Analysis on the facet of particle interaction in
particle swarm optimization

Ying-ping Chen
Pei Jiang

NCLab Report No. NCL-TR-~2008007
September 2008

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road
HsinChu City 300, TATWAN
http://nclab.tw/



Analysis on the facet of particle interaction in
particle swarm optimization

Ying-ping Chen and Pei Jiang
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan

{ypchen, pjiang}@nclab.tw

September 15, 2008

Abstract

In this paper, we analyze the behavior of particle swarm optimization (PSO) on the facet
of particle interaction. We firstly propose a statistical interpretation of PSO in order to
capture the stochastic behavior of the entire swarm. Based on the statistical interpretation,
we investigate the effect of particle interaction by focusing on the social-only model and
derive the upper and lower bounds of the expected particle norm. Accordingly, the lower
and upper bounds of the expected progress rate on the sphere function are also obtained.
Furthermore, the sufficient and necessary condition for the swarm to converge is derived to
demonstrate the PSO convergence caused by the effect of particle interaction.

1 Introduction

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart [I] in 1995, was
proposed according to an inspiration from the social behavior of insects or animals that the
exchanging and sharing of information among a group of individuals benefits the evolution of
the species. In PSO, the insects or animals are considered as particles flying through the multi-
dimensional search space and searching for the optimal position. The movement of particles
are affected by three factors: the inertia, personal experience (the cognitive part), and particle
interaction (the social part). PSO has been empirically shown that it is a very useful optimization
framework [2] for the easiness to implement and flexibility to use.

Although PSO has been widely applied in many research fields since it was proposed, the
theoretical analysis on PSO is still quite limited. To the best of our knowledge, the first anal-
ysis was proposed by Kenndy [3]. Particle trajectories for design choices were shown. Ozcan
and Mohan [, B] assumed fixed attractors and constant coefficients to demonstrate the particle
trajectory as a sinusoidal wave. With similar assumptions, Maurice and Kennedy [6] simplified
PSO to a deterministic dynamical system and analyzed its stability. Such simplified, determin-
istic versions of PSO or similar systems, employing a single particle, fixed attractors, or constant
coefficients, were analyzed by many researchers for stability, convergence, and parameter selec-
tion [0 [ @ M0, I1]. Kadirkamanathan, et. al. [I2] and Jian, et. al. [I3] started to consider the
randomness in acceleration coefficients, but attractors were still fixed. Away from the normal
PSO configuration, Emara and Fattah [I4] as well as Gazi and Passino [I5] analyzed PSO in a
continuous time setting.

Most of the existing studies do not provide analysis on the facet of particle interaction, which
is definitely an essential mechanism of PSO. In this paper, under more practical assumptions,



including multiple particles, unfixed attractors, and stochastic acceleration coefficients, we make
the first attempt to analyze the effect of particle interaction. In particular, we consider the PSO
system from a macrostate viewpoint, analyze the swarm behavior, and obtain theoretical results
on the progress rate as well as the convergence criterion.

The paper is organized as follows. In section [2] we will describe the particle swarm optimiza-
tion algorithm and propose the statistical interpretation. In section [3] we will analyze the mean
positions of particles by considering the effect of particle interaction and derive the expected
progress rate of the swarm on the sphere function. Next, we will look into the variance of the
particle positions and show that the swarm will converge under certain condition in section [}
Finally, section [5| summarizes and concludes this paper.

2 PSO and Particle Interaction

In this section, we will firstly describe the standard PSO algorithm and then discuss the opera-
tions of PSO step by step, followed by the proposal of the statistical interpretation.

2.1 The Standard PSO algorithm

First of all, for easily making an abstraction of PSO based on statistics and probabilistic distri-
butions, we restate the standard PSO system as the following algorithm:

Algorithm 1 (Standard PSO).
procedure STANDARD PSO(Objective function F : R” — R)
Initialize a swarm of m particles
while the stopping criterion is not satisfied do
Evaluate each particle

for particle i, ¢ =1,2,...,m do > Update the best positions
if 7(X;) < F(Pb;) then
Pb; — X;
if 7(Pb;) < F(Nb) then
Nb «— Pb;
end if
end if
end for
for particle i, 1 =1,2,...,m do > Generate the next generation

Vi(t + 1) — ’LUVi(t) + Cp(Pbi — Xi) + Cn(Nb — Xi)
Xi(t +1) « X;(t) + Vi(t +1)
end for
end while
end procedure

Throughout this paper, boldface is used to distinguish vectors from scalars, and ||-|| denotes
the L? norm of a vector. According to Algorithm [l we can see that a standard PSO system
comprises two main operations regarding information sharing and utilizing:

1. Updating attractors: Update the personal best position, Pb;, found by each particle, and
the neighborhood best position, Nb, found by any member within the neighborhood.

2. Updating particles: Update the velocities at time ¢ by using a linear combination of the
inertia, Vj(t), and the gravitation from the cognitive part, Pb;, and the social part, Nb,
respectively. w is the weight for the inertia and is usually a constant. C), and C,, are



random variables sampled from uniform distribution U(0,2¢c,) and U(0, 2¢,,) with ¢, > 0
and ¢, > 0 as acceleration coefficients. The position is then assigned according to the
current position with application of the updated velocity.

