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Abstract

This paper proposes LT codes with Connection Choice (LTCC), a modified version of LT
codes, to reduce the computational cost and to enhance the applicability of LT codes. The
key design of LTCC is the use of tournament selection, a substitute for random selection, in
the encoding phase to select source symbols to process. Theoretical analyses are conducted
on the missing probability of LT codes and LTCC to reveal the reason why LTCC possesses
the claimed properties. Simulation results further demonstrate that LTCC can provide the
same of better performance, in terms of reception overhead, with less computational cost.
In summary, LTCC can be readily utilized for applications in which the number of source
symbols is from hundreds to tens of thousands. For applications of more source symbols,
although LTCC might not provide significantly better performance, the computational cost
will still be greatly reduced.

1 Introduction

Forward Error Correction (FEC) coding is a crucial technique of error control in data trans-
mission. In the past few years, a new class of FEC called digital fountain codes becomes more
and more popular. The concept of fountain codes was firstly introduced in [1]. Digital fountain
code works through erasure channels and corrects errors without data retransmission as one of
the unique properties of FEC codes. The cost to trade such a benefit is certain extra encoding
processes and redundancy to recover the source data. In the beginning of the coding process,
source data are divided into pieces with an identical length. The length of each piece can be any
bits or even several bytes. Afterwards, codewords are generated by some encoding operations
and the codeword generation procedure can repeat independently and indefinitely without any
limitation. Codewords are continuously created and sent out like a fountain, which is a key
feature of fountain codes called rateless. If a receiver is interested in receiving the data, it can
start to receive the data flow at any time and collect the codewords in any combination. When
sufficient codewords, of which the amount is usually slightly more than that of the source data,
are obtained, the source data can be fully recovered. During the transmission process, encoding
information can be embedded into each codeword, and therefore, no further communication is
required between sender and receiver. In summary, fountain codes are quite suitable and reliable
to handle data erasure at packet level and work in the situations in which back channels are
unavailable.

A simplest fountain code called random linear fountain code is introduced in order to help
readers catch the basic idea. After an appropriate codeword length is chosen, source data can be
divided into k pieces called input symbols and denoted as (s1, s2, . . . , sk). In each independent
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Figure 1: Random linear fountain code

run to generate a codeword, input symbols are uniformly randomly chosen and summed up with
Xor. Figure 1 illustrates the encoding procedure in the form of matrix. Each column in the
matrix is a random binary string and specifies the input symbols which are selected. Encoding
symbols are generated by calculating the Xor sum of those selected input symbols in each column
and sent to the receiver immediately. For example, the first column in the matrix shows that
e1 is a composition of three input symbols and can be expressed as e1 = s1

⊕
s4

⊕
sk−1. At

the receiver end, some encoding symbols will arrive and others will be lost due to transmission
errors. The erasure rate depends on the quality of transmission channel. In Figure 1, lost
encoding symbols are colored, and received encoding symbols are denoted as (e1, e2, . . . , en).
The collection of symbols e forms a k × n generator matrix G:

ej =
∑k

i=1 siGij ;

si =
∑n

j=1 ejG
−1
ji .

(1)

According to Equation (1), it is apparent that source data si can be recovered by encoding
symbols ej if inverse matrix G−1 exists. The first condition to ensure an invertible matrix G is
to collect equal to or more than k encoding symbols. It is to say that n must be equal to or
greater than k. Second, if G is invertible, there must exist at least k linear independent columns
in G. [2] indicates that the probability for G to be invertible rapidly increases when slightly
more than k encoding symbols are received. Suppose that n = k + m in which m denotes the
number of excess encoding symbols. The probability can be approximated by 1− 2−m. In other
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Figure 2: Bipartite structure of LT codes

words, source data can almost be reconstructed with 10 extra encoding symbols regardless of the
source symbols size k. The reception overhead defined as ε = m/k is usually used to evaluate
the performance of fountain codes. Obviously, random linear fountain code is quite excellent on
the indicator. However, random linear fountain code is not practical, even though it is simple
and performs well in theory. In the decoding phase, a common algorithm to find the inverse
matrix is Gaussian elimination and the time complexity is O(k3). Huge computational cost
required to reconstruct source data makes random linear fountain code impractical. As a result,
both overhead and computational cost should be considered to design a good, practical digital
fountain code.

