
Optimizing Degree Distributions in LT Codes by Using The
Multiobjective Evolutionary Algorithm Based on

Decomposition

Chih-Ming Chen
Ying-ping Chen
Tzu-Ching Shen

John K. Zao

NCLab Report No. NCL-TR-2010002
February 2010

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/

Optimizing Degree Distributions in LT Codes by Using The

Multiobjective Evolutionary Algorithm Based on Decomposition

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zao
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
ccming@nclab.tw, ypchen@nclab.tw, Stecko.cs97g@nctu.edu.tw, jkzao@cs.nctu.edu.tw

February 01, 2010

Abstract

LT codes are the first practical framework of digital fountain codes and have been widely
used as fundamental components in many communication applications. The coding behavior
of LT codes is majorly decided by a probability distribution of codeword degrees. In order
to customize a degree distribution for different purposes or characteristics, a multiobjective
evolution algorithm is introduced to optimize degree distributions for LT codes in this paper.
Two crucial performance indicators of LT codes are considered in the present work, because
minimizing the overhead of extra data packets is more important in some applications, while
limiting the computational cost of the coding system in others. To flexibly handle the
problem, MOEA/D is applied to optimize the two objectives simultaneously. We expect to
find out the Pareto front (PF) formed by partial optimal solutions and provide the available
degree distributions for different types of LT codes applications. Not only promising results
are presented in this paper, but also the behavior of LT codes are thoroughly explored by
optimizing the degree distribution for multiple objectives.

1 Introduction

Digital fountain codes [1] are a popular class of erasure codes in the field of communication. The
concept of fountain codes was first introduced by Byers et al. [2] in 1998. Firstly, source data are
divided into several pieces with an identical length. The length of each piece can be any number
of bits or even several bytes. Sender generates encoded packets, or called encoded symbols when
the packet length is one bit, by certain encoding operation. The encoding and sending procedure
may repeat independently and unlimitedly. Infinite encoded packets are sent out continuously
like a fountain, which is an important property of fountain codes called rateless. If a receiver is
interested in receiving the data, it can receive the packet flow any time and collect the packets
with any combination. Once sufficient packets, of which the amount is usually slightly more than
that of the source data, are obtained, the source data can be fully recovered. During the process,
no further communication is required between sender and receiver. Encoding information can be
embedded in each packet. As a result, digital fountain codes are especially useful in broadcast or
other situations in which back channels are unavailable. Moreover, because source data can be
reconstructed no matter which packets are received, fountain codes are also considered reliable
to handle the problem of packet loss.

Luby Transform (LT) codes [3] proposed by Luby in 2002 are the first practical framework
and implementation of fountain codes. A novel coding mechanism based on a specifically de-
signed degree distribution is proposed in the introduction of LT codes. The performance of

1

LT codes totally depends on the adopted degree distribution. In his proposal, Luby deigned a
general method to construct an appropriate degree distribution to be used in LT codes, and the
degree distribution was named soliton distribution. Via theoretical analyses, the feasibility of
soliton distribution was proven [4]. Recently, researchers started to optimize the degree distri-
bution in order to improve the performance of LT codes [5, 6], but the obtained improvement
is marginal and quite limited. In these studies, only the parameters of soliton distribution were
tuned and considered as decision variables, while in the present work, we directly optimize the
whole degree distribution.

In the design of LT codes, redundant data and encoding computation are used to trade for
the ability of forward error correction. For most applications, while the error correction ability is
maintained, both costs are required to be as lower as possible, and apparently there is a trade-off
among these factors. Furthermore, applications of different types and purposes have different
requirements of each kind of cost. Some LT code applications which transmit data through an
expensive communication channel have to reduce the data overhead. Other applications with a
huge package size expect less executions of the encoding operator. In order to simultaneously
satisfy those applications, multiobjectives are considered to optimize the degree distribution
for LT codes in the present work. The most important motivation of this study is to fully
explore the LT coding behavior with arbitrary degree distributions and to empirically provide a
proof of concept that multiple requirements on LT codes can be satisfied via optimizing degree
distributions with optimization techniques.

