorithm category
> > .2 time

STS, θ = γ̂ 0.8478(1,738) 0.3746(768) 19.74
STS, θ = µ̂− σ̂ 0.8415(1,725) 0.3956(811) 19.57
random search 23.25

γ̂: estimated median. µ̂: estimated mean. σ̂: estimated standard deviation.

6.2 MCMC Sampler

In this section, we turn to the MCMC(Markov chain Monte Carlo) method for sampling.

The MCMC method is to design a Markov chain with its stationary distribution equal to

the desired distribution [18][15], e.g. uniform distribution in our case.

Algorithm 4 (MCMC Planar DLC Sampler).

procedure MCMC Planar DLC Sampler(G, Y = {0, 1, . . . , m}, K)

Initialize f as an arbitrary function f0 ∈ L(G,Y , K)

while the stopping criterion is not attained do
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u.a.r. select v ∈ V (G)

Increment ← Uniform([−K, K])

if f(v) + Increment ∈ Y then

if ∀v′ ∈ N(v), |f(v) + Increment− f(v′)| ≤ K then

f(v) ← f(v) + Increment

end if

end if

end while

Return f

end procedure

Similar to Algorithm 3, this sampler is applicable to all DLC. This algorithm is con-

ceived as a Markov chain whose each state is an instance of planar DLC. In other words,

it defines a random walk on L(G,Y , K). As time goes to infinity, each state is equally

likely to occur, and hence the uniformity is achieved. The following theorem shows that

the stationary distribution of this chain is uniform.

Theorem 7. The stationary distribution of the Markov chain defined by Algorithm 4 is

uniform.

Proof. For all fi ∈ L(G,Y , K), we define

N(fi) := {f ∈ L(G,Y , K)| ∃v ∈ V (G) such that |f(v)− fi(v)| ≤ K

and ∀v′ 6= v f(v′) = fi(v
′)} .

For fi, fj ∈ L(G,Y , K), the transition probability Pfi,fj
is

Pfi,fj
=





1/(2Kn2) if fj ∈ N(fi) ;

0 if fj /∈ N(fi) ;

1− |N(fi)|/(2Kn2) if fi = fj .

Since this chain is irreducible and aperiodic, from Lemma 10.7 of [18], this theorem is

proved.
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Figure 6.4: An instance of planar DLC generated by Algorithm 4

Nevertheless, Theorem 7 only guarantees that this Markov chain will eventually con-

verge to uniform distribution, yet it is doubtful that this chain is rapidly mixing when K

is much smaller than |V (G)| and |Y|. Figure 6.4 demonstrates an instance generated by

Algorithm 4 with |V (G)| = 302, K = 10 and the maximum number of iterations 109, and

it can be observed that the landscape of the solution space is quite level.

6.3 Semi-planar DLC

As demonstrated previously, the practicability of both Algorithm 3 and 4 is questionable

for large |V (G)|. Also, the arguments in Section 6.1 suggest that no matter how a sampler

assigns values to vertexes, it inevitably fails if the number of edges needing to be checked

is enormous. Hence, in order to generate instances with sufficient vertexes, we will loose

the restriction of Lipschitz condition slightly to avoid edge checking, so the DLC instances

generated here are semi-planar in the sense that they belong to the DLC defined on a

spanning tree of G, rather than G itself. More specifically, we will discard the edge-

checking mechanism in Algorithm 3 and prefix to it a uniform spanning-tree generater.

In other words, the sampler firstly generates a spanning tree u.a.r. and thereafter assign

values to vertexes according to it.

The following question will be what the targeted population is. It is obvious to see
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that the modified sampler uniformly generates the tuple (T, f), where T is a spanning

tree of G and f ∈ L(T,Y , K). However, this sampler is not uniform with respect to f

because of its two-phase nature.

As to the issue of generating random spanning trees, Broder[19] proposed the following

algorithm and proved that it is a uniform spanning-tree generater.

Algorithm 5 (Uniform Spanning-Tree Sampler).

procedure Uniform Spanning-Tree Sampler(A connected graph G)

Initialize T as E(T ) = ∅ and V (T ) = V (G)

Select v0 u.a.r. from V (G)

Start a random walk from v0 on G

while there exists a vertex has not been visited do

Continue the random walk

if v ∈ V (G) is firstly visited via the edge uv then

Add uv to E(T )

end if

end while

Return T

end procedure

Clearly, the expected runtime of this algorithm is equal to the expected cover time of

simple random walks on G, the time which is O(|V (G)||E(G)|) [20], and this complexity

can be further reduced in most cases([21],[22],[23]). For planar DLC, G is a sparse graph,

so the expected runtime of Algorithm 5 is O(|V (G)|2). Based on this algorithm, the

following generater is presented.

