
Sensibility of Linkage Information and Effectiveness of
Estimated Distributions

Chung-Yao Chuang
Ying-ping Chen

NCLab Report No. NCL-TR-2008006
August 2008

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/



Sensibility of Linkage Information and Effectiveness of

Estimated Distributions

Chung-Yao Chuang and Ying-ping Chen
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
{cychuang, ypchen}@nclab.tw

August 25, 2008

Abstract

Probabilistic model building performed by estimation of distribution algorithms (EDAs)
enables these methods to use advanced techniques of statistics and machine learning for
automatic discovery of problem structures. However, in some situations, complete and ac-
curate identification of all problem structures by probabilistic modeling is not possible be-
cause of certain inherent properties of the given problem. In this work, we illustrate one
possible cause of such situations with problems composed of structures of unequal fitness
contributions. Based on the illustrative example, a notion is introduced that the estimated
probabilistic models should be inspected to reveal the effective search directions, and we
propose a general approach which utilizes a reserved set of solutions to examine the built
model for likely inaccurate fragments. Furthermore, the proposed approach is implemented
on the extended compact genetic algorithm (ECGA) and experimented on several sets of
additively separable problems with different scaling setups. The results indicate that the
proposed method can significantly assist ECGA to handle problems comprising structures
of disparate fitness contributions and therefore may potentially help EDAs in general to
overcome those situations in which the entire structure of the problem cannot be recognized
properly due to the temporal delay of emergence of some promising partial solutions.

1 Introduction

Estimation of distribution algorithms (EDAs) [1, 2, 3] are a class of evolutionary algorithms
that replace the traditional variation operators, such as mutation and crossover, by building
a probabilistic model on promising solutions and sampling the built model to generate new
candidate solutions. Using probabilistic models for exploration enables these methods to auto-
matically capture the likely structure of promising solutions and exploit the identified problem
regularities to facilitate further search. It is presumed that EDAs can detect the structure of
the problem by recognizing the regularities within the promising solutions. However, for certain
problems, EDAs are unable to identify the entire structure of the problem at a given time be-
cause the set of selected solutions on which the probabilistic model is built contains insufficient
information regarding some parts of the problem and renders EDAs incapable of processing
these parts accurately.

In this paper, we start from observing the evolutionary process of an EDA when dealing with
an exponentially scaled problem and recognizing that the population on which the probabilistic
model is built does not necessarily contain sufficient information for all problem structures to
be detected completely and accurately. Based on the observation, a general concept is pro-
posed that the estimated probabilistic models should be inspected to reveal the effective search

1



directions, and we provide a practical approach which utilizes a reserved set of solutions to
examine the built model for the fragments that may be inconsistent with the actual problem
structure. Furthermore, the proposed approach is implemented on the extended compact genetic
algorithm [4] and experimented on several sets of additively separable problems with different
scaling difficulties [5] to demonstrate the applicability.

In the next section, we will briefly review the research topics concerning this study. After
that, section 3 demonstrates the interaction between the scaling difficulty and probabilistic model
building performed by EDAs. More specifically, we will investigate how the scaling difficulty
shadows the ability of EDAs to recognize problem structures and causes inaccurate processing
on some parts of the solutions. Accordingly, a general approach will be proposed in section 4
to resolve such an issue and enforce the accurate processing during the optimization process.
In section 5, an implementation of the proposed approach on the extended compact genetic
algorithm will be detailed. Section 6 presents the empirical results, followed by the discussion
and observations on the results in section 7. Finally, section 8 concludes this paper.

2 Background

Genetic algorithms (GAs) [6, 7] are search techniques loosely based on the paradigm of natural
evolution, in which species of creatures tend to adapt to their living environments by mutation
and inheritance of useful traits. Genetic algorithms mimic this mechanism by introducing arti-
ficial selections and genetic operators to discover and recombine partial solutions. By properly
growing and mixing promising partial solutions, which are often referred to as building blocks
(BBs) [5], GAs are capable of efficiently solving a host of problems. The ability to implicitly
process a large number of partial solutions has been recognized as an important source of the
computational power of GAs. According to the Schema theorem [6], short, low-order, and highly
fit sub-solutions increase their share to be combined, and also as stated in the building block
hypothesis [7], GAs implicitly decompose a problem into sub-problems by processing building
blocks. This decompositional bias is a good strategy for tackling many real-world problems, be-
cause real-world problems can oftentimes be reliably solved by combining the pieces of promising
solutions in the form of problem decomposition.

However, proper growth and mixing of building blocks are not always achieved. GA in its
simplest form employing fixed representations and problem-independent recombination opera-
tors often breaks the promising partial solutions while performing crossovers. This can cause the
vanishing of crucial building blocks and thus lead to the convergence to local optima. In order to
overcome this building block disruption problem, various techniques have been proposed. In this
study, we focus on one line of such efforts which are often called the estimation of distribution al-
gorithms (EDAs) [1, 2, 3]. These methods construct probabilistic models of promising solutions
and utilize the built models to generate new solutions. Early EDAs, such as the population-
based incremental learning (PBIL) [8] and the compact genetic algorithm (cGA) [9], assume
no interaction between decision variables, i.e., decision variables are assumed independent of
each other. Subsequent studies start from capturing pairwise interactions, such as mutual-
information-maximizing input clustering (MIMIC) [10], Baluja’s dependency tree approach [11],
and the bivariate marginal distribution algorithm (BMDA) [12], to modeling multivariate inter-
actions, such as the extended compact genetic algorithm (ECGA) [4], the Bayesian optimization
algorithm (BOA) [13], the estimation of Bayesian network algorithm (EBNA) [14], the factorized
distribution algorithm (FDA) [15], and the learning version of FDA (LFDA) [16]. By detecting
dependencies among variables through probabilistic modeling, these approaches can capture the
structure of the problem and thus avoid the disruption of identified partial solutions.