Luby Transform codes (LT codes) [3] proposed by Luby in 2002 is the first practical frame-
work and implementation of digital fountain codes. In order to reduce computational cost, belief
propagation (BP) [4] was utilized to replace the prohibitively expensive Gaussian elimination in
the decoding phase. Overhead of coding was used to trade computational cost because belief
propagation is much more efficient, and slightly more encoding symbols are needed for successful
decoding. The relation between input symbols and encoding symbols can be modeled as a bi-
partite graph, similar to the one shown in Figure 2. Since the performance of belief propagation
is very sensitive to the connection structure of the graph, another key design in LT codes is
the use of a probability distribution to decide the degree of each encoding symbol node in the
bipartite graph. According to Luby’s proposal, the performance of LT codes totally depends
on the employed degree distribution, and hence a good probability distribution is necessary to
co-operate with belief propagation. Luby also suggested the use of a family of distributions
called soliton distributions. Mathematical verification was also provided to confirm the claimed
properties of soliton distributions. More details of LT codes will be described in section 2.

3



Since the proposal of LT codes, quite a number of related studies have been conducted. [5]
presented a method to evaluate the error probability of belief propagation applied to LT codes.
[6] and [7] provided some theoretical analysis and tried to give a tighter estimation. Many
studies on LT codes offered better performance by modifying the basic components. [8] and [9]
attempted to find out new degree distributions which are better than soliton distributions. Some
researchers aimed at the decoding procedure and proposed different mechanisms to recover source
data. [10] and [11] showed similar ideas to mix belief propagation and Gaussian elimination for
the balance between computational cost and overhead.

According to the related analyses, the greater k is, the better the performance of LT codes is.
In fact, the mathematical verification on LT codes guarantees the performance when k →∞. For
the practice purpose, Gaussian elimination becomes infeasible when k is greater than around 102,
and LT codes start to deliver good performance when k is greater than around 105. However, in
certain crucial networking applications, such as broadcasting and video/audio streaming services,
k is right in the gap. As a consequence, improving the performance of LT codes for short data
lengths or small source symbol sizes [12, 13, 8, 14, 15] becomes an important topic. To this end,
the modification of LT codes proposed in the present work bridges the gap and permits the use
of LT codes when k is between 102 and 105. For other attempts to enhance LT codes, [16] paid
attention to the pseudo-random number generator and replaced it with chaotic sequences. In the
peer-to-peer scenarios, a decomposed LT code [17] was introduced to receive encoding symbols
from several senders. [18] considered source segments of different importance and prioritized
encoding especially for multimedia data.

Furthermore, degree distributions dictate not only the performance but also the computa-
tional cost. The Xor-sum procedure is the largest computation consumer, because there is no
need to find inverse matrices in LT codes. Hence, the number of Xor operations can roughly
measure the computational cost of LT codes. Given a degree distribution π(d), d̄ denotes the
average degree of π(d) as

d̄ =
k∑

d=1

d× π(d) . (2)

Observing the bipartite graph in Figure 2, the amount of Xor operations is roughly equivalent
to the number of connections between input and encoding symbols. Total connections can be
obtained by multiplying the average degree d̄ and the size of encoding symbols n. Therefore,
designing a distribution with a lower average degree can directly and effectively reduce the
computational cost. Nevertheless, LT codes do not take into consideration the ramifications of
mean degrees. As in the encoding process of LT codes, a degree d is chosen first and then d
distinct input symbols, where the strategy to select input symbols is uniform random selection.
We can expect that each input symbol has (d̄ × n)/k edges on average. However, there are
variances in the random process. If some input symbol is not selected as neighbor by any
encoding symbols and becomes disconnected nodes, to fully recover the source data is obviously
impossible. For this reason, the soliton distribution is designed to have a sufficiently large mean
degree in order to allow only a very low probability for input symbols of degree zero to exist.

