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Abstract

Multi-objective optimization is an essential and challenging topic in the domains of en-
gineering and computation because real-world problems usually include several conflicting
objectives. Current trends in the research of solving multi-objective problems (MOPs) re-
quire that the adopted optimization method provides as approximation of the Pareto set
such that the user can understand the tradeoff between objectives and therefore make the
final decision. Recently, an efficient framework, called MOEA/D, combining decomposition
techniques in mathematics and optimization methods in evolutionary computation was pro-
posed. MOEA/D decomposes a MOP to a set of single-objective problems (SOPs) with
neighborhood relationship and approximates the Pareto set by solving these SOPs. In this
paper, we attempt to enhance MOEA/D by proposing two mechanisms. To fully employ the
information obtained from neighbors, we introduce a guided mutation operator to replace
the differential evolution operator. Moreover, a update mechanism utilizing a priority queue
is proposed for performance improvement when the SOPs obtained by decomposition are
not uniformly distributed on the Pareto font. Different combinations of these approaches
are compared based on the test problem instances proposed for the CEC 2009 competition.
The set of problem instances include unconstrained and constrained MOPs with variable
linkages. Experimental results are presented in the paper, and observations and discussion
are also provided.

1 Introduction

Handling multi-objective optimization problems (MOPs) is a very important issue for real-world
applications, because in real-world applications, there are usually two or more objectives which
conflict with each other. These conflicting objectives pose a challenge for optimization algorithm
developers because there is no general rule to appropriately combine these objectives into a single
one and decision makers may wish to know all the possible tradeoffs that they can have. Tradi-
tionally in mathematics, the procedure to solve a multi-objective problem is to firstly transform
it into a single-objective problem (SOP) by using weights on the objectives. This method makes
the problem solvable by many existing, well-developed tools based on mathematics or heuris-
tics. However, such weights oftentimes cannot be pre-determined, especially when the domain
knowledge for the problem is unavailable. Furthermore, the best solution to the transformed
single-objective problem is merely one solution on the Pareto front (PF) of the MOP. Hence,
better optimization frameworks must be developed to fulfill the need of solving MOPs.

Due to the limitation of traditional mathematical methods for MOPs, more and more re-
searchers try to solve MOPs in a direct way and to approximate the PF as complete as possible.
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Their goal is to provide a set of solutions which are partially optimal. Many advanced multi-
objective algorithms have been proposed in the literature. Some of them try to approximate
the PF by using mathematical models [1, 2], and some are developed based on evolutionary
algorithms [3, 4, 5, 6, 7, 8]. A hybrid framework makes use of decomposition methods in math-
ematics and the optimization paradigm in evolutionary computation was proposed and called
MOEA/D-SBX [9]. Later, a version of MOEA/D employing the differential evolution (DE) op-
erator, MOEA/D-DE, was proposed and shown to perform well on the MOPs with complicated
Pareto set shapes [10].

MOEA/D uses a decomposition method to convert the given MOP into a set of SOPs and
tries to approximate the Pareto front by solving these SOPs all together. According to the
employed decomposition method, we can calculate the abstract distance between each SOP and
define the neighborhood relationship. The SOPs in one neighborhood are assumed to have
similar fitness landscapes, and their respective optimal solutions may probably be close to each
other. The goal of this paper is to extend the framework of MOEA/D-DE and enhance the
utilization of the information shared among neighbors. Firstly, we replace DE operator with a
guided mutation operator for reproduction and take the SOP’s neighbors, as the guided target.
Secondly, we propose a new update mechanism with a priority order. The update mechanism can
improve MOEA/D’s performance when the SOPs obtained by decomposition are not uniformly
distributed on the Pareto font. Finally, the set of test instances for the CEC 2009 competition
is adopted to evaluate the performance of the various combinations of these mechanisms.

The remainder of this paper is organized as follows. Section 2 describes the formulation
of multi-objective optimization problems. Section 3 introduces the main MOEA/D framework
with the guided mutation operator and the priority update mechanism. Experimental results
and discussion are given in section 4. Finally, section 5 concludes this paper.