Another topic concerning this study is the impact of disparate scale among different build-
ing blocks on the behavior and performance of the evolutionary algorithms. It is commonly ob-

2



Gen. Marginal Product Model
1 [s1 s2 s3 s4] [s5 s10 s16] [s6 s7] [s8 s9 s12] [s11 s14 s15] [s13]
2 [s1] [s2] [s3] [s4] [s5 s6 s7 s8] [s9 s13 s16] [s10 s14 s15] [s11s12]
3 [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s16] [s14 s15]
4 [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9] [s10] [s11] [s12] [s13 s14 s15 s16]

Table 1: Marginal product models built by ECGA when an exponentially scaled problem is being
solved. Each group of variables represents a marginal model in which a marginal distribution
resides. The converged variables are crossed out.

served that building blocks with higher marginal fitness contributions—salient building blocks—
converge before those with lower marginal fitness contributions. This sequential convergence
behavior is referred to as domino convergence [17]. For the real-world applications, it is often
the case that some parts of the problem are more prominent and contribute more to the fit-
ness than other parts. Such a situation can pose two types of difficulties. Firstly, because the
processing on the population is statistical in nature, the disparate building block scaling can
cause inaccurate processing of less salient building blocks [18, 19]. The second difficulty arises
because the lower salience of a building block generally causes it to be processed at a later time
compared to those of higher salience. This delay on timeline can cause the building block to
converge under random pressures, instead of proper, selective pressures. Other previous studies
on this topic include the explicit role of scale in a systematic experimental setting [20], a the-
oretical model on convergence behavior of exponentially scaled problems [17], an extension of
that model to building blocks of length more than one variable [21] and a convergence model of
linkage learning genetic algorithm (LLGA) [22] on problems of different scaling setups [23].

Although the aforementioned scaling difficulty exists in a number of problems and degrades
the performance of many evolutionary algorithms, there are scant investigations concerning the
behavior of EDAs with the presence of scaling difficulties. In this study, we make an attempt to
explore how the scaling difficulty affects EDAs and propose a practical countermeasure to assist
EDAs on problems with different scalings. Specifically, we propose a notion that the estimated
probabilistic models should be examined to enforce the accurate processing on building blocks
and prevent random drifting from taking place. In the remainder of this paper, our approach
will be demonstrated and evaluated on the test problems constructed by concatenating several
trap functions. A k-bit trap function is a function of unitation1 which can be expressed as

ftrapk
(s1s2 · · · sk) =

{
k, if u = k
k − 1− u, otherwise

,

where u is the number of ones in the binary string s1s2 · · · sk. The trap functions were used per-
vasively in the studies concerning EDAs and other evolutionary algorithms because they provide
well-defined structures among variables, and the ability to recognize inter-variable relationships
is essential to solve the problems consisting of traps [24, 25].

3 Linkage Sensibility

The ability of EDAs to handle the building block disruption problem comes primarily from
the explicitly modeling of selected, promising solutions by using probabilistic models. The
model construction algorithms, though they differ in their representative power, capture the
likely structures of good solutions by processing the population-wise statistics collected from

1A function of which the function value depends only on the number of ones in the binary input string.

3



the selected solutions. By reasoning the dependencies among different parts of the problem and
the possible formations of good solutions, reliable mixing and growing of building blocks can
be achieved. As noted by Harik [4], learning a good probability distribution is equivalent to
learning linkage, where linkage refers to the dependencies among variables or equivalently the
decomposition of the problem.

In most studies on EDAs, it is presumed that EDAs can detect linkage by recognizing building
blocks according to the information contained in the set of selected solutions. However, in this
study, we argue that in some situations, accurate and complete linkage information cannot be
acquired by distribution estimation because the selected set of solutions on which the model
is built contains insufficient information on the less salient parts of the problem. For example,
consider a 16-bit maximization problem formed by concatenating four 4-bit trap functions as
subproblems,

f(s1s2 · · · s16) =
3∑

i=0

(
53−iftrap4(s4i+1s4i+2s4i+3s4i+4)

)
,

where s1s2 · · · s16 is a solution string. Note that different from many other studies in EDAs
in which the test problems are uniformly scaled, i.e., subproblems are of equal salience, in this
problem, each elementary trap function is scaled exponentially. This scaling is an abstraction for
problems of distinguishable prominence or solving priority among the constituting subproblems.
Suppose that we choose ECGA [4], which uses a class of multivariate probabilistic models called
marginal product models (MPMs)2, to tackle this problem. By observing subsequent generations
of the optimization process, a series of models built by ECGA can be obtained like those listed
in Table 1. In this table, the variables enclosed by the same pair of brackets are considered
dependent and modeled jointly. Each group of variables represents a marginal model in which
a marginal distribution resides and the converged variables are crossed out.