Algorithm 6 (Semi-Planar DLC Generater).

procedure Semi-Planar DLC Generater(G, Y = {0, 1, . . . , m},K)

Select v0 u.a.r. from V (G)

f(v0) ← Uniform([0,m])

Start a random walk from v0 on G

while there exists a vertex has not been visited do
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Continue the random walk

if v ∈ V (G) is firstly visited via the edge uv then

f(v) ← f(u) + Uniform([−K,K])

if f(v) /∈ Y then

Reject and restart

end if

end if

end while

Return f

end procedure

Figure 6.5 displays an instance generated by Algorithm 6. As shown in the figure, there

exist some steep slopes in the search space, for the values of the neighbors corresponding

to those non-spanning-tree edges are not necessarily bounded by K.
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Figure 6.5: An instance generated by Algorithm 6

Although not belonging to genuine planar DLC, these problem instances may still

render us some insights into DLC. Therefore, a corresponding experiment on a suite of
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Table 6.3: Experimental results on semi-planar DLC with |X | = 1002,K = 100

algorithm category
> > .2 time

STS, θ = γ̂ 0.9932(2,036) 0.9405(1,928) 2670.82
STS, θ = µ̂− σ̂ 1.0000(2,050) 1.0000(2,050) 962.56
random search 4973.94

γ̂: estimated median. µ̂: estimated mean. σ̂: estimated standard deviation.

2,050 problems is conducted likewise, and the result is shown in Table 6.3. It can be seen

that the result coincide with the case of PDLC.

Even though the limitation of sampling techniques prohibits us from examining planar

DLC thoroughly, the results in both Section 6.1 and 6.3 suggest that the advantage

of subthreshold-seeker over random search on DLC could be carried over into higher

dimensions.
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Chapter 7

Conclusions

7.1 Summary

In this study, we introduced and investigated the properties of the discrete Lipschitz class.

A generalized subthreshold-seeker was then proposed and shown to outperform random

search on this broad function class. Finally, we proposed a tractable sampling-test scheme

to empirically demonstrate the performance of the generalized subthreshold-seeker under

practical configurations. We showed that optimization algorithms outperforming random

search on the discrete Lipschitz class do exist from both theoretical and practical aspects.

7.2 Main Conclusions

As controversial as it may be, the NFL theorem provides an alternative standpoint to

review the position of optimization algorithms and search heuristics. The NFL theorem

expels the false hope to conquer all possible functions with only limited information

available, as it points out the expectation to find a universally black-box optimizer is

definitely over-optimistic. However, the NFL theorem does not imply the utter infertility

in the land of search heuristics by any means, if our goals are appropriately placed. In this

thesis, the discrete Lipschitz class, as a simulation of continuous functions in a discrete

space, is shown to be a class of problems on which black-box optimizers have performance

advantages in both theory and practice. The only constraint imposed on the search space

is bounded differences within a neighborhood. Under such a minor condition, black-box

optimizers can still be effective over a broad, meaningful, and practical problem class as

suggested by this study.

40



7.3 Future Work

The issue of sampling is a major field that needs further researching. To generate PDLC

instances with a moderate Lipschitz constant, i.e. O(|Y|1/2), the sampling algorithm

proposed in Chapter 5 renders us a simple and effective means. As for extremely large

K, we can generate unbounded instances at first and accept those which are legitimate.

Nevertheless, those in between seem unable to be generated by simple accept-reject al-

gorithms. Therefore, the search for competent samplers for various sizes of K is an

intriguing area worth investigating. This situation also holds with regard to planar DLC,

for the rejection rate of sampling planar DLC is significantly higher than that of PDLC.

The relaxation of absolute uniformity, that is to seek a fully polynomial almost uniform

sampler(FPAUS)[24], might be a possible route to bypass the difficulties. Once this goal

had been achieved, the effect of the magnitude of K could be subsequently analyzed via

simulations.

Another possible objective, which may be more attainable, is to explore the relation-

ships between DLC and those optimization algorithms in practice in real life. Without

the restriction of the NFL framework, the sampling-test scheme of DLC can serve as a

benchmark for testing and comparing optimization algorithms, so it might supply an al-

ternative point of view and, hopefully, a paradigm of examination into the applicability

of search heuristics.
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