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ABSTRACT— 
Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms which can be 
regarded as abstraction of genetic algorithms (GAs) because in the design of EDAs, the population, 
one of the GA distinctive features, is replaced by probabilistic models/distributions. Building and 
sampling from the models substitute for the common genetic operators, such as crossover and 
mutation. Due to their excellent optimization performance, EDAs have been intensively studied and 
extensively applied in recent years. In order to interest more people to join the research of EDAs, 
this paper plays as an entry level introduction to EDAs. It starts with introducing the origination and 
basic ideas of EDAs, followed by presenting the current EDA frameworks, which are broadly 
applied in many scientific and engineering disciplines. Finally, this paper also describes some 
ongoing topics and potential directions in the hope that readers may get further insights into EDAs. 
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optimization technique, global optimization, evolutionary algorithm, evolutionary computation, 
computational intelligence. 

1. INTRODUCTION 

Genetic algorithms (GAs) were proposed by Holland [1] with the inspiration of Darwinian view on the 
evolutionary mechanisms in nature. They were initially designed for generating classifiers in learning 
classifier systems as well as handling combinatorial optimization problems. Brought to the attention of 
many researchers by Goldberg’s book [2], genetic algorithms have been widely and successfully applied to 
solving all kinds of search and optimization problems existing in numerous disciplines for the past decades. 
The proposal of genetic algorithms is remarkably intriguing because it strongly connects several seemingly 
not-so-related fields, such as biology, mathematical programming (optimization), artificial intelligence, etc., 
places itself in a unique position among these fields to stir innovations, and makes a major contribution to 
the creation of evolutionary computation. Similar to the progress of most scientific and engineering 
development, soon after its birth, the GA taskforce splits and focuses on topics of different origins and 
requirements. Some researchers explore potential applications of GAs, while others try to improve GA 
performance by incorporating natural, biological mechanisms or by advancing algorithmic designs with 
mathematical techniques. Among these attempts to achieve better genetic algorithms, or more broadly, 
evolutionary algorithms, is the development of estimation of distribution algorithms. 

By focusing on the optimization performance and discarding the biological plausibility, estimation of 
distribution algorithms (EDAs) successfully achieve their design goal can be viewed as abstraction of GAs 
because in EDAs, the population, which is one of the GA distinctive features, is replaced by certain 
mathematical construction, and genetic operators for generating offspring solutions are correspondingly 
changed to work with the adopted mathematical construction. According to the traditional GA performance 
indicator, function evaluations vs. solution quality, EDAs outperform GAs in most cases because the design 
of EDAs makes the search explicitly centralized by processing global statistics. Even if the significant 
computational cost of the mathematical construction is taken into consideration, the performance of EDAs 
is still usually superior to that of GAs. Thanks to their desirable features and properties, EDAs have been 
studied, improved, and broadly utilized for around fifteen years. Given the importance of EDAs in 
evolutionary computation and the usefulness of EDAs in application domains, an entry level introduction to 
EDAs is needed for those who are interested in getting familiar with and utilizing EDAs in a short time. As 
a consequence, this paper is written to fulfill this purpose. In particular, basic ideas, existing frameworks, 
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Figure. 1 Diagrams for a simple genetic algorithm and a basic estimation of distribution algorithm 
 

and potential research directions of EDAs are briefly described. Note that this paper is not intended to be a 
complete survey or to provide details of EDAs. Interested readers may refer to other materials [3, 4]. 

This paper is organized as follows. Section 2 introduces the origination and basic ideas of EDAs, and 
section 3 presents existing EDA frameworks according the adopted mathematical construction. Section 4 
describes some of the recent research issues of EDAs as the future directions, followed by section 5 which 
summarizes and concludes this paper. 

2. BASIC IDEAS AND ORIGINATION 

In this section, we will start with revisiting genetic algorithms and presenting the basic ideas of 
estimation of distribution algorithms, followed by a brief history of estimation of distribution algorithms. 