It can be observed that the models shown in Table 1 are only partially correct in each
generation. More specifically, in each generation, only the most salient building block on which
the population have not converged is correctly modeled. This is caused by the fact that some
part of the problem contributes much more than all others in combine. If one part of the
problem is worth essentially more than others, then this part of the solution solely determines
the chance regarding whether or not the solution will be selected. As a consequence, only the
most salient building block can provide sufficient information to be modeled correctly, since the
model searching is performed based on the selected solutions. The rest parts of the model are
primarily the result of low salience partial solutions “hitchhiking” on the more salient building
blocks.

From the above example, we can see that not all building blocks can be detected from a
given set of selected solutions by probabilistic model building. Model building algorithms cannot
“see” the entire structure of the problem from the selected set of solutions because disparate
scale among different building blocks prevents complete linkage information from being included
in the selected population. In this work, we will refer to this concept as linkage sensibility and
those problem structures that can be identified properly using the given set of solutions are called
sensible linkage. Based on this notion, we re-examine EDAs on the building block disruption
problem. It is clear that the disruption problem still exists in the insensible portion of the
problem because that part of the problem cannot be modeled properly. Though the above
example is an extreme case of scalings that each subproblem is exponentially scaled, in real-
world problems, it is often the case that the constituting subproblems are weighted significantly
differently which implies the linkage might be just partially sensible. In addition to the building
block disruption problem, the random drifting of the less salient parts of the problem mentioned
in section 2 further worsens the situation. These situations and issues are usually handled by

2See section 5.1 for a more detailed description on ECGA and marginal product models.

4



increasing population sizes when EDAs are adopted. However, we may deal with these situations
in another way if it is possible to distinguish sensible linkage from insensible linkage.

4 Effective Distributions

The idea of sensible linkage can be closely mapped into another notion called effective distri-
butions. By effective distributions, we mean that by sampling these distributions, the solution
quality can be reliably advanced. Hence, the crucial criteria for effective distributions are the
consistency with building blocks and the provision of good directions for further search. If it
is possible to extract effective marginal distributions from the built probabilistic model, we can
perform partial sampling using only these marginal distributions and leave the rest parts of the
solutions unchanged. Thus, the diversity is maintained and we are free from the building block
disruption and random drifting problems. For instance, returning to the earlier 16-bit optimiza-
tion problem, if it is possible to identify those partial models which are built on the sensible
linkage like [s1 s2 s3 s4] in the first generation and [s5 s6 s7 s8] in the second generation, we can
sample only the corresponding marginal distributions which are, in this case, effective. That
is, in the first generation, for each solution string, we re-sample only s1s2s3s4 according to the
marginal distribution and keep s5s6 · · · s16 unchanged. In the second generation, we re-sample
only s1 to s8 according to the marginal distributions and keep s9s10 · · · s16 with the same values
(note that s1s2s3s4 are converged). In this way, we do not have to resort to increasing the
population size to deal with the problems caused by the disparate building block scaling.

The above thoughts leave us one complication: the identification of effective distributions.
However, direct identification of effective distributions may not be an easy task if not impossible.
It may be wise to adopt a complementary approach – to identify those marginal distributions
that are not likely to be effective. If there is a way to identify the ineffective distributions, we can
bypass them and use only the rest of the probabilistic model and thus, approximate the result
of knowing effective distributions. Our idea is that we can split the entire population into two
sub-populations, use only one of the sub-populations for building probabilistic model, and utilize
the other sub-population to collect some statistics for possible indications of ineffectiveness of
certain marginal distributions in the probabilistic model built on the first sub-population. That
is, with some appropriate heuristics or criterion, we can prune the likely ineffective portions of
the model.

In the next section, our implementation in ECGA of the proposed concept will be detailed.
More specifically, a judging criterion will be proposed to detect the likely ineffective marginal
distributions of a given marginal product model.

5 ECGA with Model Pruning

This section starts with a brief review of the extended compact genetic algorithm (ECGA) [4].
Based on the idea of detecting the inconsistency of statistics gathered from two sub-populations
of the same source, a mechanism is devised to identify the possibly ineffective parts of the built
probabilistic model. Finally, an optimization algorithm incorporating the proposed technique is
described in detail.

5.1 Extended Compact Genetic Algorithm

ECGA uses a product of marginal distributions on a partition of the variables. This kind of
probability distribution belongs to a class of probabilistic models known as marginal product
models (MPMs). In this kind of model, subsets of variables can be modeled jointly, and each
subset is considered independent of other subsets. In this work, the conventional notation is

5



[s1] [s2 s4] [s3]
P (s1 = 0) = 0.4 P (s2 = 0, s4 = 0) = 0.2 P (s3 = 0) = 0.5
P (s1 = 1) = 0.6 P (s2 = 0, s4 = 1) = 0.1 P (s3 = 1) = 0.5

P (s2 = 1, s4 = 0) = 0.1
P (s2 = 1, s4 = 1) = 0.6

Table 2: An example of marginal product model that defines a probability distribution over four
variables. The variables enclosed in the same brackets are modeled jointly, and each variable
subset is considered independent of other variable subsets.

adopted that variable subsets are enclosed in brackets. Table 2 presents an example of MPM
defined over four variables: s1, s2, s3, and s4. In this example, s2 and s4 are modeled jointly
and each of the three variable subsets ([s1], [s2 s4], and [s3]) is considered independent of other
subsets. For instance, the probability that this MPM generates a sample s1s2s3s4 = 0101 is
calculated as follows,

P (s1s2s3s4 = 0101) = P (s1 = 0)× P (s2 = 1, s4 = 1)× P (s3 = 0)
= 0.4× 0.6× 0.5 .