As we can observed, the inherent characteristics of PSO — the interactions among particles
— are implemented with the shared knowledge on the best position found by neighbors. When
a particle within the neighborhood locates a position of an objective value which is better than
F(NDb), the other particles will make corresponding adjustments and tend to go toward that
position. Therefore, the neighborhood attractor can be viewed as a channel through which each
particle can emulate the others, and the update of the neighborhood attractor can be considered
as a signal urging the swarm to adjust their movements in order to respond to the new discovery
in the search space.

2.2 A Macroscopic View on PSO

In spite of the importance, the effects of particle interaction in PSO are hardly investigated
in the literature. Although there are a number of remarkable theoretical studies that bring
insights into the properties and behaviors of PSO conducted in the past, most of those studies
are based on the assumption that the attractor is fixed. It seems to be an inevitable path to
simplify the PSO system to the extent that rigorous analysis can be done because the highly
decentralized property of a particle swarm leads the system away from a unified depiction of the
entire swarm. Each particle keeps its own position and memory, in the form of the inertia and
the cognitive part, Pb;. In addition to the personal experience, the swarm also shares collective
knowledge, Nb, and any slight change in these quantities substantially defines a new state for
the system. The analysis on the overall behavior of the swarm is thus beyond tractable due
to the complication of state transition, and the simplification of invariant attractors becomes
an unpleasant but necessary means that makes a particle able to be observed independently
without the interference from the other factors of the entire swarm.

As a consequence, in order to take particle interaction into consideration in the theoretical
analysis, an alternative interpretation of PSO that regards the swarm as a unity becomes neces-
sary. With this point of view, the state of a PSO system should be considered as a measurement
that reflects the overall behavior and characteristics of the swarm rather than as a detailed
configuration directly related to each individual particle. For this purpose, the development of
statistical mechanics may be a good example to learn from, especially the employment of sta-
tistical methods to bridge the macroscopic and microscopic descriptions. Accordingly, the state
of the entire swarm can be considered as the “macrostate” — an abstraction from the detailed
description of particles, i.e., the “microstate”. Hence in the macrostate space, the precise con-
figuration of particles are converted into a statistical abstraction and characterization toward
the entire swarm.

More specifically, the exact locations of particles are not traced but modeled and expressed
with a distribution 6(t) over R", and the velocities on each dimension are viewed as a random
vector V(t) € R™. To concentrate on the social behavior, i.e., the facet of particle interaction, we
use the social-only model of PSO categorized by Kennedy [I6], in which PSO works without the
cognitive component, to make the system more concise. The swarm size m is considered as the
number of realizations or samples of the distribution. As to the neighborhood attractor, since
the geographic knowledge about the search space is embodied in the positional distribution, it
can be viewed as the best observed value of the current time step. When the neighborhood
attractor is determined, the social gravitation is also accordingly determined. Formally, each
particle P; is a random vector sampled from 6(t), and its velocity vector Vj is distributed as
V(t). Since the neighborhood attractor is the best observed value, it can be defined as

P, := argmin{F(P1), F(P2),...,F(Pm)},



and each particle P; updates its position to Pj+wVij+C(P,—P;). The distributions of the next
time step (¢t + 1) and V(¢ + 1) are thus the statistical characterization, denoted as functions 7p
and 7y, of the observed values:

9(t+ 1) — TP(P17P27' 7Pm) ;
V(t—i—l) <—Tv(Pl,PQ,...,Pm;VI,VQ,...,Vm> .

By considering the PSO system in this way, the search/optimization process is conducted
through the repeated observations on the search space by realizing particles and modifying
the distribution to accommodate the newly discovered results. Furthermore, going deeper into
the notion of distribution, since the inertia weight w is usually a constant, V(¢) can be considered
redundant and may be removed because given two random vectors X ~ 0(t) and V ~ V(t), we
can simply let 6(¢) be the distribution of X’ := X + wV that includes the effects of both the
position and the velocity.

The remaining questions would be what distribution is suitable for the description of the
swarm without sacrificing too much essence of PSO and how to update the distribution as the
search process proceeds. Consider the random vector X ~ 6(t) and denote E [X] = p. If we
decompose the region

R:={y e R"|Prob{X =y} > 0}

into s disjoint regions Rj, Ra,..., Rs such that Prob{X € R;} = 1/s for all i € {1,2,...,s},
and each region is associated with a random variable of velocity V; ~ V(). Select a point x;
from each region R; respectively; when s is sufficiently large, the average behavior of the swarm
can thus be characterized by
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and each component of the term > 7 _;(1/s)V; can be approximated with a normal distribution
by the central limit theorem. Therefore, as an attempt to characterize the overall behavior of
a swarm, the normal distribution should be a reasonable starting point. It is assumed that, at
time ¢, each particle is sampled from c(t) + Z, where c(t) € R" is the center of distribution
and Z € R" is a random vector of which each coordinate is distributed according to N(0,0?),
where N(0,0?%) denotes the normal distribution with zero mean and variance 0. In this paper,
¢(-) and ®(-) are used as the probability density function (pdf) and the cumulative distribution
function (cdf) of the standard normal distribution, respectively. The distribution of c(t) + Z
can then be expressed as 6(c(t), 02).