2 Multi-objective Problems

Most real-world problems are multi-objective optimization problems (MOPs), of which single-
objective problems are a special case. For example, in many engineering problems, there are
usually at least two conflicting objectives, performance and cost. Formally, a MOP can be stated
as:

minimize F (x) = (f1(x), . . . , fm(x))

subject to
{

x ∈ Ω
C(x) = (c1(x), . . . , ct(x)) ≥ 0

, (1)

where Ω is called decision space or variable space, and Rm is the objective space. C(x) repre-
sents the problem constraints and defines the feasible regions in the decision space according to
problem properties [11]. F : Ω → Rm consists of m real-valued objective functions. If Ω is a
closed and connected region in Rn and all the objective functions are continuous, we call the
problem a continuous MOP.

In order to consider the tradeoff between objectives, the concept of domination between
solutions is introduced. Let u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Rm be two vectors. u is said
to dominate v if ui ≤ vi for all i = 1, . . . ,m, and u 6= v. A point x∗ ∈ Ω is Pareto optimal if
there is no x ∈ Ω such that F (x) dominates F (x∗). The set of all the Pareto optimal points, is
called the Pareto set (PS ). The set of all the objective vectors corresponding to the PS is called
the Pareto front (PF), where PF = {F (x) ∈ Rm|x ∈ PS} [12].

Instead of searching for a single or just a few optimal solutions as in solving single-objective
problems, the goal of handling multi-objective problems is to find the Pareto front as well as the
Pareto set of the problem. Given the limited computational resource, including time and storage,
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how to provide good solutions in terms of both quality and spread is the key and challenging
task for multi-objective optimization.

3 Methodology

In this section, we will firstly introduce the general framework of MOEA/D for handling multi-
objective optimization problems. The new operator and updating mechanism proposed in this
paper for enhancing MOEA/D are then described in the following sections.

3.1 MOEA/D Framework

One of the key ideas of MOEA/D is the use of a decomposition method to transform a MOP
into a number of single-objective optimization problems (SOPs). MOEA/D attempts to optimize
these single-objective collectively and simultaneously instead of trying to directly approximate
the Pareto front as many other evolutionary algorithms do because each optimal solution to these
SOPs is a Pareto optimal solution to the given MOP. The collection of these optimal solutions
is an approximation of the Pareto front. Weighted sum, Tchebycheff approach, boundary inter-
section, and any other decomposition approaches can serve this purpose. In the present work,
the Tchebycheff approach [12] in adopted. A single-objective optimization problem obtained by
decomposing the given MOP can be represented as

minimize g(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i }
subject to x ∈ Ω

(2)

where λ = (λ1, . . . , λm) is a vector of weights, i.e., λi ≥ 0 for all i = 1, . . . ,m and
∑m

i=1 λi = 1.
z∗ = (z∗1 , . . . , z

∗
m) is the reference point, i.e., z∗i = min{fi(x)|x ∈ Ω} for each i = 1, . . . ,m.

Let λ1, . . . , λN be a set of N weight vectors. If we use a large N and select the weight vectors
properly, all the optimal solutions of the SOPs from decomposition will well approximate the
Pareto front. Moreover, we can define a neighborhood relationship for each of the SOPs by
computing Euclidean distances between weighted vectors. SOPs which are considered neighbors
will have similar fitness landscapes and their optimal solutions should be close in the decision
space. MOEA/D exploits the information sharing among subproblems which are neighbors to
accomplish the optimization task effectively and efficiently. The framework of MOEA/D can be
described as follows:

• Global structure:

– a population of N search points x1, . . . , xN ∈ Ω, where xi is the solution to the ith
subproblem.

– FV 1, . . . , FV N , where FV i is the F-value of xi, i.e., FV i = F (xi) for each i =
1, . . . , N .

– z = (z1, . . . , zm), where zi is the best value found so far for objective fi.

– a priority queue for subproblem indexes Q.

• Inputs:

– the multi-objective problem.

– stopping criteria.

– N : the number of subproblems.