In fact, as its name suggested, a marginal product model represents a distribution that is a
“product” of the marginal distributions defined over variable subsets.

In ECGA, both the structure and the parameters of the model are searched and optimized in
a greedy fashion to fit the statistics of the selected set of promising solutions. The measure of a
good MPM is quantified based on the minimum description length (MDL) principle [26], which
assumes that given all things are equal, simpler distributions are better than complex ones.
The MDL principle thus penalizes both inaccurate and complex models, thereby, leading to a
descriptive yet not over-complicated distribution. Specifically, the search measure is the MPM
complexity which is quantified as the sum of model complexity, Cm, and compressed population
complexity, Cp. The greedy MPM search first considers all variables as independent and each of
them forms a separate variable subset. In each iteration, the greedy search merges two variable
subsets that yields the most Cm + Cp reduction. The process continues until there is no further
merge that can decrease the combined complexity.

The model complexity, Cm, quantifies the model representation in terms of the number of
bits required to store all the marginal distributions. Suppose that the given problem is of length
` with binary encoding, and the variables are partitioned into m subsets with each of size ki,
i = 1 . . .m, such that ` =

∑m
i=1 ki. Then the marginal distribution corresponding to the ith

variable subset requires 2ki−1 frequency counts to be completely specified. Taking into account
that each frequency count is of length log2(n+1) bits, where n is the population size, the model
complexity, Cm, can be defined as

Cm = log2(n + 1)
m∑

i=1

(
2ki − 1

)
.

The compressed population complexity, Cp, quantifies the suitability of the model in terms of
the number of bits required to store the entire selected population (the set of promising solutions
picked by the selection operator) with an ideal compression scheme is applied. The compression
scheme is based on the partition of the variables. Each subset of the variables specifies an
independent “compression block” on which the corresponding partial solutions are optimally
compressed. Theoretically, the optimal compression method encodes a message of probability
pi using − log2 pi bits. Thus, taking into account all possible messages, the expected length of

6



a compressed message is
∑

i−pi log2 pi bits, which is optimal. In the information theory [27],
the quantity − log2 pi is called the information of that message and

∑
i−pi log2 pi is called the

entropy of the corresponding distribution. Based on the information theory, the compressed
population complexity, Cp, can be derived as

Cp = n

m∑
i=1

2ki∑
j=1

−pij log2 pij ,

where pij is the frequency of the jth possible partial solution to the ith variable subset observed
in the selected population.

Note that in the calculation of Cp, it is assumed that the jth possible partial solution to
the ith variable subset is encoded using − log2 pij bits. This assumption is fundamental to our
technique to identify the likely ineffective marginal distributions. More precisely, the information
of the partial solutions, − log2 pij , is a good indicator of inconsistency of statistics gathered from
two separate sub-populations.

5.2 Model Pruning

Our technique to identify the possibly ineffective fragments of a marginal product model is
based on the notion that ECGA uses the compression performance to quantify the suitability
of a probabilistic model for the given set of solutions. The degree of compression is a quite
representative metric to the fitness of modeling, because all good compression methods are
based on capturing and utilizing the relationships among data. Thus, if the compression scheme
of the MPM built on one set of solutions is incapable of compressing another set of solutions
produced under the same condition, then it is very likely that the obtained MPM is, at least,
partially incorrect. Using this property, we can perform a systematical checking on the given
MPM for the likely ineffective portions.

Suppose that the population of solutions, P , is split into two sub-populations S and T . The
model searching is performed on S′, the set of promising solutions selected from S. Then we can
use the statistics collected from T ′, the set of solutions selected from T , to examine the built
probabilistic model, M . Since marginal model functions independently, they can be inspected
separately. Recalling the former description that a variable subset, which specifies a marginal
model, is viewed as a “compression block” that encodes each possible partial solution according
to the marginal distribution. The jth possible partial solution to the ith variable subset is
encoded using − log2 pij bits, where pij is the frequency of the jth possible partial solution to
the ith variable subset observed in S′. Assume that the given problem is of length ` with binary
encoding, and there are m variable subsets with each of size ki, i = 1 . . .m, in the built model
M , for the ith marginal model, i = 1 . . .m, we can check whether or not

2ki∑
j=1

qij(− log2 pij) > ki ,

where qij is the frequency of the jth possible partial solution to the ith variable subset collected
from T ′. If the inequality holds, then the compression scheme employed in the ith marginal
model is not a good one for compressing the corresponding partial solutions in T ′ because it
encodes a ki-bit partial solution to a bit string of an expected length more than ki bits. Based
on the earlier reasoning, such a condition indicates that the marginal model is likely ineffective
because T ′ does not agree on this part of the model. Otherwise, it should be able to compress
the partial solutions in T ′.