The update of distribution is now simplified into the modification of the mean and the vari-
ance. The mean is the arithmetic average of updated positions of particles, and the variance
is estimated by a maximum likelihood estimation (MLE) which will be addressed later. Under
such an interpretation, the PSO system can then be described with the following algorithm:

Algorithm 2 (Statistical interpretation of PSO).
procedure PSO(Objective function F : R” — R)
Initialize 60
while the stopping criterion is not satisfied do
fort=1,2,...,m do
P;~0



end for
Pa = argmin{f(P1)7f(P2)a s 7]:(Pm)}
fori=1,2,...,mdo
Pg — P; + C(Pa — Pi)
end for
P — (20 Py/m
afﬂ — MLE(P},P,,....,P.)
0 — 0(”t+170t2+1)
t—t+1
end while
end procedure

In the reminder of this paper, Algorithm [2] will be the study subject and be formally in-
vestigated on the sphere function, which is commonly adopted in the theoretical analysis of
evolutionary algorithms (e.g., [I17]) and can be formulated as

where x = (z1,z9,...,2,) € R™.

3 Progress Rate Analysis

The major benefit to develop and adopt the abstraction based on probabilistic distributions of
the PSO system is that the mathematical model can be analyzed without the assumption of fixed
attractors, because particles are in essence random vectors in the search space and consequently
their behavior can be described and predicted in a statistical sense. In this section, we will
demonstrate how the statistical interpretation of PSO proposed in this paper facilitates the
analysis of inter-particle effects and how these effects are accounted for the progress rate of the
entire swarm. We will begin with the n-ball hitting probability.

3.1 n-ball Hitting Probability

Given a distribution 6 over R", the term n-ball hitting probability refers to the probability that a
random vector sampled from 6 that “falls” into a specific n-dimensional ball. This probability is
fundamental to the sphere model, because in the sphere model the objective function is simply
the squared L? norm, and a subset of R” constructed by collecting all the vectors with their
norms bounded by a specific non-negative quantity forms an n-ball located at the origin with
a radius defined by that non-negative quantity. Therefore, n-ball hitting probability is equal
to the probability that the norm of a random vector is less than or equals to the radius; in
other words, it is essentially the cumulative distribution function (cdf) of the norm of a random
vector.

Given the center of distribution at time ¢, c(t) = (c1,c¢2,...,¢,) € R™, we would like to
calculate the probability that c(t) +Z ~ 6 is in an n-ball located at origin with radius k
(denoted as By(0)), where Z = (Z1, Zs,...,Z,) € R™ is a random vector and each coordinate
of Z is normally distributed. Since Zi, Zs, ..., Z, are independent and identically distributed
(ii.d.) random variables, Z is an isotropic random vector (i.e., all directions of Z are equally
likely to occur) [I8]. We elaborate this property as follows. Given Zy, Za, ..., Z, ~ N(0,02),



for all x = (x1,x9,...,2,) € R?,
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where d(-,-) is the Euclidean distance function. It is obvious that the density at point x is
determined by d(x,c(t)), regardless of which direction x is in relatively to c(t). Therefore,
without loss of generality, we may assume that c(t) is on the first axis by conducting a coordinate
transformation. Let r := d(c(t),0) > 0. As a result, c(t) can be expressed (after the coordinate
transformation) as (r,0,0,...,0), and the distribution is denoted as 6(r,0?). Now, the n-ball
hitting probability can be formally defined as follows.

Prob {c(t) + Z = x} = lj L exp <—(1’U—20)2)

Definition 1. Given an n-ball Bi(o) € R” and a random vector c(t) +Z ~ 0(r,0?) € R™,
where c(t) = (r,0,0,...,0) and all coordinates of Z are distributed according to N(0,c?), the
n-ball hitting probability

Hp(k,0(r,0?)) := Prob{c(t) + Z € Bi(o)} .

The analysis approach adopted in the present work is similar to that used by Beyer in
2001 [I7]. The vector Z is decomposed into two orthogonal vectors: Zie1 = (Z1,0,0,...,0) and
Z' = (0,22,73,...,7Z,). Let’s take a closer look at the n-ball hitting probability Hg(k, 0(r, 02)):

Hp(k,0(r,0?)) = Prob{c(t) + Z € Bi(0)}
= Prob {||(r +Z1)er +Z'|| < k:}
=Prob {(r+ 21)* +||Z'|* < k*}
=Prob{~k—-r<Z <k-r,0<|Z)* <k — (r+ 2Z1)*}

The above equation shows that the n-ball hitting probability is the joint distribution of Z; and
W := ||Z/||?. Since Z; ~ N(0,0?), the probability density function can be expressed as