The remainder of this paper is organized as follows. Section 2 describes the detailed oper-
ations of LT codes, including the coding process and soliton distribution. Section 3 introduces
the domain knowledge of multiobjective problems and the evolutionary algorithm used in this
paper. Experiments and results are given in sections 4 and 5. Finally, section 6 concludes this
paper.

2 LT codes

Luby introduced a new fountain code framework and gave the details of coding operation in
2002 [3]. Similar to other fountain codes, source symbols are randomly chosen to be encoded
into codewords (encoded symbols). The encoding operation is achieved by a simple boolean
operator, XOR. The relation between source data and encoded symbols can be modeled as a
sparse bipartite graph. An essential design of LT codes is to decide the degree of each vertex in
the bipartite graph with a probability distribution. The connectivity can be recorded as an en-
coding matrix and each column represents an encoded symbol. Originally, k source symbols can
be fully decoding by Gaussian elimination if there exist k linearly independent columns. How-
ever, Gaussian elimination is prohibitively expensive for its computational complexity of O(k3).
Therefore, the belief propagation (BP) algorithm [7] is introduced to replace the expensive Gaus-
sian elimination in the LT decoding phase. Overhead of coding is used to trade computing time
because belief propagation is more efficient but more encoded symbols are needed for successful
decoding. Moreover, the performance of LT codes is very sensitive to the degree distribution.
A good degree distribution is necessary to co-operate with belief propagation. Luby suggested
soliton distributions for LT framework in his proposal of LT codes. According to the mathe-
matical verification, the properties of soliton distribution have been confirmed. In this section,
details of coding operations and soliton distributions are described.

2.1 Encoding and decoding

Given the source data, we suppose that the source data can be cut in k source symbols with
the same length of ` bits. Before every codeword is generated, a degree d is chosen at random

2

according to the adopted degree distribution ρ(d), where 1 ≤ d ≤ k and
∑k

d=1 ρ(d) = 1. The
degree d decides the how many distinct source symbols will be chosen to compose an encoded
symbol. d source symbols, called neighbors, are chosen uniformly randomly and accumulated
by XOR. In the design of LT codes, random numbers play an essential role during the encoding
process. The approach employed by LT codes for a sender to inform receivers of all encoding
information is achieved by synchronizing a random number generator with the specified random
number seed.

At the receiver side, when K encoded symbols were arrived which is usually slightly larger
than k, belief propagation is used to reconstruct the source data step by step. All encoded
symbols are initially covered in the beginning. For the first step, all encoded symbols with
only one neighbor can be directly released to recover their unique neighbor. When a source
symbol has been recovered but not processed, it is called a ripple and will be stored in a queue.
At each subsequent step, ripples are popped as a processing target one by one. A ripple is
removed from all encoded symbols which have it as neighbor. If an encoded symbols has only
one remaining neighbor after the removing, the releasing action repeats and may produce new
ripples to maintain a stable size of the queue. Maintaining the size of the ripple queue is
important because the decoding process fails when the ripple queue is empty and some source
symbols remain uncovered. In other words, more encoded symbols are required in the decoding
process. Ideally, the process succeeds if all source symbols are recovered at the end of the
decoding process.

Both encoding and decoding, the LT coding operations, are achieved by XOR. As a result,
the computational complexity of LT codes can be measured by how many times of XOR is
executed. XOR operator is applied to build the connectivity in the conceptualized bipartite
graph and to eliminate a ripple from the neighbors of codewords. It is evident that d− 1 XOR
operators are necessary to generated a codeword with degree d or uncover an encoded symbol.
In the encoding phase, all encoded symbols are generated independently, and the computational
complexity to produce codewords solely depends on the mean degree of the adopted degree
distribution. In other words, the cost of each encoded symbol is decided by the mean of degree
distributions. Hence, in practice, the mean degree is an important LT performance indicator
since it presents the operational cost.