Further explained from a machine learning perspective [28], a good model should generalize
well to unseen instances. Otherwise, it captures coincidental regularities among the training

7



Algorithm 1 ECGA with Model Pruning
Initialize a population P with n solutions of length `.
while the stopping criteria are not met do

Evaluate the solutions in P .
Divide P into two sub-populations S and T at random.
S′ ← apply t-wise tournament selection on S.
T ′ ← apply t-wise tournament selection on T .
M ← build the MPM on S′ with greedy search.
M ′ ← prune M based on the inconsistency with T ′.
for each remaining marginal distribution D in M ′ do

for each solution s = s1s2 · · · s` in P do
Change the values in s partially by sampling D.

end for
end for

end while

data. If model building is performed on the portion where linkage is not sensible from the given
set of solutions, it will “overfit” to those partial solutions (hitchhikers) that were not subject
to proper selection pressures. Consequently, the regularities captured by this part of modeling
tend to be inconsistent with the true problem structure. Furthermore, the partial solutions that
were not subject to proper selection pressures appear to be random, and such a situation brings
about the phenomenon of random drifting mentioned in section 2. By its nature, drifting is
random, and two different sub-populations tend to drift in two different directions. Thus, we
can use the statistical inconsistency between S′ and T ′ to locate possible drifting portions of the
solutions and identify the likely ineffective parts of the model. By removing the likely ineffective
parts, we can forge a partial but more effective model.

An issue in practice concerning the calculation of the inequality is that sometimes one or
several possible partial solutions are absent in the set of selected solutions, and leave − log2 pij

undefined because pij = 0. In the present work, we handle this practical problem by assigning
a very small value, smaller than 1/n, to the pij ’s that are zero and normalizing them such that
pij ’s are sum to 1 (i.e.,

∑
j pij = 1).

5.3 Integration

In this section, the optimization process incorporating ECGA and the proposed technique is
described. This combination helps ECGA to achieve better performance where disparate scale
exists among different parts of the problem.

The procedure is presented in Algorithm 1. This process starts at initializing a population
of solutions. After initialization, the solutions are evaluated, and then the entire population
is randomly split into two sub-populations. Selection operations are performed on the two
sub-populations separately with the same operator and selection pressure. Model building is
performed on one of the sub-populations. The other sub-population is used to prune the built
model using the technique described previously. Finally, all solutions in the population are
altered by sampling the remaining marginal distributions, which are considered effective, in the
pruned model. These steps are repeated until the stopping criteria are satisfied.

A prominent difference between the above process and the regular EDAs is that the sampling
might not include all variables. As introduced in section 4, the existing solutions are altered by
sampling only the marginal distributions surviving the model pruning process. Thus, a solution
string might not be entirely modified in an iteration. This technique hence avoids random
drifting and inaccurate processing of low-salience building blocks by postponing the processing

8



Gen. Marginal Product Model (Before & After Pruning)

1
Before [s1 s2 s3 s4] [s5 s13 s16] [s6 s7 s12] [s8 s11] [s9 s10] [s14 s15]
After [s1 s2 s3 s4]

2
Before [s1] [s2] [s3] [s4] [s5 s6 s7 s8] [s9 s14] [s10 s15] [s11 s13 s16] [s12]
After [s1] [s2] [s3] [s4] [s5 s6 s7 s8]

3
Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14] [s15 s16]
After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12]

4
Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9] [s10] [s11] [s12] [s13 s14 s15 s16]
After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9] [s10] [s11] [s12] [s13 s14 s15 s16]

Table 3: Marginal product models before and after pruning when the 16-bit exponentially scaled
problem is solved with the proposed approach.

until the sufficient linkage information is available. In this way, better performance in terms
of function evaluations can be achieved if disparate scale exists among different parts of the
problem.

To see that the proposed method meets its design purpose, Table 3 lists the models before
and after pruning when the earlier exponentially scaled problem is solved by Algorithm 1. It
can be seen that the proposed approach appropriately removes the ineffective parts during each
stage of the optimization process. To further illustrate the behavior and effect of the proposed
approach, the algorithm is applied to another problem with a different scaling called overloaded
scaling3,

f(s1s2 · · · s16) =
1∑

i=0

ftrap4(s4i+1s4i+2s4i+3s4i+4) +

3∑
i=2

1
5
ftrap4(s4i+1s4i+2s4i+3s4i+4) ,

where s1s2 · · · s16 is a solution string. The overloaded cases are those with two scales, where
some subproblems are at the high level and the rest are at the low one. The models before
and after pruning when such a problem is solved are shown in Table 4. It can be observed that
the proposed method works as expected in splitting the solving process according to the scaling
structure. The two subproblems of higher salience are handled first, and the two subproblems
of lower salience are solved later.

6 Experiments

The experiments are designed for observing the behavior of the proposed approach on sets of
problems with different scaling difficulties. Because ECGA is limited in handling overlapped
building blocks, we use only test problems that are additively separable. In this study, three
bounding models of scalings [5] are considered: exponential, power-law, and uniform. While the
uniform and exponential cases bound the scaling performance of an algorithm at two extremes,
the power-law cases enable us to see the behavior in between. Based on the different scalings,

3As mentioned by Goldberg [5], the word “overloaded” is a reference to the application of this idea in the early
messy GA work [20], where such distributions were used to try to overload or overwhelm the ability of the messy
GA to keep all building blocks present through all phases of the process.