1 —z2
p(Z1,x) == Prob{Z; =z} = N exp < 5,2 > ,

and W is a chi-square random variable with n’ := n — 1 degree of freedom:

1(%)7 exp (34)

p(W, ) = Prob {W =y} = S
o 2%r(y)




As a result, we can get

Hp(k,0(r,0%)) =Prob{—k —r < Zy <k —7r, 0< |Z'|> <k — (r + Z1)*}

k—r k27(a:+r)2

- / / O pZep(Vy) dyd
r= y=
k

—k—r
—r k2 —(x47r)2 1 (% %l*l exp (=%
:/ p(Zl,ﬂl')/ 72(0-2) ! ?(202) dydl‘
r=—k—r y=0 4 22T (%)
ke k’2—(a:+r)2 n' 1 _

2 2 —u
p(Zl,a:)/ %du dx
r=—k—r u=0

2
k—r /1.2 2
n' k*—(z+r)
- Z L S A B
/x:k»rp( 171:)73 < 2 ) 20_2 ) Z ,

where P(-) is the regularized Gamma function.

(let u := y/o?) = /

Remark 2. If an asymptotic approximation is desired for the n-ball hitting probability, Hg(k, 8(r, 0%)),
we can utilize the normal approximation to the regularized Gamma function ([I9], chapter 7) as

n' k2 —(x+r)? B 1 k2= (z41r)? ,
P

For the asymptotic approximation, when n is sufficiently large, the term (1/v2n/)[k? — (z +
r)2]/0? vanishes, and thanks to the continuity of ®(-), we can obtain

n k2 —(x+7)° n’
77<2’202 o 2

) /:__Tk_rp(zw) dz
()b (5]
(V2 (28]

In addition to the asymptotic properties of Hg(k,0(r,0?)), it would be helpful to derive a
lower bound for Hp(k,0(r,0?)) to facilitate our analysis in the present work.

Hence,

no| 3

Hp(k,0(r,0%)) =~ ® (—

Lemma 3 (Lower bound for Hg(k,0(r,0?))).

r+ k_ r— k_ o n—1
o (w) s (wﬂ ()]
o o Vno
Proof. Let Y := c(t) + Z, where c(t) = (r,0,0,...,0), and Z = (Z1,Za,...,Zy). Let D :=
[—k/v/n,k/\/n]" C R". For all x € D, because ||x|| < /n||x[|c < v/n(k/\/n) =k, we can know

Hp(k,6(r, 02)) >




that x € Bi(o). Hence, D C Bg(0), and

Prob{Y € By(o)} > Prob{Y € D}

k k - k k
:Prob{—\/ﬁ—TSZ1§\/H—T}HPrOb{—\/HSZZSn}

L) ()

For the notational purpose, we let

o) o () [l ()

and its antiderivative is defined as (k) := ftk:o Y'(t) dt.

W' (k) =

Remark 4. Similarly, we can also define the n-sphere hitting density Hg(k, 8(r,?)) for random
vector c(t) + Z as

Hs(k,0(r,02)) := Prob {||c(t) + Z| = k}
:Prob{—k—r§Z1 §k—r,W:/<:2—:U2}

k—r

— [ Wz e o
r=—k—r

Therefore, the n-ball hitting probability, Hg(k, §(r,02)), as the cumulative function of Hg(k, 8(r, 02)),

can be alternatively defined as

k y—r
/ / (21, 2)p(W, o — ) du dy .
y=0

=—y-T

However, the density function Hg(k,0(r,0?)) serves no purpose other than a definition in the
following analysis. We left it as a side note for completeness without further discussion.

3.2 Expected Particle Norm

The entire PSO system can be decomposed into two fundamental components: (1) the update
of attractors to share and exchange information among particles, and (2) the update of particle
positions through the interaction between particles and attractors. So, as we gain understanding
of the characteristics of attractors and particles, we may capture the stochastic behavior of the
PSO system. More specifically, because distance is the most important characteristic of the
sphere model for its unimodality, in this section, we highlight the expected distance between
particles and the global optimum. Given a probabilistic model according to which particles are
distributed, we would like to know how close to the global optimum in expectation the sampled
particles are. Since the global optimum is simply the origin in the sphere model, we concentrate
on the L?-norm of sampled particles. The expected norms of the attractor and of particles are
examined, respectively. As the analysis proceeds, it can be shown that these two expectations
influence the progress rate of the particle swarm.



Given the center of a particle distribution c(t) = (r,0,...,0) and Z = (Z1, Zo, ..., Zy)
with Z1, Zs, ..., Zy, ~ N(0,02), suppose that there are m particles, Py, Pa, ..., Py, sampled
as c(t) + Z, the expected norm of particles can be defined as

P:=E[lc(t) + Z|] ,

which can be considered as the mean solution quality of the current swarm on the sphere function.
The following lemma gives an upper bound for P.

Lemma 5 (Upper bound for the expected particle norm). If c(t) = (r, 0, 0, ..., 0) and Z =
(Z1, Zay -y Zn) with Z1,Za, ..., Zn ~ N(0,0%), P < V12 + no?.