2.2 Soliton distribution

The behavior of LT codes is completely determined by the degree distribution, ρ(d), and the
number of encoded symbols received, K, by a receiver. The overhead ε = K/k denotes the
performance of LT codes, and ε depends on a given degree distribution. Based on his theoretical
analysis, Luby proposed the ideal soliton distribution of which the overhead is 1, the best
performance, in the ideal case.
Ideal soliton distribution ρ(d):

ρ(d) =
{ 1

k for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (1)

Ideal soliton distribution guarantees that all the release probabilities are identical to 1/k at
each subsequent step. Hence, there is one expected ripple generated at each processing step
when the encoded symbol size is k. After k processing step, the source data can be ideally
recovered. Fig. 1(a) shows an example of Ideal soliton distribution for k = 30.

However, ideal soliton distribution works poorly in practice. Belief propagation may be
suspended by a small variance of the stochastic encoding/decoding situation in which no ripple
exists, because the expected ripple size is only one at any moment. According to the theory of

3

random walk, the probability that a random walk of length k deviates from its mean by more
than ln(k/δ)

√
k is at most δ. It is a baseline of the ripple queue size which must be maintained

to complete a decoding process. Hence, in the same paper by Luby, a modified version called
Robust soliton distribution, µ(d), was also proposed.
Robust soliton distribution:

R = c · ln(k/δ)
√

k

τ(d) =

R/ik for d = 1, ..., k/R− 1
R ln(R/δ)/k for d = k/R
0 for d = k/R + 1, ..., k

. (2)

c and δ are two parameters for tuning robust soliton distribution. c controls the mean of the
degree distribution. Smaller value of c increases the probability of low degrees and larger one
decreases it. δ estimates that there are ln(k/δ)

√
k expected ripples as described. Fig. 1(b) is an

example of robust soliton distribution with c = 0.1 and δ = 0.1. Robust soliton distribution can
ensure that only K = k + O(ln2(k/δ)

√
k) encoded symbols are required to recover the source

data with a successful probability at least 1-δ.
Robust soliton distribution is not only viable but also practical. The analysis of robust soliton

distribution based on probability and statistics is sound if k is infinite. However, in practice,
source data cannot be divided into infinite pieces, and as a consequence, the behavior of LT
codes will not exactly match the mathematical analysis, especially when k is small. Furthermore,
robust soliton distribution is a general purpose design. It provides a convenient way to construct
a distribution works well but not optimally. In this work, we try to customize the degree
distribution by using multiobjective optimization tools proposed in the field of evolutionary
computation to simultaneously satisfy multiple performance requirements.

3 Multiobjective Problems

Multiobjective optimization problems (MOPs) are very important in real-world applications.
There are two or more objectives should be considered simultaneously and these objectives usu-
ally conflict with each other. The most intuitive approach to deal with MOPs is to transform
them into single objective problems (SOPs) by using weights on the objectives and creating a
weighted sum. The approach makes the problem solvable by available tools based on math-
ematics or heuristics for SOPs. However, such weights oftentimes cannot be pre-determined,
especially when the domain knowledge for the problem is unavailable. Furthermore, the best
solution to the transformed single-objective problem is merely one solution on the Pareto front
(PF) of the MOP. Hence, better optimization frameworks must be developed to fulfill the need
of handling MOPs.

Due to the limitation of traditional mathematical methods for MOPs, more and more re-
searchers try to solve MOPs in a direct way and to approximate the Pareto front as complete as
possible. Their goal is to provide a set of solutions which are partially optimal. Many advanced
multiobjective algorithms have been proposed in the literature. Some of them try to approx-
imate the PF by using mathematical models, and others are developed based on evolutionary
algorithms. A hybrid framework makes use of decomposition methods in mathematics and the
optimization paradigm in evolutionary computation was proposed and called multiobjective evo-
lutionary algorithm based on decomposition (MOEA/D) [8]. MOEA/D was proposed and shown
to perform well on MOPs with complicated Pareto set shapes [9].