In addition to permitting the use of LT codes for short data lengths, the technique proposed
in this paper also reduces the computational cost by lowering mean degrees while still keeping
a very low probability for input symbols of degree zero to exist. An alternative input symbol
selection strategy called tournament selection is introduced to the encoding phase and substitutes
for uniform random selection. The new framework of LT codes is then named LT codes with
Connection Choice (LTCC), because when one input symbol is needed to generate a codeword,
instead of only one uniformly random selection is executed to choose a source symbol, a number
of source symbols, specified with a new parameter, are selected uniformly at random to form a

4



set of available connection choices. LTCC can reduce the variance of degrees effectively and be
considered as a generalized version of LT codes because it is possible to configure LTCC to behave
exactly as LT codes. The results of our experiments clearly show a significant performance
improvement in the cases of small source symbol sizes. Not only distributions with a lower
mean degree can smoothly co-operate with belief propagation but also less overhead is required
to fully recover source data.

In this paper, unless defined otherwise, the notations are

• Input/source symbols size: k

• Encoding symbols size: n

• Excess symbols size: m = n− k

• Reception overhead: ε = m/k

• Average degree of distributions: d̄

• Total connections: N

The remainder of this paper is organized as follows. Section 2 gives the detailed operations of
LT codes, including the coding process and soliton distributions proposed by Luby. Section 3
introduces the new input symbol selection strategy in the encoding phase. Both the difference
and influence of our mechanism will be described in detail. In section 4, numerical experiments
are implemented to confirm the proposed framework, and the experimental results are presented.
Finally, section 5 concludes this paper.

2 LT codes

Luby Transform codes (LT codes) is the first practical framework of digital fountain codes.
Encoding and decoding in LT codes are designed to cooperate to achieve the features of fountain
codes in practice, and each component of the LT code framework will be described in this section.
A specific degree distribution π(d) is adopted to decide the number of source symbols of which
an encoding symbol consists. The belief propagation (BP) algorithm [4] is introduced to replace
the expensive Gaussian elimination in decoding phase. Section 2.1 gives a complete introduction
of the whole coding procedure. In section 2.2, two well-known degree distributions that Luby
suggested for the framework are represented. According to the mathematical analysis, a basic
condition, under which LT codes can complete data transmission, is discussed in section 2.3.

2.1 Encoding and decoding

Given the source data to transmit, we suppose that the source data can be cut into k input
symbols, or called source symbols, of an identical length. Before each encoding symbol, or
called codeword, is generated, a degree d is chosen at random according to an adopted degree
distribution π(d), where 1 ≤ d ≤ k and

∑k
d=1 π(d) = 1. The degree d decides how many

distinct input symbols will be chosen to compose an encoding symbol. d input symbols, called
neighbors, are chosen uniformly at random (u.a.r.) and accumulated by the Xor-operator. In the
design of LT codes, random number generators play an essential role during the coding process.
The approach employed by LT codes for sender to inform receivers of all coding information is
achieved by synchronizing the random number generator with a specified random number seed.

At the receiver side, when n encoding symbols are arrived of which the number is usually
slightly larger than k, belief propagation (BP) is used to recover the source data step by step.
All the received encoding symbols are initially covered in the beginning. At the first step,
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the encoding symbols with only one neighbor can be directly released to recover their unique
neighbor. When an input symbol has been recovered but not processed, it is called a ripple and
stored in a queue. At each subsequent step, ripples are popped as a processing target one by
one. A ripple is removed from the encoding symbols which have it as neighbor. If an encoding
symbols has only one remaining neighbor after being removed, the releasing operation repeats
and may produce new ripples to maintain a stable size of the ripple queue. Maintaining the size
of the ripple queue is important for LT codes because the decoding process fails when the ripple
queue is empty and covered input symbols remain. In other words, more encoding symbols
are required in the decoding process. Ideally, the process succeeds if all the input symbols are
recovered at the end of the decoding process.

2.2 Soliton distribution

According to the design, the behavior LT codes is completely determined by the adopted degree
distribution, π(d), and the number of received encoding symbols, n. The overhead ε = (n −
k)/k denotes the performance of LT codes, and ε depends on π(d). Based on his theoretical
analysis, Luby proposed the ideal soliton distribution by using which the overhead is 0, the best
performance, in the ideal case.
Ideal soliton distribution ρ(d):

ρ(d) =
{ 1

k for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (3)

Ideal soliton distribution guarantees that all the release probabilities are identical to 1/k at each
subsequent step. Hence, there is one expected ripple generated at each processing step when the
encoding symbol size n = k. After k processing step, the source data can be ideally recovered.
Fig. 3(a) shows an example of ideal soliton distribution for k = 30.