Proof. For all positive random variable X, since the square root is a concave function, we have
E [\/ X } < /E [X] according to Jensen’s inequality. By utilizing this property, we can have the

following derivation:

P =E[|c(t) + Z|]

=E|,|(Z -2+ 2

2
\ i=2

E((Z1-r)?+) 72
L =2

IA

— \ (E[r?] — 2rE [Z1] + zn:E [Z2]
ET

Because Z; ~ N(0,0?), we have E [Zﬂ =02 and E[Z;] = 0. An upper bound for the expected

particle norm, P, is therefore obtained. O

The expected particle norm describes how close on average a swarm is to the global optimum
of the sphere function. In order to capture the characteristic of the essential mechanism of PSO
— particle interaction — we also need to investigate the attractor. As stated in the previous
section, the attractor is the best observed value, i.e., in our case, the particle with the minimum
objective value within the neighborhood in the current swarm. Under the adopted statistical
interpretation of PSO, the expected minimum objective value of a swarm becomes tractable
through order statistics, because particles are viewed as random vectors over R".

Let P,y denote the ith order statistic of [|P1][, [[P2|, ..., [|[Pml, e-g-, P(1,,) = min{[|P1]],
[P2]l, ..., [[Pml}. Denoting the event ||Pi|| = z as {||Pj|| = x}, the density of P, at a
non-negative real number x can be given as

Prob {P(l,m) = .17}

m

= Prob ¢ | [{IPill =} N Pl >z}
=1 jef1,2,..m\{i}
k—r m -
—/x__k_r <1>Hs(k,9(r,02)) [1— Hp(k,0(r,0*)]™ dz .

Denoting E [P(l,m)] as P(1 ), a naive upper bound for Py ,, is derived in the following lemma.



Lemma 6. P ) < P

Proof. The general upper bound for the expected ith order statistic states

_ 1 1—1
< 24—
P('L,m) <P+ (Var[||c(t) +ZH])2 m—i+1

1-1
m—14+1

As a result,

P.

— 5 1
BPamy < P+ (Var[[e(t) + Z[])>
O

The above lemma does not cause any surprise. The expected minimum particle norm is
obviously less than or equal to the expected norm. However, inspired by Lemma [0 we can seek
another upper bound for Fy ,,,) by definition.

Lemma 7 (Upper bound for Py ;). (1)

P(l,m) = /_0 [1 — HB(k,G(T’, 0_2))]771 dx y

and (2)

m
2

P < ( Jim 0= w0

Proof. (1) For any random variable X, E[|X[]" = r [;~ ¢ 'Prob {|X| >t} dt with » > 0 [20].
Since P ) is a non-negative random variable, by letting r = 1 we have

P(l,m) = /x Prob {P(l,m) > l‘} dx

_ /OO Prob{ﬂ (Pi] > x}} do

=0 i=1
= / [1— Hp(k,0(r,0)]" dz .
=0
(2) Based on the result of (1), we obtain

o

Pim) = /:0 [1 — Hp(k,0(r, 02))}md93 < / [1 — w/(x)]md:v .

=0 z=0

By resorting to Holder’s inequality, we can move m outside of the integration to obtain a more
comprehensible bound as

/::0 [1 —wl(x)]m dr < (/x:oo [1 - qp’(a;)]Q dx)

m
2

h 11— d :
S(/x:o[ V(@) x)
= (i - wiy)
The last equation follows from [h — % (h)]|,_, = 0. O

10



Because this upper bound is presented in a limit form, a subsequent question would be
whether or not it converges. The following theorem guarantees the convergence of the quantity.

m
2

Lemma 8. (limp_.[h — 9 (h)])2 is convergent.

Proof. Denote fzh:() [1 —'(h)] dz as G(h). Since m is a constant, (limy_[h—1(h)])2 converges
if limy, . G(h) converges. G(h) is incremental because 1 — ¢’ (x) is always non-negative. Thus,
it is sufficient to show that G(h) is bounded from above. When h > r/n,

[ Vit
:r\/ﬁ+/; n(l— !1—2@ (r_a“xﬁ>

When x > r/n,

Applying Bernoulli’s inequality, it yields

G(h)érx/ﬁ+/hf<1— [1—2n<1> (%)D da

h r— %
:r\/ﬁ+2n/ (I>< ﬁ) dz
z=ry/n o

(crvii+a) (‘f) f¢<‘f>] |
z=r\/n

The integration of the normal distribution is given in [2I]. When h — oo, the term
h
r—
o
vanishes, so now we only need to show

lim [(—r\/ﬁ+h)<1> (r _a\%)] < 00 .

xz=h
=rvn+2n

h—oo

11



Here we apply Mill’s ratio to replace ®(-) with ¢(-) and get

(_r\/ﬁM)@(?“_o—jﬁ) = (h—rvn) [1—@< / ”)]

S

g

oo () (25

=0,as h —» © .