– T : the number of neighbors for each subproblem.
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– δ: the probability with which the parent solutions are selected from the neighborhood.
– nr: the maximal copies of a new child in update.
– pm: the mutation ratio for SBX in guided mutation.

• Outputs:

– Approximation to the PS : x1, . . . , xN .
– Approximation to the PF : F (x1), . . . , F (xN ).

• Procedure

– Step 1) Initialization

∗ Step 1.1) Compute the Euclidean distances between any two weight vectors
and determine the T closest weight vectors to each weight vector. For each
i = 1, . . . , N , set B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the T closest weight
vectors to λi.

∗ Step 1.2) Generate an initial population x1, . . ., xN by uniformly randomly
sampling from Ω. Set FV i = F (xi).

∗ Step 1.3) Insert the subproblem indexes into Q at random.
∗ Step 1.4) Initialize z = (z1, . . . , zm) by setting

zj = min
1≤i≤N

fj(xi).

– Step 2) Update

∗ Step 2.1) Selection of targets: Generate a random number r which is uni-
formly distributed in [0, 1] and set

P =
{

B(i) if r < δ,
{1, . . . , N} otherwise.

∗ Step 2.2) Reproduction: Randomly select an index from P as the guided
target and generate a new solution y by using guided mutation.

∗ Step 2.3) Repair: If an element of y is out of the boundary of Ω, its value is
reset to be a random value within the range.

∗ Step 2.4) Update of reference point z: For each j = 1, . . . ,m, if zj > fi(y),
set zj = fi(y).

∗ Step 2.5) Update of solutions: Set c = 0 and for each index j of the sub-
problem in the priority queue, conduct the following steps:
· 1) If g(y|λj , z) ≤ g(xj |λj , z), set xj = y, FV j = F (y) and c = c + 1.
· 2) If c = nr, go to Step 3.

– Step 3) Stopping criteria checking If the stopping criterion is satisfied, stop and
output x1, . . . , xN and F (x1), . . . , F (xN ). Otherwise, go to Step 2.

There are some structures to be maintained at each generation of MOEA/D, include the
whole population, reference point z, and priority queue Q. Each subproblem i in the population
has its own solution point xi, fitness value FV i, evaluation function with a weight vector λi, and
a neighbor list B(i). In step 1, solution points of generation 0 are initialized by sampling in search
space at random. The corresponding fitness value and global z are determined accordingly. After
initialization, the evolutionary process begins from step 2. For different operators, offspring are
produced and repaired to ensure the feasibility. The whole population and reference point are
updated by these newly created offspring in step 2.5. If some stoping condition is satisfied in
step 3, the algorithm terminates. Otherwise, it goes back to step 2.1.

4



Figure 1: Illustration of guided mutation

3.2 Guided Mutation

A reproduction operator is used in step 2.2 of the MOEA/D framework. When MOEA/D was
initially proposed, a simple simulated binary crossover (SBX) was adopted and implemented.
[10] introduces the differential evolution (DE) operator into MOEA/D, and the integration is
called MOEA/D-DE. In this paper, we attempt to replace the DE operator with guided muta-
tion, which was proposed in [13]. The neighborhood relationship is very important in MOEA/D
because it models and maintains the structure of those SOPs obtained by decomposition. Such
a property is considered highly compatible with the operation of guided mutation. As aforemen-
tioned, the optimal solutions of subproblems which are neighbors will be close to each other,
because their fitness landscapes are similar. It is important to choose a neighbor as the guided
target when new solutions are created. At each operation of guided mutation in step 2.2, a
neighbor or a subproblem t is selected from P based on the probability δ, and then a new
solution y can be generate according to Equation (4).

H = (H1, . . . ,Hm)

where Hi =
{

N(0, 1) with probability pm

0 with probability 1− pm

(3)

y = x + 0.5(t− x)×N(0, 1) + R ∗H

where R =
{

0.1|t− x| if 0.1|t− x| > µ
µ otherwise.