However, the ideal soliton distribution works poorly in practice. The operation of belief
propagation may be suspended by a small variance of the stochastic decoding situation in which
no ripple exists, because the expected ripple size is only one at any moment. According to the
theory of random walk, the probability with which a random walk of length k deviates from
its mean by more than ln(k/δ)

√
k is at most δ. We can consider it as a baseline of ripple sizes

which must be maintained to complete decoding. Hence, in the same paper by Luby, a modified
version called robust soliton distribution, µ(d), was also proposed.
Robust soliton distribution µ(d):

R = c · ln(k/δ)
√

k .

τ(d) =


R/ik for d = 1, . . . , k/R− 1
R ln(R/δ)/k for d = k/R
0 for d = k/R + 1, . . . , k

. (4)

β =
k∑

d=1

(ρ(d) + τ(d)) .

µ(d) =
ρ(d) + τ(d)

β
for d = 1, . . . , k . (5)

c and δ are parameters for tuning robust soliton distribution. c controls the mean of the degree.
Small value of c increases the probability of low degrees and a large one decreases it. δ estimates
that there are ln(k/δ)

√
k expected ripple size as previously described. Fig. 3(b) gives an example

of robust soliton distribution with c = 0.1 and δ = 0.1. Robust soliton distribution can ensure
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(b) Robust soliton distribution

Figure 3: Examples of soliton distributions (k = 30)
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that only n = k + O(ln2(k/δ)
√

k) encodeing symbols are required to recover the source data
with a successful probability at least 1-δ. Robust soliton distribution is not only viable but
also practical. The analysis of robust soliton distribution based on probability and statistics is
sound, especially when k →∞.

2.3 Missing probability of LT codes

In the framework of LT codes, each encoding symbol is a combination of input symbols which
are selected u.a.r. It is apparently very important to make sure that all the input symbols
are selected at least once. Otherwise, such missing input symbols which are never chosen as
connection neighbors will represent the lack of information and lead to the impossibility to fully
recover the source data. This situation could be easily imagined as a “ball-bin” problem: How
many bins are empty in expectation if total N balls are thrown into k bins u.a.r? The probability
that one particular bin is empty can be expressed as

(1− 1
k
)N w e−N/k . (6)

If N = k, the probability of a particular bin to be empty is roughly 1/e ≈ 0.368. There will be
an empty one among any three bins on average, and obviously the ratio is too high to make all
bins have at least one ball. More balls are needed to make sure there is no empty bin. Suppose
that 1− δ denotes the probability that none of the bins is empty. The number of balls required
to guarantee δ is k ln(k/δ). Given the encoding symbol size N > k ln(k/δ), the probability that
a particular bin is empty is at most δ/k according to Equation (7).

e−N/k < e−[k ln(k/δ)]/k =
δ

k
. (7)

Whether or not a bin is empty is an independent event, and the probability that all the bins have
balls can be simply calculated with Equation (8), in which, small δ well supports the soundness
of the approximation.

(1− δ

k
)k = (1− 1

k/δ
)k

w e
−k
k/δ

= e−δ

w 1− δ . (8)

The ball-bin problem helps us to understand the situation in which input symbols are chosen.
Using an insufficient amount of balls tend to leave some bins empty. Fig. 4(a) shows a histogram
of 500 random choices against 100 input symbols. In this example, there is a missing input
symbol which leads to the failure of decoding. Hence, roughly k ln(k/δ) connections are required
to guarantee the probability 1 − δ that all the input symbols are connected at least once.
Moreover, the total number of connections is decided by the average degree of the distribution
and the encoding symbol size n. n is always asked to get close to k, and therefore, a viable
degree distribution should be with the average degree at least ln(k/δ):

d̄ =
k ln(k/δ)

n
w ln(k/δ) . (9)

Ideal and robust soliton distributions are both designed according to the aforementioned guide-
line. [3] gives the detailed derivations of the mean degree of soliton distributions. The mean
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Figure 4: Histograms of connection choice
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Figure 5: Procedure of tournament selection

degree of ideal soliton distribution is ln(k), and that of robust soliton is O(ln(k/δ)). Further-
more, the mean degree closely connects to the computational cost of LT codes as mention in
section 1. Obviously, the fundamental requirement to “fill all the bines” decisively gives the
lower bound of the computational cost.