s>

Therefore, G(h) is bounded from above. The proof is completed. O

3.3 Lower and Upper Bounds for the Expected Progress Rate

After the preparatory work was done in the previous sections, the progress rate the social-
only model PSO can now be formally investigated under a statistical interpretation. The term
“progress rate” was introduced by Rechenberg in 1973 [22]. As its name suggests, progress rate
should be a quantity indicating how a particle swarm progresses, and hence in the present work,
it is defined as the difference of the norms of two centers of distributions in successive time steps,
because the distance to the optimum is the L? norm in the sphere function. Given the current
center of distribution c(t) = (r,0,0,...,0) and a random vector Z = (Z1, Za,...,Z,) with
Z1,Zo,...,Zy ~ N(0,02%, the m particles P1,Ps,..., Py, are sampled as c(t) + Z. Let Plim)
denote the ith order statistic of [|P1]|, [|Pz2||, ..., |Pm]|. Let P4 := argmin{F(P1), F(P2), ...,
F(Pm)}. By definition, ||[Pa|| = Py ). According to the update rules described in section
the updated position P} is computed as P{ = P; 4+ C(Pa —P;), where C ~ U(0, 2¢) with ¢ being
the coefficient representing the compound effect of both the inertia weight and the acceleration
coefficient for the social part. For simplicity, we still call ¢ the acceleration coefficient in this
paper because the inertia weight is usually constant. The center of distribution in the next step
c(t + 1) is the mean of P}, P5,... . Py, ie, c(t+1) =3, Pl)/m.

Definition 9. Given c(t) = (r,0,0,...,0), the progress rate A; = |c(t+1)| — |lc(t)]| =
lc(t+ 1) —r.

The following theorem shows that, when ¢ < 1/2, the expected norm of the center of dis-
tribution in the next time step is bounded from above by a linear combination of the expected
particle norm P and the expected minimum of the particle norm Py ).

Theorem 10 (Upper bound for the expected norm of the next center). (1) E[||c(t + 1)||] <
E1=C||| P+ E[|C|]| Pamy; and (2) If ¢ <1/2, Elc(t + 1)[|] < (1—¢)P+ P ,); otherwise,
Elllc(t+ )] < [(2¢2 — 2¢+1)/2c]P + P m)-

12



Proof. (1) This result is derived from the the triangle inequality for L2-norm:

Z?;l [Pl + C (Pa - Pl)] H:|

Bllets + DI =E |
(2
§<;><§FWOQPM+mMMTﬂ0

_ (;) (mE[|1 — O[] P+ mE [|C]) Py

||Z (1-C)P; +mCPy||
=1

=E[1-C||P+E[C| Pqm) -
(2) When ¢ < 1/2, 1 — C is a non-negative random variable. So, we have
E[l-C||=E[1-C]=1-c.
On the other hand, when ¢ > 1/2,
Ef1 -0
=Prob{1-C >0}E[1-C|1—-C > 0]
+Prob{l1-C < 0}E[C—-1|]1-C < 0]
= (1/2¢)(1/2) + [(2¢ = 1) /2¢][(2¢ — 1) /2]
= [(2¢% = 2¢+1)/2]] .
O

Corollary 11 (Lower bound for the progress rate). When c < 1/2, E[A] > r—(1—c)P—cPy );
otherwise, E[Ay] > 1 — [(2¢2 = 2¢+ 1) /2¢]P — cPy ).

After the lower bound for E [A] is established in Corollary [L1} the next theorem sets a lower
bound for E [||c(t + 1)||]. An upper bound for E [A;] will be accordingly yielded as a corollary.
Theorem 12 (Lower bound for the expected norm of the next center). Ifc < 1/2, E||le(t +1)||] >
r (1 —exp (=2n/[®(=r/0)]™)).

Proof. Since ||c(t + 1)|| is a non-negative random variable, from the Markov’s inequality, we
have, for any positive number a,
Prob {|lc(t +1)|| > a} < a 'E[|lc(t +1)]|] .
Substituting a with r implies
rProb{|lc(t+1)|| >r} <EJ|le(t+1)]] .

Let’s take a closer look at Prob {||c(t + 1)|| > r}. Denoting the jth coordinate of P; and c(t + 1)
as P;(j) and ¢(t+1)(j), respectively. If there exists a coordinate j such that min{ P (j), P2(j),..., Pm(j)} >
r, then

le(t + D[ = le(t + 1))
2iy [Pi(G) + C (Pa(d) = Pi(G))]

X[ -C)RG) + CPu)
> [(1—C)mr —i—ng’mr]

m

13



Similarly, max{Pi(j), P2(j),..., Pm(j)} < —r implies ||c(t + 1)|| > r. Let Ej be the event that
min{P1(j), P2(j), ..., Pm(j)} = r and E; be the event that max{P1(j), P2(j), ..., Pn(j)} < —1-
Let Ej := E]‘*' UE; and E :=Jj.; Ej, we have

Prob {E} = Prob { B[ E{ } + Prob { B[ (E)°}
> Prob {E{"} + Prob { (0 E@) m (Ef)c}
= Prob {Ei"} + (1 — Prob {Ef‘}) Prob {O Ez} .