9



Gen. Marginal Product Model (Before & After Pruning)

1
Before [s1 s2 s3 s4] [s5 s6 s7 s8] [s9 s16] [s10 s14 s15] [s11 s13] [s12]
After [s1 s2 s3 s4] [s5 s6 s7 s8]

2
Before [s1 s2 s3 s4] [s5 s6 s7 s8] [s9 s13 s14] [s10 s12] [s11 s15] [s16]
After [s1 s2 s3 s4] [s5 s6 s7 s8]

3
Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]
After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]

4
Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]
After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]

Table 4: Marginal product models before and after pruning when the 16-bit problem of the
overloaded scaling is solved by the proposed approach.

three sets of test functions are constructed using ftrap4 as the elemental function:

Exponential:
m−1∑
i=0

5iftrap4(s4i+1s4i+2 · · · s4i+4)

Power-law:
m−1∑
i=0

(i + 1)3ftrap4(s4i+1s4i+2 · · · s4i+4)

Uniform:
m−1∑
i=0

ftrap4(s4i+1s4i+2 · · · s4i+4)

Furthermore, various selection pressures are also taken into considerations to make a more
thorough observation. For simplicity, the splitting of population is disjoint and the stopping
criterion is set such that a run is terminated when all solutions in the population converge to
the same fitness value.

6.1 Effect of Selection Pressure

This section describes the experiments that are designed for observing the effect of selection
pressure on both the original ECGA and the ECGA combined with the proposed approach.
The purpose to perform these experiments are twofold. Firstly, because the proposed approach
will be compared with the original ECGA in the next sets of experiments, in order to make a fair
and meaningful comparison, it must be ensured that the selection pressure is set properly for
the original ECGA. Secondly, the appropriate selection pressure is relatively important to the
well-functioning of the proposed approach because the pruning mechanism is designed according
to the statistical inconsistencies between the two sub-populations.

Because tournament selection is adopted, the selection pressure is altered by changing the
tournament size. We consider tournament sizes ranging from 8 to 24, and the problem instances
used to make the observations are of length 40 bits (m = 10) and 80 bits (m = 20). For simplicity,
the splitting of population is performed in the way that the two resulting sub-populations are
disjoint and of equal size. For each tournament size, the minimum population size required such
that on average, m− 1 building blocks converge to the correct values in 50 runs for each of the
two problem instances is determined by a bisection method.

The results on exponentially, power-law, and uniformly scaled problems are presented in
Figures 1, 2, and 3, respectively. It can be observed that for all three scalings, the original ECGA
performs better under tournament size 12 or 16. On the other hand, although tournament sizes
12 and 16 also work well for the proposed method, the best tournament size varies from one
scaling to another.

10



8 12 16 20 24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Tournament Sizes

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(a) Population Sizes

8 12 16 20 24

10

15

20

25

30

35

40

45

50

Tournament Sizes

G
en

er
at

io
ns

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(b) Generations

8 12 16 20 24

1

2

3

4

5

6

7

8

9

10

11
x 104

Tournament Sizes

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(c) Function Evaluations

Figure 1: Empirical results of the proposed method and original ECGA on 40 and 80-bit ex-
ponentially scaled problems. Five tournament sizes ranging from 8 to 24 are experimented to
observe the behavior of the algorithms under different selection pressures.

11



8 12 16 20 24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Tournament Sizes

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(a) Population Sizes

8 12 16 20 24

10

15

20

25

30

35

40

45

50

Tournament Sizes

G
en

er
at

io
ns

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(b) Generations

8 12 16 20 24

1

2

3

4

5

6

7

8

9

10

11
x 104

Tournament Sizes

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(c) Function Evaluations

Figure 2: Empirical results of the proposed method and original ECGA on 40 and 80-bit power-
law scaled problems. Five tournament sizes ranging from 8 to 24 are experimented to observe
the behavior of the algorithms under different selection pressures.

12



8 12 16 20 24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Tournament Sizes

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(a) Population Sizes

8 12 16 20 24

10

15

20

25

30

35

40

45

50

Tournament Sizes

G
en

er
at

io
ns

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(b) Generations

8 12 16 20 24

1

2

3

4

5

6

7

8

9

10

11
x 104

Tournament Sizes

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA, l=40
ECGA, l=80
ECGA+MP, l=40
ECGA+MP, l=80

(c) Function Evaluations

Figure 3: Empirical results of the proposed method and original ECGA on 40 and 80-bit uni-
formly scaled problems. Five tournament sizes ranging from 8 to 24 are experimented to observe
the behavior of the algorithms under different selection pressures.

13



6.2 Impact on Population Requirement

This section describes the experimental settings and results of the proposed method compared
to that of the original ECGA on three sets of problems with different scaling setups. The
problem size ranges from 40 to 80 bits (m = 10 . . . 20). For each problem instance, the minimum
population size required such that on average, m − 1 building blocks converge to the correct
values in 50 runs is determined by a bisection method. As in the previous experiment, the
splitting of population is also performed in the way that the two resulting sub-populations are
disjoint and of equal size. Two selection pressures are adopted by setting tournament size t to
12 and 16. The reason for using these two tournament sizes is because our approach is compared
with the original ECGA which seems to perform better using t = 12 or t = 16 according to the
previous set of experiments. Otherwise, a question might arise that whether or not the inferior
performance of the original ECGA under some scaling difficulties comes from the inappropriate
setting of selection pressure.

The empirical results on exponentially scaled problems are shown in Figure 4. The minimum
population sizes required by the proposed method are much lower than that needed by the
original ECGA and grow in a relatively slow rate. The same situation is also observed in the
function evaluations that our approach works remarkably well.