In this paper, we propose the use of MOEA/D to optimize the multiple objectives of LT codes.
Degree distributions significantly better than robust soliton distribution are expected. Moreover,
exploring a complete Pareto front can help researchers to analyze the trade-off between overhead

4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Degree

D
is

tr
ib

u
ti

o
n

(a) Ideal soliton distribution

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Degree

D
is

tr
ib

u
ti

o
n

(b) Robust soliton distribution

Figure 1: Example of soliton distributions (k = 30)

5

and operational cost of LT codes. In the following section, we will give the formal description
of MOPs and the MOEA/D framework, respectively.

3.1 Formal description of MOPs

In real-world applications, many problems are actually multiobjective optimization problems,
and single-objective problems are a special case. A multiobjective problem can be formally
stated as:

minimize F (x) = (f1(x), . . . , fm(x))

subject to
{

x ∈ Ω
C(x) = (c1(x), . . . , ct(x)) ≥ 0

, (3)

where Ω is called the decision space or variable space, and Rm is the objective space. C(x)
represents the problem constraints and defines the feasible regions in the decision space according
to problem properties [10]. F : Ω → Rm consists of m objective functions. If Ω is a closed and
connected region in Rn and all the objective functions are continuous, we call the problem a
continuous MOP.

In order to consider the tradeoff between objectives, the concept of domination between
solutions is defined. Let u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Rm be two vectors. u is said to
dominate v if ui ≤ vi for all i = 1, . . . ,m, and u 6= v. A point x∗ ∈ Ω is Pareto optimal if there
is no x ∈ Ω such that F (x) dominates F (x∗). The set of all the Pareto optimal points, is called
the Pareto set (PS). The set of all the objective vectors corresponding to the PS is called the
Pareto front (PF), where PF = {F (x) ∈ Rm|x ∈ PS} [11].

Instead of searching for a single or just a few (Pareto) optimal solutions as in solving single-
objective problems, the goal of handling multiobjective problems is to find the Pareto front as
well as the Pareto set of the problem. Given the limited computational resource, including time
and storage, how to provide good solutions in terms of both quality and spread is the key and
challenging task for multiobjective optimization.

3.2 MOEA based on decomposition

One of the key ideas of MOEA/D is the use of a decomposition method to transform a MOP
into a number of single-objective optimization problems. MOEA/D attempts to optimize these
single-objective problems collectively and simultaneously instead of trying to directly approxi-
mate the Pareto front as many other evolutionary algorithms do because each optimal solution
to these SOPs is a Pareto optimal solution to the given MOP. The collection of these opti-
mal solutions is an approximation of the Pareto front. Weighted sum, Tchebycheff approach,
boundary intersection, and any other decomposition approaches can serve this purpose. In the
present work, the Tchebycheff approach [11] is adopted. A single-objective optimization problem
obtained by decomposing the given MOP can be represented as

minimize g(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |}
subject to x ∈ Ω

(4)

where λ = (λ1, . . . , λm) is a vector of weights, i.e., λi ≥ 0 for all i = 1, . . . ,m and
∑m

i=1 λi = 1.
z∗ = (z∗1 , . . . , z

∗
m) is the reference point, i.e., z∗i = min{fi(x)|x ∈ Ω} for each i = 1, . . . ,m.

Let λ1, . . . , λN be a set of N weight vectors. If we use a large N and select the weight
vectors properly, all the optimal solutions of the SOPs transformed from decomposition will well
approximate the Pareto front. Moreover, we can define a neighborhood relationship for each
SOP by computing Euclidean distances between weight vectors. SOPs which are considered
neighbors are assumed to have similar fitness landscapes and their optimal solutions should be

6

Table 1: Parameter settings of MOEA/D

Parameter Value
N 50
T 10

Max Gen. 150

close in the decision space. MOEA/D exploits the information sharing among SOPs which are
neighbors to accomplish the optimization task effectively and efficiently. The specification of
MOEA/D is stated as follows:

• Inputs:

– decision variables.

– objective functions.

– N : the number of subproblems.

– T : the number of neighbors for each subproblem.