=2

Because P1,Ps, ..., Py, are ii.d. and for each particle all of its coordinates other than the first
one are identically distributed, for all 4 > 1 the symmetry and disjointness of EZ+ and E; imply
that Prob {E;} = 2Prob{E;"} = 2[1 — ®(r/0)]™ = 2[®(—r/0)]™. Let q := 2[®(—r/c)]™ for

convenience of notation. Using the inclusion-exclusion principle, we have

Prob {O EZ} = i <Tz/> ¢(—1)t

1=2 1=1 /
—1- ; (7)o
=1-(1-9"

>1—exp (—n’q) .
As a result,

E[[e(t + 1)|] = r (Prob {E{"} + (1 = Prob {E"}) (1 — exp (—n'q)))
> (Prob {Ef} + 1 — Prob {Ef} — exp (—n’q))

=7 (1 — exp (—27/ [‘I’(_T/U)]m)) :

r
r

O
Corollary 13 (Upper bound for the progress rate). Ifc < 1/2, then E[A{] < rexp (—=2n/[®(—r/0)]™).

With Theorems and we established the upper and lower bounds of the expected
particle norm. Accordingly, with Corollaries [11] and we derived the lower and upper bounds
of the expected progress rate of the swarm in the social-only model. As aforementioned, by
statistically interpreting the social-only model PSO, we can describe the “macrostate” of the
particle swarm and therefore are able to analyze the stochastic behavior of PSO based on the
facet of particle interaction.

4 Convergence Analysis

As stated in section the transition from the current time step to the next time step consists
of updating positions of particles, calculating the center of distribution by means of the updated
positions, and using the maximum likelihood estimation to calculate the distribution variance.
The issues related to the center of distribution have been addressed in section 3] Now, we move
on to the part of variance. While the center of distribution can be viewed as the indication of
the average quality of the swarm at a specific time step, the variance is a direct measurement

14



of convergence, because from the viewpoint of statistical interpretation, the swarm converges
as the variance of distribution reduces to zero. The word “converge” is not a unified term in
the research domain of PSO ([23], p. 132). It has been used to describe the behavior of the
swarm approaching the local optimum in some papers, while it simply indicates the phenomenon
that the swarm of particles crowds into a specific point, sometimes called the equilibrium, not
necessarily the local optimum, in the search space. Here in the present work, we adopt the latter
definition. We concentrate on the condition under which the swarm of particles may go into
a stable state. We will demonstrate that if certain condition of the relationship between the
swarm size and the acceleration coefficient is satisfied, the swarm in a social-only model does
converge under the mechanism of particle interaction.

Given m observed vectors y1,ys2,...,ym that stand for the updated positions and the center
of distribution denoted as c(t +1) =y := (X”,yi)/m, let Y1,Y32,..., Yy, be random vectors
sampled from O(||y|,07.,). They are n-dimensional random vectors centered at y and the
coordinate on each dimension is a random variable sampled from N (0,07 ), where o ; is the
variance that we wish to estimate. In order to estimate the variance, the likelihood function of
o1, L(07,,), can be defined as the joint probability:

m n —\2
1 —d(yi,Y)
L(c? | = ( > exp | —H—
o g V2moi 202,

_ ( 1 >mn -y d(yiy)?
= — exp 5
V271014 20744

-R
= Ko, 1" exp () ,
20§+1

where
1 mn m
K:=—— , R = d(yi, ¥)? .
() >y

In order to get the o7, that maximizes L(o7,,), we differentiate L(c7, ) with respect to o7, :

mn o —R R o —R
L’(UEH) = —TK o " 2. exp (202 > + §K o " 4 exp <202 > .
t+1 t+1

L'(o},,) = 0 implies o7, ; = R/(mn), and it is routine to check the maximality. Since both m
and n are fixed, the only quantity needs to be taken care of is R, which the sum of square of the
distance between each updated particle and the center. Now we look for the expectation of R.
Recall that, given c(t) = (r,0,0,...,0) and Z = (Z1, Zs, ..., Z,) with Z1, Zs, ..., Z, ~ N(0,0?),
the m particles P1, Pa, ..., Py, are sampled from c(t)+Z, and the updated position is calculated
as P; + C(Pa — P;), where P, is the attractor. Since c(t+1) = /", [P;i + C(Pa — Py)] /m,
R, as a random variable, can be defined by P1,Ps,..., Py and Py:

> ity (Pj+ C(Pa — Py))

m
R:Zyypi+C(Pa—Pi) — 1.
i=1
Denoting Pj’s kth coordinate as P;(k), E[R] is derived in the following lemma:

Lemma 14. Given the swarm size, m, and the variance of distribution at time t, o7 = o2,

E[R] = [(4/3)c* = 2c+ 1Jn(m — 1) 0? and E[o},,] = [(4/3)c* — 2c + 1][(m — 1) /m]o?.
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Proof.
2 i1 (Pj+ C(Pa —Py))

E[R] =E il\Pi+C(Pa—Pi)— I I?
=1
o [ Pi- (- O P
=1

m

ZE lmP; — ZPJ I

S\H

n

) i
) —2C+1§: E || mPik) - ipj(k)
)