(4)

New solution y is composed of three components. The first part is the current position of x. The
second part is the guided vector derived from target t, and it is also the main direction of search.
However, the new solution will get stuck in some local optimum if x is very close to t. For the
third part, we attempt to avoid the situation by appending a simple mutation. The mutation
step R here is decided by distance, |t − x|, and bounded by parameter µ. Figure 1 illustrates
how a new solution is generated. The ellipse represents the contour line of equal probability
density.
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(a)

(b)

Figure 2: (a) The update queue is initialized at random, and the processing order is shown; (b)
The queue state is shown after two successful updates

3.3 Priority Update

The original update mechanism in MOEA/D is to randomly pick an index from P in step 2.1
and do the update checking. Parameter nr limits the maximal time of success updates, so
it is possible that some subproblem is not updated for indefinitely many generations. Such a
situation is similar to the issue of “starvation” in the process scheduling in operating systems
and may lead those subproblems to be far away from other search points of the population in
the decision space. The probability to update them will become lower and lower. A uniform
update mechanism should be able to take care of this problem. In the present work, a new
update mechanism is introduced. Initially, all subproblems are randomly allocated in a priority
queue. When each time we update the best solution to a subproblem, the element at the head
of the queue will be checked first and then others in the order specified by the queue. If the best
solution of any subproblem is successfully updated, the subproblem will be moved back to the
tail of the queue, similar to the process adopted in the priority-scheduling using in operating
systems. Another difference of this mechanism lies in the selection of parent solutions. For each
evaluation, we take the element at the queue tail, which is the newly updated one, as a parent,
because we are more interested in the area close to the newly generated individual. Figure 2(a)
shows the initialization and processing flow of priority update. Figure 2(b) displays the queue
state change of Figure 2(a) after some SOPs are updated.

4 Experimental Results

For a fair comparison, a new set of test problem instances is used to verify the MOEA/D
enhancements proposed in this paper. We extend MOEA/D-DE to MOEA/D-GM and adopt
the new update mechanism. There are four combinations shown in Table 1 tested in the series
of experiments. In section 4.1, we firstly introduce the test problem instances designed for the
CEC2009 competition. Section 4.2 describes all the parameter settings used in the experiments
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Table 1: Combinations of different operators and update mechanism

Legend Description
DE MOEA/D with differential evolution [10]
GM MOEA/D with guided mutation
QDE MOEA/D-DE + priority update
QGM MOEA/D-GM + priority update

and provides some guidelines of these parameters. Section 4.3 shows the experimental results,
and finally some discussion are given in section 4.4.

4.1 Test Instances of the CEC 2009 Competition

In order to develop robust, effective, and efficient evolutionary algorithms to solve multi-objective
optimization problems, we are in need of various problem models. There have been several test
problem sets proposed in the literature. Continuous multi-objective problems with geometrical
shape of the Pareto set were widely used in early days [14, 15, 16]. However, most of their
PS shapes are strikingly simple. Some researchers started to consider that the test instances
with more complicated PS shapes are necessary for simulating real-world problems and that
variable linkages should be introduced into the test instances [17, 18, 19]. For the CEC 2009
competition, Zhang et al. propose a new set of test problem instances, including constrained and
unconstrained problems with complicated PS shapes [20]. Each problem explicitly defines the
objective functions, variable dimensions, search spaces, and constraint conditions. By adopting
the benchmark, we compare different approaches proposed in the study in terms of a performance
metric called IGD value. Let P ∗ be a set of points uniformly distributed on the Pareto front
and A be the approximation obtained by the algorithm. IGD represents the average distance
from P ∗ to A and is defined as

IGD(A,P ∗) =
∑

v∈P ∗ d(v,A)
|P ∗|

, (5)

where d(v,A) is the minimum Euclidean distance between v and the points in A. If the points
in set P ∗ can appropriately represents the Pareto front, IGD can measure both the diversity
and convergence of set A. Obviously, set A with a low IGD value must closely fit the Pareto
front and may not miss any part of the whole Pareto front.