Figure 5 shows the results on power-law scaled problems. The results on the minimum
population sizes are similar to the previous set of experiments. The proposed method still uses
fewer function evaluations, but the differences are reduced.

The empirical results on uniformly scaled problems are presented in Figure 6. As expected,
the proposed method requires larger population sizes than that needed by the original ECGA.
Because for uniformly scaled problems, the model building process can correctly identify all
building blocks, the verification on the built model may just be useless. The results also show
that the function evaluations used by the proposed method are about twice the number of that
needed by the original ECGA.

6.3 Building vs. Verifying

This section describes the sets of experiments on the proposed method to reveal the change
in performance when the different splitting ratios of the two sub-populations are adopted. It
presents the experimental results to illustrate the behavior under different scalings. The splitting
ratio (|T |/|S + T |) ranges from 0.1 to 0.8. The 60-bit problems (m = 15) are adopted as test
functions. For each splitting ratio, the minimum population size required such that on average,
m − 1 building blocks converge to the correct values in 50 runs is determined by a bisection
method. As in the previous experiments, tournament sizes 12 and 16 are used.

The empirical results on exponentially scaled problems are shown in Figure 7. For both
tournament sizes, the required population size decreases as the splitting ratio increases. However,
the generation increases with the splitting ratio. The combined effect is that the minimum
required function evaluation appears when the splitting ratio is 0.6, and the required function
evaluations grow when the splitting ratio either increases or decreases.

Figure 8 presents the results on power-law scaled problems. Different from the previous case,
the required population size does not strictly decreases with the increment of the splitting ratio.
The population size firstly decreases as the splitting ratio grows and then hits the turning points
at 0.5 (t = 16) or 0.6 (t = 12). Similar to the exponentially scaled case, the generation increases
with the splitting ratio. For both tournament sizes, the minimum function evaluation appears
when the splitting ratio is 0.3.

Figure 9 shows the results on uniformly scaled problems. As expected, Figures 9(a), 9(b),
and 9(c) all shares a common pattern that the population size, the generation, and the function
evaluation increase with the splitting ratio. It is because in the uniformly scaled case, the linkage

14



40 44 48 52 56 60 64 68 72 76 80
0

500

1000

1500

2000

2500

3000

Problem Sizes (Bits)

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(a) Population Sizes

40 44 48 52 56 60 64 68 72 76 80

10

15

20

25

30

Problem Sizes (Bits)

G
en

er
at

io
ns

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(b) Generations

40 44 48 52 56 60 64 68 72 76 80

1

2

3

4

5

6

x 104

Problem Sizes (Bits)

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(c) Function Evaluations

Figure 4: Empirical results of the proposed method compared to the original ECGA on expo-
nentially scaled problems using tournament sizes t = 12 and t = 16. The problem sizes ranging
from 40 to 80 bits are experimented to observe the performance of the algorithms.

15



40 44 48 52 56 60 64 68 72 76 80
0

500

1000

1500

2000

2500

3000

Problem Sizes (Bits)

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(a) Population Sizes

40 44 48 52 56 60 64 68 72 76 80

10

15

20

25

30

Problem Sizes (Bits)

G
en

er
at

io
ns

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(b) Generations

40 44 48 52 56 60 64 68 72 76 80

1

2

3

4

5

6

x 104

Problem Sizes (Bits)

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(c) Function Evaluations

Figure 5: Empirical results of the proposed method compared to the original ECGA on power-
law scaled problems using tournament sizes t = 12 and t = 16. The problem sizes ranging from
40 to 80 bits are experimented to observe the performance of the algorithms.

16



40 44 48 52 56 60 64 68 72 76 80
0

500

1000

1500

2000

2500

3000

Problem Sizes (Bits)

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(a) Population Sizes

40 44 48 52 56 60 64 68 72 76 80

10

15

20

25

30

Problem Sizes (Bits)

G
en

er
at

io
ns

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(b) Generations

40 44 48 52 56 60 64 68 72 76 80

1

2

3

4

5

6

x 104

Problem Sizes (Bits)

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA, t=12
ECGA, t=16
ECGA+MP, t=12
ECGA+MP, t=16

(c) Function Evaluations

Figure 6: Empirical results of the proposed method compared to the original ECGA on uniformly
scaled problems using tournament sizes t = 12 and t = 16. The problem sizes ranging from 40
to 80 bits are experimented to observe the performance of the algorithms.

17



is always completely sensible, and there is no need to verify and prune the built probabilistic
model.

7 Discussion

As aforementioned, we utilized the existence of disparate scales in problems to create a controlled
experimental environment in order to study the situation in which the complete, accurate linkage
information may or may not be available to estimation of distribution algorithms. According
to the obtained results shown in Figures 4(c) and 5(c), the proposed approach does improve
the original ECGA on the test problems where disparate scales exist among building blocks. In
this section, we discuss some properties of the proposed approach and possible extension of this
work.

7.1 Parameter Settings in Action

The empirical results suggested that, different from the original ECGA, our approach works bet-
ter with a stronger selection pressure if the problem at hand is with distinguishable prominence
or solving priority among the constituting subproblems. In these cases, the population can be
set to a fairly small size compared to the original ECGA and we speculate that our approach
only needs a population that is large enough for the salient unconverged building blocks to be
handled properly. On the other hand, if we are dealing with problems which are composed of
subproblems of roughly equal salience, the selection pressure should be adjusted to a weaker
level, and of course, a larger population size will be required since the performance gain deliv-
ered by the model pruning mechanism is limited in the situation where the linkage is always
almost completely sensible during the entire optimization process.