2.1 Genetic Algorithms 
Genetic algorithms are a class of evolutionary algorithms developed for conducting search and 

optimization by mimicking the evolutionary process in biology. GAs, use a population of solutions, called 
individuals, to gather the information regarding the search space and to implicitly process the statistics [5] 
in order to find the optimal solutions. Figure 1(a) shows a genetic algorithm in its simplest form. In the 
beginning, a solution population is initialized by random generation. Each of the individuals is evaluated by 
the fitness function to indicate how well it “fit” the environment, i.e., the optimization problem at hand. 
The individuals with better fitness have better chances to reproduce their offspring, and the parental 
selection process implements the idea of natural selection on the procreation side. The process to create 
new individuals is designed by emulating the recombination (crossover) and alteration (mutation) of 
genetic materials. After the next generation of individuals is created, each individual is also evaluated by 
the fitness function, and the GA procedure repeats until certain stop criterion is satisfied. The operation can 
be considered as explicitly sampling the search space and implicitly exploiting the obtained information. 
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2.2 Probabilistic Models vs. Populations 
As we can see in Figure 1(a), the components of which the functionality is implicitly processing and 

exploiting the information, i.e., the individuals, in a distributed manner are identified by a dashed box. 
Discarding the biological plausibility, one possible algorithmic way to improve GA performance is to make 
the implicit mechanism explicit. In order to achieve the explicit processing of the obtained information, 
probabilistic models are the chosen mathematical construction to “describe” populations. Since the process 
to find a probabilistic model for a given population is to estimate the probabilistic distributions on decision 
variables, such algorithms are called estimation of distribution algorithms, or sometimes, probabilistic 
model building genetic algorithms (PMBGAs). After gathering and mining the information existing in the 
form of individuals, the offspring individuals are then created by sampling the built probabilistic model to 
implement the process of information exploitation. Figure 1(b) shows an EDA in its simplest form. We can 
see between Figure 1(a) and Figure 1(b) that the key differences between GAs and EDAs are using 
probabilistic distributions to model populations and replacing genetic operators with the functionally 
equivalent mechanisms—probabilistic model building and sampling. 

2.3 Estimation of Distribution Algorithms 
There have been numerous variants of estimation of distribution algorithms proposed in the literature. 

Some of them adopt probabilistic models of different types or complexities, while others employ different 
techniques to build model. All these studies and developments on estimation of distribution algorithms 
started after the proposal of population-based incremental learning (PBIL) by Baluja [6] in 1994, while the 
name of “estimation of distribution algorithms” was firstly proposed by H. Mühlenbein and G. Paaß [7] in 
1996. PBIL uses a probability vector to replace the population. Slightly different from most existing EDAs 
in which the probabilistic model is built from scratch at every generation as shown in Figure 1(b), PBIL 
retains some memory or experience of which the weight can be adjusted by the user. If the weight is set to 
zero, PBIL becomes a commonly structured EDA which is exactly the univariate marginal distribution 
algorithm (UMDA) proposed by Mühlenbein in [8] 1997. Early studies on EDAs began with simple 
probabilistic models of which the decision variables of optimization problems were assumed independent 
of each other. More and more complicated probabilistic models were used in the follow-up work along this 
line, which will be discussed in the following section. 

3. EXISTING EDA FRAMEWORKS 

This section will introduce some popular EDA frameworks proposed in the literature and widely used 
in both research and practice. Since probabilistic models are the key component in EDAs, we will introduce 
the EDAs employing simple models first and then those adopting complex models. Although the EDAs that 
adopt complex models usually provide excellent performance, one must keep in mind that complex models 
themselves may induce spurious variable relationships. If such spurious relationships become an obstacle 
which prevents the EDA from solving problems, EDAs with simpler models, i.e., more suitable for the 
problem structure, should be used to obtain better performance. Because the frameworks described in this 
section will be only a fraction of all existing EDAs, interested readers should consult other materials [3, 4]. 

3.1 All Variables Are Considered Independent 
The simplest, reasonable probabilistic model to work with EDAs is assuming that no interaction exists 

between variables. EDAs employing such a model estimate the probabilistic distributions of values in 
different ways, including PBIL [6], UMDA [8], and the compact genetic algorithm (cGA) [9]. These EDAs 
work very well on problems composed of building blocks of order one and may encounter difficulties when 
facing problems consisting of longer, misleading building blocks. 

3.2 Interactions between Two Variables Are Considered 
In order to take into account the interactions between variables, probabilistic models considering 

pairwise interactions are intuitive choices. The mutual information maximization for input clustering 
(MIMIC) [10] algorithm assumes that the pairs of interacting variables are chained by their relationships, 



while the combining optimizers with mutual information trees (COMIT) [11] algorithm models the all the 
pairwise relationships with a dependency tree. The bivariate marginal distribution algorithm (BMDA) [12] 
further considers that all the pairwise relationships can be modeled with several independent dependency 
trees, i.e., a forest. 