[
S\H

=1 k=1 j=
1
— < 2 — 2+ 1>
m
m

E | | m®Pi(k)® —2mPy(k) [ Y Pi(k) | + ipj(k)
1 k=1 Jj=1 Jj=1

The independence of particles and their coordinates implies E [P;(k) P;(k)] = E[P;(k)] E[P;(k)] =
0 for all i # j and E [P;(k)?] = o2 for all i. Hence,

(
(
(

NE

.
Il

1\? /4
E[R] = () <302 —2c+ 1) mn (m202 — 2mo? + m02)

m

4
= <302—20+1>n(m—1)02

As a result,

O]

While Lemma [14]is under the assumption that o? is given (or more formally, the conditional
expectation E [o—f 1 lo? = 02] is derived), the following theorem turns to the relationship between
E [07] and E [07_,] and gives a sufficient and necessary condition that the sequence {E [07]}
converges to zero. Without loss of generality for the normal operation of PSO, we assume that
E [03] < o0.

Theorem 15 (Convergence of the expectation of variance). (1) E [o7,,] = [(4/3)c®—2c+1][(m—
1)/m]E [0?], and (2) lim¢—os { E[0?]} = 0 if and only if [(4/3)c* — 2¢ + 1] < [m/(m — 1)].

Proof. (1) The first part of the theorem can be proved by a direct application of the law of total
expectation and Lemma

E [O’ta_l} = /2€R+ E [JE_HIUE = 02] Prob {O'tQ = 02} do?

4 -1
= / <02 —2c+ 1) <m> o? Prob {0152 = 02} do?
o2eR+ 3 m
4 -1
= (02 —2c+ 1> <m> / o? Prob {atQ = 02} do?
3 m o2cR+

= <;l02 —2c+ 1> (mn_ll) E[o7] .
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orms a geometric sequence with ratio [(4/3)c?—2c+1][(m—
2]} = 0if and only if |[(4/3)c* — 2c + 1][(m —1)/m]|<1
< 1if and only if [(4/3)c* —2c + 1] < [m/(m — 1)]. O

(2) As a consequence of (1), {E [o7]} f
1)/m]. We then obtain hmtﬂOO {Elo
and |[(4/3)c? — 2¢ +1][(m — 1) /m])|

Since o7 takes the value on non-negative real numbers, the convergence of sequence {E [at] }
implies sequence {at } converges to zero in probability, as shown in the following corollary.

Corollary 16 (Convergence of variance). If [(4/3)c2—2¢+1] < [m/(m—1)], then limy_.o 02 2 0,
i.e., for every € > 0 lim;_, o, Prob {af > e} =0.

Proof. Suppose for contradiction that there exist ¢ > 0 and § > 0 such that, for all Ng € N,
there exists an N(Np) > Ny with Prob {O'JQV(NO) > 6} > §. However, since Prob {UJQV(NO) > e} >

0 implies Prob {E [UJQV(NO)}} > ed, for all Ny € N there exists an N(Ng) > Ny such that
Prob {E [U?V(NO)} } > ed, limy_o {E [atz]} = 0 is contradicted. ]

Theorem [15] and Corollary [16]indicate that as long as the specified condition is satisfied, the
swarm will converge in probability. However, it must be noted that the acceleration coeflicient,
¢, used here is the coefficient for the compound effect of both the inertia weight and the regular
acceleration coefficient for the neighborhood (or global) best position as described in section
Therefore, further investigations are needed to gain understandings on the compound effect and
clarify the relationship of these parameters such that the derived results in the present work can
be used in practice.

5 Summary and Conclusions

In this study, we made the first attempt to analyze the behavior of particle swarm optimization
on the facet of particle interaction. We firstly proposed a statistical interpretation of particle
swarm optimization and modeled the PSO mechanisms with the operations on probabilistic dis-
tributions. In order to investigate the PSO behavior based on particle interaction, we focused
on the social-only model of PSO, in which the personal experience of particles is ignored. From
the viewpoint of macrostates, we obtained the lower and upper bounds of the expected progress
rate for the swarm on the sphere function. By looking into the variance of the particle distri-
bution, we further showed that under certain condition, the swarm will converge in probability
thanks to the mechanism of particle interaction, i.e., exchanging and sharing information, which
is commonly believed to be an essential mechanism of PSO but seldom analyzed theoretically
in the past.

With this study, we wish to propose an alternative way to analyze particle swarm optimiza-
tion from the viewpoint of macrostates instead of tracing the trajectory of each particle. The
immediate follow-up work for this study includes the clarification of the compound effect of the
inertia weight and the neighborhood acceleration coefficient for carrying over the theoretical
results to practice and suggesting parameter settings. Moreover, tighter bounds may be derived
to more accurately describe the behavior of PSO, and a complete PSO model may be considered
instead of the social-only model adopted in the present work. Finally, in the long run, a unified
behavioral model of PSO might be established by integrating the theoretical results from the two
ends — macrostates and microstates — such that better, more robust optimization frameworks
can be accordingly designed and developed.
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