If we carefully consider the cause of missing input symbols, there is a large connection
variance when random selection is adopted. For this reason, soliton distributions need to be
adopted with a high mean degree to avoid missing input symbols. However, a similar effect can
be obtained by reducing the variance. In order to achieve this purpose, an alternative selection
strategy is proposed in this paper to greatly improve the efficiency and performance of LT codes.

3 Connection Choice

In order to stochastically equalize the connection count of each input symbol, the use of a se-
lection strategy called tournament selection is introduced in this section. Tournament selection
stochastically selects a source symbol with a configurable preference, parameterized as tourna-
ment size (T ), towards those source symbols with fewer connections. Detailed operations and
the effect of utilizing tournament selection are presented.

3.1 Tournament selection

In the proposed LTCC framework, random selection, which is used to select an input symbol for
encoding, is replaced by tournament selection. In LTCC, the first step to select input symbols
is still determining a degree d according to the adopted degree distribution. Then, tournament
selection is applied to select d input symbols. At the beginning of the selection procedure for
each input symbol, T , called tournament size, input symbols are chosen u.a.r. as connection
choices. Fig. 5 illustrates a simple example step by step with tournament size T = 2. Connection
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counts, the numbers in squares, denote how many times the corresponding input symbols have
been selected to encode a codeword. The connection counts of connection choices are compared,
and the input symbol with the minimum connection count wins the tournament. If there is
a tie, selecting one u.a.r. among the symbols with the same connection count breaks the tie.
The winner is the only symbol that really takes part of encoding among the T candidates in
this tournament selection run. When a new connection is chosen, the connection count of the
winner is updated accordingly. The selection procedure repeats until d distinct input symbols
are determined. The complete procedure is described as follows:

• Parameters

– (s1, s2, . . . , sk) : input symbols

– (c1, c2, . . . , ck) : connection counts

– π(d) : degree distribution

– T : tournament size

– e : new encoding symbol

• Procedure to encode a codeword

– Step 1) Decide a degree d according to π(d)

– Step 2) For i = 1, . . . , d do

∗ Step 2.1)
Generate a random number sequence (r1, r2, . . . , rT ) to mark T distinct input
symbols (sr1 , sr2 , . . . , srT ) as connection choices

∗ Step 2.2)
Determine the symbol, say, smi , that has the minimum connection count. I.e.,
cmi = min(cr1 , cr2 , . . . , crT ). If there is a tie, select one u.a.r. among the symbols
with the same connection count

∗ Step 2.3)
If smi has already been selected, discard smi and go to Step 2.1

∗ Step 2.4)
Update the connection count cmi = cmi + 1

– Step 3) Output e = sm1

⊕
sm2 . . .

⊕
smd

Connection counts record the encoding history of input symbols. They help to identify those
symbols which have fewer connections and should be selected. The use of tournament size T
increases the probability for a source symbol with fewer connections to be selected, and thus, the
“balls” can be relatively evenly distributed in the “bins.” It can be observed that as tournament
size grows, the effect to equalize the connection distribution becomes significant. Therefore,
compared to LT codes, with a suitable T , LTCC can have the same missing probability for
source symbols and adopt a degree distribution of which the mean degree is lower. The analysis
on the missing probability of LTCC is given next.

3.2 Missing probability of LTCC

In section 2.3, the probability to miss an input symbol is evaluated for random selection. The
missing probability is important and influences the design of degree distributions. Hence, such
a probability for tournament selection is analyzed in this section to show the reason why LTCC
possesses the features as claimed.
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Figure 6: States during tournament selection