4.2 Parameter Settings

All control parameters in the MOEA/D framework are listed in Table 2. Suggestion values
are also provided. T defines the number of neighbors of one SOP, and the value is highly
dependent on the decomposition size N as well as the shape of the Pareto front. According to
the assumption, the fitness landscapes of neighbors should be similar. If a larger N is adopted
and the SOPs distributes among the PF uniformly, there are more SOPs with similar problem
structures. We can use a larger T value for promoting information sharing. δ is the probability
used to decide whether the candidate of parents comes from only the neighbors or from all the
SOPs. In other words, it controls the weight of exploitation and exploration. Mutation rate pm

is a control factor for simulated binary crossover. It indicates probability that each variable xi

is changed or not. We set the value 1/M for expecting at least one dimension is mutated in a
uniform way. nr limits the maximum time of the successful updates. Another effect of nr is
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Table 2: General settings for the parameters

Parameter Value
T 0.1N

δ 0.9
pm 1/M

nr 2
µ 0.005

Table 3: IGD values for the unconstrained problems in 30 independent runs (mean/standard
deviation)

Instance DE GM QDE QGM
UF1 0.00521 / 0.00036 0.00633 / 0.00102 0.00533 / 0.00047 0.00615 / 0.00113
UF2 0.01252 / 0.00231 0.00671 / 0.00078 0.01058 / 0.00131 0.00643 / 0.00043
UF3 0.02302 / 0.01221 0.05611 / 0.06593 0.00942 / 0.00622 0.04293 / 0.03407
UF4 0.07161 / 0.00618 0.05167 / 0.00262 0.07234 / 0.00634 0.04756 / 0.00222
UF5 0.34555 / 0.16121 1.43955 / 0.31818 0.47337 / 0.10724 1.79191 / 0.51240
UF6 0.40846 / 0.20139 0.47195 / 0.19595 0.51346 / 0.19437 0.55634 / 0.14701
UF7 0.01916 / 0.05794 0.00773 / 0.00091 0.06546 / 0.14380 0.00755 / 0.00094
UF8 0.11889 / 0.02048 0.13253 / 0.04404 0.13275 / 0.03548 0.24456 / 0.08542
UF9 0.16424 / 0.03586 0.17016 / 0.04411 0.17394 / 0.02549 0.18784 / 0.02872
UF10 0.49816 / 0.08300 0.50213 / 0.06963 0.52501 / 0.08757 0.56460 / 0.10165

to control the number of copies of the offspring in next generation. Clearly, a large nr leads to
fast convergence, and the population will probably lose diversity in a sort time. µ defines the
lower bound of the step size of guided mutation. The functionality of µ is to avoid ineffective
searching in a local region when the guided target is very close to the parent.

4.3 Results

The detailed definition of the CEC 2009 multi-objective test instances is presented in [20], and
the set P ∗ ∈ PF for IGD calculation is also available. Tables 3 and 4 record the final results
after 300,000 function evaluations in 30 independent runs. The first value is the mean and the
second value is the standard deviation. Furthermore, we show the evolution of IGD values in
Figures 3 and 4. The computing environment is a Windows PC with 1.8Ghz AMD CPU and
2GB RAM. Both the algorithm and test instances are programmed in C++. We also compare
the CPU time in Table 5.

4.4 Discussion

In this section, we will discuss some observations of the results. There are four combinations
with different operators and update methods. None of them outperforms the others on all test
instances. In the test set, each test instance has very different properties as well as PS shapes.
Some instances are well handled by MOEA/D-DE, but some are better handled by MOEA/D-
GM. The main difference of GM from DE is that GM can generate offspring in a broader region.
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Figure 3: Mean IGD values for the unconstrained problems in 30 independent runs
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Figure 4: Mean IGD values for the constrained problems in 30 independent runs
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Table 4: IGD values for the constrained problems in 30 independent runs (mean/standard
deviation)