– stopping criteria.

• Outputs:

– Approximation to the PS : x1, . . . , xN .

– Approximation to the PF : F (x1), . . . , F (xN).

4 Experiments

The experiment implementation is described in this section. MOEA/D is a well-developed tool
and has the characteristic of black-box optimization like other evolutionary algorithms. As
described in section 3.2, only input and output should be handled properly. Section 4.1 shows
how to encode a degree distribution into decision variables, and the objective functions are given
in section 4.2. Table 1 lists the other algorithmic parameter settings of MOEA/D.

4.1 Decision Variables

The first step to use an evolutionary algorithm is to encode the decision variables of the op-
timization problem. It is not difficult in this study because a degree distribution can directly
form a real-valued vector. In the evaluation phase, a real-valued vector of arbitrary values can
be interpreted as a probability distribution, i.e., a degree distribution, with normalization. Such
an operation does not change the feasibility, although the problem complexity may be slightly
increased. The definition of degree distributions tells us that d ≤ k. For a specific source symbol
size k, obviously the problem dimensions is at most k. However, according to the LT encod-
ing/decoding operations, we usually do not need non-zero probabilities on every single degree.
Observing the soliton distribution and considering the belief propagation algorithm, there is
no necessary degree except 1, which ensures the start of belief propagation. As a result, we
optimize a selected subset of degrees in the present work. We choose some particular degrees,
{1,2,3,4,5,7,9,13,17,23} to form the decision variables according to the experience. Different
subsets of degrees may change the numerical results of experiments results, but the soundness
of this paper will be not be affected.

7

4.2 Objectives

In this paper, degree distributions are optimized for two different objectives. The first indicator
to evaluate efficiency of LT codes is overhead ε. The redundancy are traded for the benefit of
fountain codes and those extra encoded symbols increase the cost when they are transmitted
to the receiver. In most application, overhead is required to be as low as possible because the
transmission is usually expensive. In our simulation of LT codes, encoded symbols are provided
unlimitedly until source data are fully recovered. The average required codewords are calculated
as the fitness. The other objective is the computational cost of the encoding and decoding
process. Such an objective value can be estimated with the mean of degree distributions. If
Md denotes the mean value of a degree distribution, the number of how many times XOR is
executed can denote as (Md− 1) ∗ ε. There is a trade-off between ε and Md because when Md is
greater, fewer encoded symbols may be required, and therefore, ε is less. On the other hand, Md

is the operational cost, which is the average number of XOR operators that have to be executed.

5 Experimental Results

For an n-objective problem, a solution can be represented as a point in the n-dimensional space,
and all the non-dominated solutions form a partial optimal set called the Pareto front. The
mission of multiobjective algorithms is to approximate the Pareto front. Hence, the solutions
should well spread to provide sufficient choices to the decision marker. In our experiments,
overhead and operational cost of LT codes are minimized together. Both the minimal value of
objectives are expected. Clearly, a degree distribution with the minimal operational cost has
only non-zero probability on degree one because in such a case, no encoding operation is needed.
The case is the pure transmission without any channel coding, and it is a special case in the
LT code framework. As regards the other objective, overhead has a lower bound at ratio 1.
Each encoded symbol can generate a new ripple to recover a source symbol ideally such that
at least k encoded symbols are required to reconstruct the original data. Different from the
operational cost, such a degree distribution is not yet discovered and even its existence is not
proved. Figs. 2, 3, and 4 show the optimization process and final results for k=100, 300, and 500,
respectively. After 150 generations, a significant PF is represented by fifty individual points.
The solution with the minimal operational cost in expectation has been found, but the best
overhead is 1.2068. Example individuals are listed in Table 2 and simulated in Fig. 5, where
the best value of overhead and operational cost are presented in columns 2 and 3. Columns 4
and 5 give the average overhead and execution counts of XOR in numerical simulations. Fig. 5
demonstrates the degree distribution and simulation results.