3.3 Interactions among More Than Two Variables Are Considered 
Finally, the probabilistic models considering multivariate dependencies are adopted in EDAs. As a rule 

of thumb, EDAs with more general, complicated probabilistic models are able to handle more difficult 
problems as long as the adopted models do not induce harmful spurious dependencies. The extended 
compact genetic algorithm (ECGA)  clusters variables into separate linkage groups and considers the joint 
distribution for each group. With the help of human experts, the factorized distribution algorithm (FDA)  
utilizes a fixed model as the problem structure and provides excellent, theoretically proven performance. 
Adopting Bayesian networks as the probabilistic model, the Bayesian optimization algorithm (BOA) [13] 
and the estimation of Bayesian networks algorithm (EBNA) [14] uses different criteria to judge the quality 
of candidate Bayesian networks. 

4. ISSUES AND FUTURE DIRECTIONS 

In this section, we will describe several important research issues and potential future directions of 
EDAs. Because the design of EDAs is based on the properties and characteristics of probabilistic models, 
knowing the intrinsically embedded limitations and reducing the computational cost are no doubt essential. 
Moreover, obtaining information by examining the built models and hybridizing EDAs with techniques of 
other origins are promising research directions. Please note that the materials included in this section are far 
from complete. Many other topics worth pursuing are available in the recent literature. 

4.1 Can Models Be Misleading Or Always Partially Meaningful? 
Since probabilistic models are used in EDAs as tools for optimization, an obvious question rises: Is it 

possible that we build an appropriate probabilistic model according to a given population, while the built 
model leads us away from the optimal solution? This question is about the intrinsic properties of the 
problems that we want to solve by using EDAs. If some problems upon which the probabilistic model built 
correctly is actually misleading, EDAs, no matter what kinds of probabilistic models are adopted, will not 
be able to handle these problems. Coffin and Smith [15, 16] investigated whether the parity functions are 
such deal breakers. Furthermore, Chen and Yu [17] theorized the difficulty of probabilistic model building 
with mathematical formalization and obtained certain theoretical results. Another question regarding 
problem intrinsic properties is: Is it possible that, for certain problems, the built model is always partially 
meaningful? Chuang and Chen [18, 19] demonstrated that the problems composed of disparate importance 
weights might render EDAs building partially correct models at any time. In addition to proposing the 
concepts of linkage sensibility and effective distributions, they provided a technique to work with ECGA. 

4.2 Can Models Be Built More Easily? 
The main computational cost of EDAs is apparently caused by building probabilistic models. Research 

along this line is always active and important. To know EDAs better, Chen et al. [20] analyzed the average 
time complexity of EDAs. Techniques that can build models more efficiently were proposed by Ding et al. 
[21], Echegoyen et al. [22], and Iclănzan et al [23]. For BMDA, probability model migration [24] and 
aggregation [25] were proposed to be used in a parallel configuration. For BOA, in order to reduce the 
model building cost, previously built Bayesian networks, were utilized to predict next network structures 
[26, 27] or were viewed as a prototype for incremental changes [28]. 

4.3 Can Models Provide Useful Information? 
After building and using the probabilistic models, it seems wasteful to put the models aside. As a 

consequence, looking into the built probabilistic models to collect useful information is worth trying. In 
addition to getting information for help building the subsequent models as aforementioned [26, 27], 
Santana et al. [29] tried to conduct data mining on the built probabilistic models, and Echegoyen et al. [30] 
investigated the interaction as well as relationship between the optimization problem and the probabilistic 
model via analyzing the probability to the optimal solutions. 



4.4 Can EDAs Be Hybridized with Other Techniques? 
A common feature of evolutionary algorithms is their flexibility to work or to interface with all kinds 

of methods from other realms. EDAs are no exception. In order to enhance EDAs for different purposes, a 
host of mechanisms, methodologies, and frameworks have been integrated, including niching [31], adaptive 
variance scaling [32], Spearman’s rank correlation index [33], particle swarm optimization [34], etc. 

5. CONCLUSIONS 

In this paper, estimation of distribution algorithms (EDAs) as a popular class of evolutionary 
algorithms have been reviewed. EDAs can be regarded as abstraction of genetic algorithms (GAs) because 
in EDAs, the population, one of the GA distinctive features, is replaced by probabilistic models, and the 
common genetic operators, e.g., crossover, mutation, etc., are replaced by building and sampling from the 
adopted probabilistic model. By pursuing optimization performance instead of insisting on biological 
plausibility, EDAs successfully accomplish their design goal and become more and more popular in recent 
years. This paper was written with the intention to provide an entry level introduction to EDAs for 
researchers and practitioners who are in need and interested in knowing and using EDAs in a short time. 
Basic ideas, existing frameworks, and potential research directions of EDAs were briefly described in the 
hope that more and more taskforces will join the research as well as applications of EDAs. 
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