Instance DE GM QDE QGM
CF1 0.01064 / 0.00304 0.01103 / 0.00279 0.01035 / 0.00297 0.01081 / 0.00250
CF2 0.01555 / 0.01054 0.01264 / 0.01318 0.01274 / 0.01039 0.00800 / 0.00999
CF3 0.28376 / 0.13444 0.43359 / 0.11548 0.40955 / 0.15647 0.51344 / 0.07143
CF4 0.04085 / 0.02022 0.05561 / 0.05579 0.04881 / 0.04749 0.07075 / 0.10144
CF5 0.28718 / 0.13048 0.46447 / 0.18780 0.43485 / 0.12327 0.54456 / 0.17231
CF6 0.20718 / 0.00014 0.20705 / 0.00010 0.20719 / 0.00013 0.20712 / 0.00010
CF7 0.41195 / 0.10696 0.50025 / 0.09402 0.41989 / 0.15710 0.53558 / 0.10030
CF8 0.39420 / 0.10749 0.40612 / 0.11071 0.38222 / 0.09630 0.40564 / 0.12824
CF9 0.13038 / 0.01364 0.14077 / 0.01493 0.13034 / 0.01664 0.15193 / 0.04125
CF10 0.29824 / 0.08157 0.28541 / 0.08603 0.31539 / 0.12300 0.31387 / 0.10384

GM embeds a random factor in the mutation step and appends a simple mutation for the other
dimensions. GM is therefore more flexible to approximate the PS as a complicated curve like
instance UF2, UF4, and UF7. For UF3, the PS shape is a simple curve, and DE can efficiently
handle this problem. For the update mechanism proposed in this paper, according the results,
we can find that priority update also helps MOEA/D to get better performance in certain test
instances. From observations, MOEA/D has a weakness caused by decomposition when the
SOPs are not uniformly distributed on the Pareto front. Figure 5 illustrates such a situation.
The distances between these SOPs are not similar, even if we uniformly divide the weights of
objectives. Moreover, the difficulty degree of these SOPs will also not be identical. There are
two points in the update. One is to update the population with a priority order, and the other
is to take the latest individual as the parent in reproduction. If a SOP which is rarely updated,
it stays in front of the queue and gets more chances to be verified by a new child. Sometimes a
few SOPs are so simple that they got the optimal solutions and will not be updated any more.
Only the latest individual can reproduce offspring in this situation. Computational resource will
be automatically re-allocated and each SOP costs different numbers of evaluations based on the
difficulty. We can observe the situation in Table 5 as the additional cost of new updates takes
more CPU time.

5 Conclusions

This paper proposed extensions of the MOEA/D framework. We used the guided mutation
operator as the reproduction method to replace differential evolution in MOEA/D-DE. Guided
mutation makes use of neighborhood information efficiently. We also modified the update step
and proposed a new method utilizing a priority order implemented as a queue structure. Different
approaches were implemented and tested for performance on the test instances designed for the
CEC 2009 competition. The experimental results indicated that none of the combinations
outperforms the others on all problems. MOEA/D-GM gained some performance improvement
on the problems with a curvy Pareto set. Priority update enhanced the ability of the MOEA/D
framework to handle the non-uniform distribution of SOPs on the Pareto set. It is a critical
issue because we have no idea or information of the Pareto set before attempting to solve
the problem. MOEA/D uses an identical way to decompose all MOPs with different Pareto
set shapes. Furthermore, there are still many test instances difficult to handle, especially the

13



Table 5: Mean CPU time for each test instance (seconds)

Instance DE GM QDE QGM
UF1 6.507 5.468 13.052 12.159
UF2 7.083 6.062 13.870 12.915
UF3 7.657 7.373 14.320 13.387
UF4 7.135 6.062 13.941 12.921
UF5 6.638 5.567 12.062 12.246
UF6 7.309 6.630 13.342 12.980
UF7 6.847 6.454 13.007 13.313
UF8 15.212 19.658 28.196 27.069
UF9 14.601 19.475 28.419 27.343
UF10 15.418 16.380 28.466 28.139
CF1 5.024 4.145 11.887 10.793
CF2 5.277 4.469 12.268 11.063
CF3 5.454 4.606 11.774 10.873
CF4 5.436 4.395 11.989 10.949
CF5 5.460 4.517 12.078 11.188
CF6 5.453 4.563 12.143 11.090
CF7 5.456 4.557 11.716 10.852
CF8 7.596 9.492 24.706 24.170
CF9 10.015 11.891 28.658 28.512
CF10 9.593 11.538 27.895 27.226

ones with discontinuous Pareto fronts and the constrained problems. In such cases, simple
decomposition techniques like Tchebycheff are not applicable. Hence, along this line, developing
flexible decomposition methods should be considered an important future research direction.