To our limited knowledge, there is no guideline to design a robust soliton distribution for
some particular coding behavior. In order to fairly compare our optimized results with that of
robust soliton distribution, MOEA/D is also applied to optimize the parameters of robust soliton
distribution, which are c and δ. The PF of optimized robust soliton distributions is presented in
Fig. 7. In the dimension of operational cost, optimized robust soliton distributions deliver very
similar results because robust soliton distributions can also become the degree distribution with
only non-zero probability on degree one if the appropriate parameters are given. However, there
are significant differences in the other dimension. The performance are quite limited, and such a
situation is caused by the fixed formula of robust soliton distribution. The figure demonstrates
numerous better degree distributions that are very different from the design of robust soliton
distribution. There degree distributions can be discovered by optimization algorithms proposed
in the realm of evolutionary computation.

8

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

50

100

150

200

250

300

350

Overhead

O
pe

ra
tio

na
l C

os
t

Gen. 10
Gen. 50
Gen. 100
Gen. 150

Figure 2: Evolutionary process during the optimization for k = 100

1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

Overhead

O
pe

ra
tio

na
l C

os
t

Gen. 10
Gen. 50
Gen. 100
Gen. 150

Figure 3: Evolutionary process during the optimization of k = 300

9

Table 2: Optimized arbitrary degree distributions (k = 100)

Individual Best Overhead Best Cost AVG. Overhead XOR
1 4.8442 0.00042 5.1958 0.038
25 2.5608 1.29873 2.6655 407.026
35 2.0294 1.85193 2.1485 558.667
45 1.4564 2.5135 1.57211 603.742
50 1.2068 2.93541 1.2718 843.669

Table 3: Optimized robust soliton distributions (k = 100)

Individual Best Overhead Best Cost AVG. Overhead XOR
1 4.8080 0.00552 5.1323 0.377
25 3.1244 1.74314 4.1662 125.455
35 2.0708 2.76115 2.6217 324.580
45 1.5194 3.41297 1.9278 471.753
50 1.2530 6.71008 1.3097 1141.46

1 2 3 4 5 6 7
0

500

1000

1500

2000

Overhead

O
pe

ra
tio

na
l C

os
t

Gen. 10
Gen. 50
Gen. 100
Gen. 150

Figure 4: Evolutionary process during the optimization of k = 500

10

1 2 3 4 5 7 9 13 17 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

P
ro

b
ab

ili
ty

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 5.1959

Overhead

S
u

cc
es

sf
u

l r
at

e

(a) Individual 1

1 2 3 4 5 7 9 13 17 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

P
ro

b
ab

ili
ty

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 2.6656

Overhead
S

u
cc

es
sf

u
l r

at
e

(b) Individual 25

1 2 3 4 5 7 9 13 17 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Degree

P
ro

b
ab

ili
ty

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 2.1485

Overhead

S
u

cc
es

sf
u

l r
at

e

(c) Individual 35

1 2 3 4 5 7 9 13 17 23
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Degree

P
ro

b
ab

ili
ty

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 1.5721

Overhead

S
u

cc
es

sf
u

l r
at

e

(d) Individual 45

1 2 3 4 5 7 9 13 17 23
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Degree

P
ro

b
ab

ili
ty

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 1.2718

Overhead

S
u

cc
es

sf
u

l r
at

e

(e) Individual 50

Figure 5: Simulation results of optimized arbitrary degree distributions

11

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

P
ro

b
ab

ili
ty

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 5.1323

Overhead

S
u

cc
es

sf
u

l r
at

e

(a) Individual 1, c = 9.72 and δ = 0.00107

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Degree

P
ro

b
ab

ili
ty

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 4.1662

Overhead
S

u
cc

es
sf

u
l r

at
e

(b) Individual 25, c = 1.634 and δ = 0.185

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Degree

P
ro

b
ab

ili
ty

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 2.6217

Overhead

S
u

cc
es

sf
u

l r
at

e

(c) Individual 35, c = 2.146 and δ = 0.978

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Degree

P
ro

b
ab

ili
ty

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 1.9278

Overhead

S
u

cc
es

sf
u

l r
at

e

(d) Individual 45, c = 0.96 and δ = 0.601

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Degree

P
ro

b
ab

ili
ty

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 AVG : 1.3097

Overhead

S
u

cc
es

sf
u

l r
at

e

(e) Individual 50, c = 0.0521 and δ = 0.931

Figure 6: Simulation results of optimized robust soliton distributions

12

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

Overhead

C
om

pl
ex

ity

Robust Soliton
Optimized

Figure 7: Comparison between the optimized arbitrary degree distribution and robust soliton
distribution