Let sp denote an input symbol which has never been selected after N connections are made
to the k input symbols. Here, we call sp an empty symbol based on the analogy of the ball-bin
problem. First of all, the probability Pi represents that a connection is made and sp remains
empty, while i input symbols are not empty. There are two situations for such an event. The
simpler case is that in this selection run, sp is not included in the T candidates, and the prob-
ability is (k − T )/k. In the other case, sp is selected into the set of connection choices and
remains empty. In this tie situation, the probability for sp to remain empty depends on how
many candidates are also empty. Fig. 6 illustrates a condition in which T candidates consist of
sp, j nonempty, and T − j − 1 empty input symbols. In this condition, sp remains empty with
a probability of (T − j − 1)/(T − j), and as a result, the total probability in a tie situation can
be calculated as a summation of all the possible combination of candidates. Equation (10) gives
the complete formula to compute P :

Pi =

(
k−1
T

)(
k
T

) +
b∑

j=a

1
k

(
T

1

)
×

(
i
j

)(
k−1

j

)(
T − 1

j

)
×

(
k−i−1
T−j−1

)(
k−j−1
T−j−1

)(
T − j − 1
T − j − 1

)
× T − j − 1

T − j

=
k − T

k
+

T

k

b∑
j=a

(
T−1

j

)(
i
j

)(
k−1

j

) ×
(

k−i−1
T−j−1

)(
k−j−1
T−j−1

) × T − j − 1
T − j

,

where


0 6 i 6 k − 1
a = min(T − 1, i)
b = max(0, T − k + i)

. (10)

Pi is the probability in a state that i input symbols are nonempty. Therefore, it is necessary
to estimate the distribution of each state during the encoding. Let matrix Q contain entries
Qn,i denoting the probability that there are i nonempty input symbols after n connections are
made. Filling the the matrix is not difficult because there are only two states, empty or not,
to consider. Obviously, the amount of nonempty symbols, i, either increases by one or does not
change when a new connection is made. Suppose that qi is the probability of no change and the
event happens unless all the candidates are nonempty. qi can be expressed with Equation (11):

qi =

 0 for i < T
( i

T)
(k−1

T ) for i ≥ T
. (11)

Then,

Qn,i =
{

qi ×Qn−1,i if i = 1
(1− qi−1)×Qn−1,i−1 + qi ×Qn−1,i otherwise.

. (12)
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After qi is obtained, the entries Qn,i can calculated row by row with Equation (12) except
for the first row. For the first connection, an empty input symbol must be chosen. Hence, Q1,1

is initiated as 1 and the others are 0 in the first row. Then, we define

Rn = Qn,k × Pk , (13)

and the missing probability can be calculated as

N∏
n=1

Rn . (14)

The product of Qn,k and Pk, denoted as Rn, represents the probability that sp is not selected
as neighbor for making the n-th connection. Thus, the multiplication from R1 to RN indicates
the final probability that a missing input symbol occurs in the LTCC framework.

In order to empirically verify the derivation of the missing probability of LTCC, simulations
are conducted in several different parameter settings. The calculation results and simulation
data are both shown in Fig. 7 for k = 100. Each data point in the figure presents a mean
value of 10 independent simulation runs and in each run, 100000 coding events are simulated.
Hence, the attainable precision of probability is around 10−5. The perfect match between the
calculation results and simulation data confirms our derivation of the missing probability of
LTCC. According to Equation (8), the missing probability of LT codes, δ/k, must be smaller
than 10−4 for k = 100 if a probability of 0.99 that all the input symbols have neighbors is
expected, and there are at least k ln(k/δ) connections to achieve such a situation for random
selection, equal to tournament selection with T = 1. The number of connection divided by k,
ln(k/δ) ∼= 9.21, can be used to roughly approximate the required mean degree for LT codes.
However, in Fig. 8, we show the derived results in an extended scope. 10−4 can be achieved
by tournament selection with T = 2 when the mean degree is close to 5. Furthermore, mean
degrees of 3.5, 3, and 2.5 are required for tournament selection with T = 3, T = 4, and T = 5,
respectively.

In this section, a source symbol selection strategy, tournament selection, was introduced to
replace random selection in LT codes. In addition, a theoretical investigation on the missing
probability of LTCC was conducted to reveal the reason why LTCC is able to deliver good
performance with low computational cost. Fig. 8 shows that tournament selection is remarkably
good to work with degree distributions of a low mean degree, which represents low computational
cost. In the next section, the simulation results will demonstrate that not only computational
cost is reduced but also less decoding overhead, the amount of extra codewords, is required to
fully recover the source data.