Acknowledgments

The authors are grateful to the National Center for High-performance Computing for computer
time and facilities.

References

[1] M. M. Wiecek, W. Chen, and J. Zhang, “Piecewise quadratic approximation of the
non-dominated set for bi-criteria programs,” Journal of Multi-Criteria Decision Analysis,
vol. 10, no. 1, pp. 35–47, 2001.

[2] S. Ruzika and M. Wiecek, “Approximation methods in multiobjective programming,” Jour-
nal of Optimization Theory and Applications, vol. 126, no. 3, pp. 473–501, 2005.

[3] G. B. Lamont and D. A. V. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective
Problems. Kluwer Academic Publishers, 2002.

[4] K. C. Tan, E. F. Khor, and T. H. Lee, Multiobjective Evolutionary Algorithms and Appli-
cations (Advanced Information and Knowledge Processing). Springer-Verlag, 2005.

14



0

0.5

1

−1

−0.5

0

0.5

−0.5

0

0.5

1

Figure 5: Pareto set of UF2 with non-uniform decomposition

[5] C. A. Coello Coello, “An updated survey of ga-based multiobjective optimization tech-
niques,” ACM Computing Surveys, vol. 32, no. 2, pp. 109–143, 2000.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[7] H. Lu and G. G. Yen, “Rank-density-based multiobjective genetic algorithm and benchmark
test function study,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 4, pp.
325–343, 2003.

[8] C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with
particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 256–279, 2004.

[9] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decom-
position,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712–731,
2007.

[10] H. Li and Q. Zhang, “Multiobjective optimization problems with complicated pareto set,
MOEA/D and NSGA-II,” IEEE Transactions on Evolutionary Computation, 2008, in press.

[11] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evo-
lutionary optimization,” in First International Conference on Evolutionary Multi-Criterion
Optimization. Springer Verlag, 2001, pp. 284–298.

[12] K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic, 1999.

15



[13] C.-T. Hsieh, C.-M. Chen, and Y.-p. Chen, “Particle swarm guided evolution strategy,”
in Proceedings of ACM SIGEVO Genetic and Evolutionary Computation Conference 2007
(GECCO-2007), 2007, pp. 650–657.

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization test
problems,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2002),
2002, pp. 825–830.

[15] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms:
Empirical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000.

[16] V. L. Huang, A. K. Qin, K. Deb, E. Zitzler, P. N. Suganthan, J. J. Liang, M. Preuss,
and S. Huband, “Problem definitions for performance assessment of multi-objective opti-
mization algorithms: Special session on constrained real-parameter optimization,” Nanyang
Technological University, Singapore,” Technical Report, 2007.

[17] K. Deb, A. Sinha, and S. Kukkonen, “Multi-objective test problems, linkages, and evolu-
tionary methodologies,” in Proceedings of ACM SIGEVO Genetic and Evolutionary Com-
putation Conference 2006 (GECCO-2006), 2006, pp. 1141–1148.

[18] H. Li and Q. Zhang, “A multiobjective differential evolution based on decomposition for
multiobjective optimization with variable linkages,” in Proceedings of the 9th International
Conference on Parallel Problem Solving from Nature (PPSN IX), 2006, pp. 583–592.

[19] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based multiobjective
estimation of distribution algorithm,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 1, pp. 41–63, 2008.

[20] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari, “Multiobjective
optimization test instances for the CEC 2009,” Department of Computing and Electronic
Systems, University of Essex, UK,” Working Report, 2008.

16


	Introduction
	Multi-objective Problems
	Methodology
	MOEA/D Framework
	Guided Mutation
	Priority Update

	Experimental Results
	Test Instances of the CEC 2009 Competition
	Parameter Settings
	Results
	Discussion

	Conclusions