6 Conclusions

This paper proposed the use of multiobjective evolutionary algorithms to optimize the degree
distribution in LT codes. Overhead and operational cost were considered as two objectives
and optimized simultaneously by using MOEA/D. The experimental results were promising and
indicated that the Pareto front was well described. These results might also help researchers to
better understand the behavior of LT codes. For applications of different types and natures, LT
codes will be more efficient if choosing a specifically appropriate degree distribution is possible.
Not only more choices of degree distributions are available, but also much better performance
than that delivered by robust soliton distribution can be achieved, because most robust soliton
distributions are dominated by the solutions discovered with MOEA/D in the experiments.

An alternative approach which may be better than robust soliton to design a degree distri-
bution for LT codes is given in this study. While LT codes are already employed in real-world
communication apparitions, such as 3GPP (mobile phone specification), the degree distribution
is proven able to be customized to satisfy different requirements by evolutionary algorithms.
The suitability of degree distributions will much enhance the performance of those applica-
tions. Moreover to better understand the behavior of LT codes will help the improvement of
LT codes. Our final results show that some better degree distributions are beyond the model
of robust soliton distribution. The theoretical analysis will be conducted on these newly discov-
ered distributions in our future work. An advanced model for degree distributions of which the
performance approximates the Pareto front can be expected.

13

Acknowledgments

The work was supported in part by the National Science Council of Taiwan under Grant NSC
98-2221-E-009-072. The authors are grateful to the National Center for High-performance Com-
puting for computer time and facilities.

References

[1] D. J. C. MacKay, “Fountain codes,” in The IEE Seminar on Sparse-Graph Codes. IEE,
2004, pp. 1–8.

[2] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach to
reliable distribution of bulk data,” in Proceedings of the ACM SIGCOMM ’98 conference
on Applications, technologies, architectures, and protocols for computer communication.
Vancouver, British Columbia, Canada: ACM, 1998, pp. 56–67.

[3] M. Luby, “Lt codes,” in Proceedings of the 43rd Symposium on Foundations of Computer
Science. IEEE Computer Society, 2002, p. 271.

[4] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of LT codes,” in Proceedings
of the IEEE International Symposium on Information Theory, ISIT 2004, 2004, p. 39.

[5] E. A. Bodine and M. K. Cheng, “Characterization of luby transform codes with small mes-
sage size for low-latency decoding,” in Communications, 2008. ICC ’08. IEEE International
Conference on, 2008, pp. 1195–1199.

[6] E. Hyytia, T. Tirronen, and J. Virtamo, “Optimal degree distribution for lt codes with small
message length,” in INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, 2007, pp. 2576–2580.

[7] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical approach,” in
Proceedings of the American Association of Artificial Intelligence National Conference on
AI, 1982, pp. 133–136.

[8] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on decom-
position,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712–731,
2007.

[9] H. Li and Q. Zhang, “Multiobjective optimization problems with complicated pareto set,
moea/d and nsga-ii,” IEEE Transactions on Evolutionary Computation, 2008, in press.

[10] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evo-
lutionary optimization,” in First International Conference on Evolutionary Multi-Criterion
Optimization. Springer Verlag, 2001, pp. 284–298.

[11] K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic, 1999.

14

	Introduction
	LT codes
	Encoding and decoding
	Soliton distribution

	Multiobjective Problems
	Formal description of MOPs
	MOEA based on decomposition

	Experiments
	Decision Variables
	Objectives

	Experimental Results
	Conclusions