4 Experiments

LT codes with connection choice (LTCC) proposed in this work has some different behavior
in the encoding phase, compared to LT codes. In addition, soliton distributions are designed
according to the required mean degree and released probability. As a result, soliton distributions
are inappropriate for LTCC. New degree distributions are in need to cooperate with LTCC,
because of tournament selection. However, the guideline for designing new degree distributions
is still under investigation and exceeds the scope of this paper. Alternatively, we employ an
optimization technique to search for good degree distributions to work with LTCC.

4.1 Search for degree distributions

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [19, 20, 21] is a well-known evolu-
tionary algorithm for real-parameter optimization. Evolutionary algorithms solve search, design,
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Figure 7: Probability of a missing input symbol. The lines represent the derived results cal-
culated with Equation (14), and the markers represent the experimental results obtained from
simulations.
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Figure 9: Procedure of employing CMA-ES to search for good degree distributions to work with
LTCC.

and optimization problems by observing and mimicking natural or biological phenomena. In this
work, CMA-ES is employed to search for good degree distributions not only because of its supe-
rior optimization performance but also because of its black-box property. CMA-ES works well
on searching desired targets even without any domain knowledge and has been utilized to search
for degree distributions in LT codes which are better than soliton distributions [22].

In order to employ CMA-ES, first of all, we need to define the decision variables. Several
particular degrees called tags are chosen to compose the vector of decision variables. In soliton
distributions, all the degrees from 1 to k are defined and have non-zero values, while there is
actually no need to use all the k degrees in LTCC. With the help of tournament selection, the
connections are stochastically evenly distributed, and low degrees are more important. Hence,
a sparse degree distribution with only eight tags is used in this study as
Sparse Degree Distribution ω(d):

ω(d) =
{

v(i) if d = tags(i)
0 otherwise

, (15)

where v(i) is a real number vector of which the sum is 1, and tags are {1, 2, 3, 5, 7, 11, 13, 17}. The
sequence composed by 1 and prime numbers is employed for an appropriate sequence density.
CMA-ES takes v(i), the vector of decision variables, as the individual representation and tries to
search for individuals representing good sparse degree distributions. With this representation,
the dimension of this optimization problem is reduced to the size of tags, and the search perfor-
mance can be greatly enhanced. Notice that even though the problem search space is reduced,
the correctness of our experiments is not affected. The purpose of our experiments here is to
find feasible degree distributions which can cooperate with tournament selection, instead of the
optimal degree distribution.

Secondly, evolutionary algorithms distinguishes individuals according to an objective func-
tion. The objective value is a quantification score which is used to measure the performance
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Figure 10: Optimization progress of using CMA-ES to search for LTCC degree distributions
when T=3 and k=100, 400, 700, and 1000.

of individuals. The search behavior of evolutionary algorithms highly depends on how objec-
tive functions are defined. In this work, the reception overhead, ε, can be directly adopted to
evaluate the performance of a given degree distribution. When a new individual is generated,
LTCC simulation on the corresponding sparse degree distribution is independently repeated 100
runs, and the average reception overhead is calculated and used as the objective value for the
individual.

The search procedure involving CMA-ES is shown in Fig. 9. All the individuals in the first
generation are initialized with uniformly distributed random numbers, and then, each individual
is evaluated by the simulator after normalization. The objective value of each individual helps
CMA-ES to evolve the population in the next generation. The operation repeats until some stop
condition is satisfied. In this paper, CMA-ES is employed to search for practical sparse degree
distributions in the setting combinations of T = {1, 2, 3, 4, 5, 7, 10} and k = {100, 400, 700, 1000}.
The stop condition is 3000 objective function evaluations, i.e., 300000 simulation runs. Fig. 10
shows the objective changes of problems with different k’s for T = 3. The best degree distribution
during the whole process is recorded, and comparison between different settings, including the
original LT codes, i.e., LTCC with T=1, is presented the next section.

4.2 Simulation results

After employing CMA-ES to search for good degree distributions to work with LTCC, we ex-
amine the LTCC performance in different setting combinations in this section. The simulation
results clearly demonstrate that LTCC cannot only work with degree distributions of lower mean
degrees but also require less reception overhead to fully recover the source data. Figs. 11 and
12 illustrate the required reception overhead to fully recover the source data from the aspects
of different T ’s as well as k’. Note that LTCC with T = 1 is exactly the original LT codes.
In Fig. 11, it is clear that reception overhead drops sharply between T = 1 to T = 2 and
becomes smooth as T continues to increase except for k = 100. The phenomenon of the big
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Figure 11: Reception overhead, ε, for LTCC with T = {1, 2, 3, 4, 5, 7, 10} on k =
{100, 400, 700, 1000}.
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Figure 12: Comparison of reception overhead, ε, between LT codes with robust soliton distri-
bution with c = 0.1, δ = 0.9) and LTCC with T = {1, 2, 3, 5, 10} on k = {100, 400, 700, 1000}.
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difference between T = 1 and T = 2 indicates that LTCC greatly improves the performance, in
terms of reception overhead, of LT codes by introducing tournament selection into the encoding
operation. Such the low reception overhead for LT codes on small k’s is very difficult, if not
impossible, to obtain by adjusting parameters of robust soliton distributions. Moreover, when
T increases, the improvement becomes marginal or insignificant. This indicates that in practice,
T can be set to a small constant, such as 5 or 7, and be considered independent of k. As a
consequence, although T is an extra parameter introduced with tournament selection into LT
codes, the setting of T is not an issue. In order to show that LTCC outperforms LT codes
with robust soliton distribution, Fig. 12 compares the simulation results with different T ’s to
that obtained by LT codes with robust soliton distribution. Parameter of the adopted robust
soliton distribution in this case is set as c = 0.1 and δ = 0.9. We can observe that CMA-ES
cannot find a good sparse degree distribution to work with the original LT codes, LTCC w/
T=1. However, except for T=1, LTCC outperforms LT codes with robust distributions when
tournament selection operates.

The other key point of using tournament selection is to reduce the computational cost by
lowering the mean degree of the adopted degree distribution. Figs. 13 and 14 show the mean
degrees of the degree distributions corresponding to the simulation results presented in Figs. 11
and 12. In Fig. 13, we can observe that similar to the sharp drop between T=1 and T=2 in
Fig. 11, LTCC with T ≥ 2 can work with degree distributions with much lower mean degrees.
This means that when tournament selection operates, a significant of amount of required Xor-
operations can be saved. In Fig. 14, the difference between the mean degree requirement of LTCC
and LT codes with robust soliton distribution increases when k increases. That is, the mean
degree requirement grows more slowly for LTCC. Roughly 60% computational cost is reduced,
and the ratio increases when k increases. In conclusion, LTCC requires less computational cost
in order to obtain the same or better performance, in terms of reception overhead.

5 Summary and Conclusions

An improved version of LT codes, called LT codes with Connection Choice (LTCC), was proposed
in this work. An alternative input symbol selection strategy called tournament selection was
adopted to replace random selection originally used in the encoding phase to generate codewords
in LT codes. The new parameter, tournament size, controls the variance of the number of
connections to input symbols and dictates the missing probability in LTCC. Theoretical analyses
on the missing probability of LT codes as well as LTCC were provided to pinpoint the reason
why LTCC can work with degree distributions of lower mean degrees. Finally, experimental
results obtained by conducting simulations confirmed that LTCC can achieve the same or better
performance, in terms of reception overhead, with much less computational cost. In short, LT
codes are an important framework of digital fountain codes, and many advanced developments
depends on LT codes. There also exist data delivery protocols that employ LT codes as a
functional block or fundamental component. As a consequence, according to the results obtained
in this study, LTCC can be readily utilized for real-world applications, especially for k between
102 and 105, such as real-time multimedia streaming or peer-to-peer data transmission. For
k > 105, although the performance of LTCC might not be significantly better than that of LT
codes, the computational cost will still be greatly reduced because degree distributions with
much lower mean degrees can be adopted.
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Figure 13: Mean degrees of the degree distribution optimized by using CMA-ES for the results
presented in Fig. 11.
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Figure 14: Comparison of mean degrees of robust soliton distribution with c = 0.1, δ = 0.9 and
the degree distribution optimized by using CMA-ES for the results presented in Fig. 12.
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