For setting the splitting ratio, our suggestion is to adopt a ratio under 0.7. If the given
problem is evidently with distinguishable prominence among the constituting subproblems, using
higher splitting ratios will yield better performance. Lower ratios are more suitable if the problem
at hand is composed of subproblems of roughly equal salience. If the property of the problem is
completely unknown as in black-box optimization, setting the ratio to 0.5 is a reasonable choice.

7.2 Overhead in Uniformly Scaled Problems

Empirical results presented in Figure 6(c) also show that on the uniformly scaled cases, the
proposed approach uses nearly twice as many function evaluations as the original ECGA. We
speculate that this double expenditure is a general property of the proposed approach when
dealing with uniformly scaled problems.

This speculation can be explained by a reverse thinking on a hypothetical situation described
as follows. Suppose that given a uniformly scaled problem, the original ECGA with an appro-
priate selection pressure needs a population of size n to handle that problem properly. Now,
consider the proposed approach for the same problem. If we use a population of size 2n, then
in our algorithm, the entire population will be divided into two sub-populations each of size n,
assuming that the splitting of population is disjoint and of equal size. If the original ECGA
is capable of detecting the accurate problem structure using a population of size n, then in
our algorithm, a sub-population of size n will also do the job. In the ideal case, there will be
no statistical inconsistency between the built model and the set of promising solutions selected
from the second sub-population. As a result, we wasted half of the population in the pruning
mechanism which contributed to the extra cost compared to the original ECGA.

However, the above inference cannot fully explain the obtained results. As illustrated in
Figure 6(a) the minimum population sizes needed by the proposed method is not exactly twice

18



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

200

300

400

500

600

700

800

900

1000

Population Ratio (|T|/|S+T|)

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(a) Population Sizes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

30

40

50

Population Ratio (|T|/|S+T|)

G
en

er
at

io
ns

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(b) Generations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

x 104

Population Ratio (|T|/|S+T|)

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(c) Function Evaluations

Figure 7: Empirical results of the proposed method on 60-bit exponentially scaled problems with
different splitting ratios between the two sub-populations. The splitting ratio (|T |/|S + T |)
ranging from 0.1 to 0.8 are experimented to observe the change in performance of the proposed
approach.

19



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

500

600

700

800

900

Population Ratio (|T|/|S+T|)

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(a) Population Sizes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

15

20

25

30

35

40

45

50

55

60

65

Population Ratio (|T|/|S+T|)

G
en

er
at

io
ns

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(b) Generations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

2

2.5

3

3.5

4

4.5
x 104

Population Ratio (|T|/|S+T|)

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(c) Function Evaluations

Figure 8: Empirical results of the proposed method on 60-bit power-law scaled problems with
different splitting ratios between the two sub-populations. The splitting ratio (|T |/|S + T |)
ranging from 0.1 to 0.8 are experimented to observe the change in performance of the proposed
approach.

20



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000

1500

2000

2500

3000

Population Ratio (|T|/|S+T|)

Po
pu

la
tio

n 
Si

ze
s

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(a) Population Sizes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

15

20

25

30

35

Population Ratio (|T|/|S+T|)

G
en

er
at

io
ns

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(b) Generations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

10

x 104

Population Ratio (|T|/|S+T|)

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
ECGA+MP, t=12
ECGA+MP, t=16

(c) Function Evaluations

Figure 9: Empirical results of the proposed method on 60-bit uniformly scaled problems with
different splitting ratios between the two sub-populations. The splitting ratio (|T |/|S + T |)
ranging from 0.1 to 0.8 are experimented to observe the change in performance of the proposed
approach.

21



of that required by the original ECGA. In fact, the numbers are much lower than twice of that
needed by the original ECGA. On the other hand, our approach uses more generations com-
pared to the original ECGA because the sub-population for model building was not sufficiently
large for all problem structures to be detected properly in the beginning of the process. In
this situation, the processing was slowed down because the pruning mechanism removed parts
of the model that exhibit statistical inconsistencies. As a consequence, the originally expected
simultaneous processing of building blocks was not fully achieved which resulted in the delay
of convergence. Nevertheless, spending more generations seems to yield an equivalent usage
of function evaluations as the hypothetical case described above, and we think that the prun-
ing mechanism introduced an additional interaction between population sizes and generations.
Further empirical or theoretical studies are needed to investigate the interaction between these
factors.

7.3 Pruning Network-based Probabilistic Models

In this work, we have introduced a technique to prune a given marginal product model based
on the statistics collected from a reserved set of solutions. It is possible to extend this idea to
design pruning mechanisms for other EDAs. For example, consider EDAs that use network-based
probabilistic models with Bayesian information criterion (BIC) [29] as model scoring metrics like
EBNA [14] and a variant of BOA [30]. In the binary case, BIC assigns a given network structure
B of ` variables a score

S(B) =
∑̀
i=1

(
−n×H(Xi|Πi)− 2|Πi| log2n

2

)

= −
∑̀
i=1

n×H(Xi|Πi)−
∑̀
i=1

2|Πi| log2n

2
,

where Xi’s, i = 1 . . . `, are variables and H(Xi|Πi) is the conditional entropy of Xi given its
parent Πi in the network; n is the population size. The conditional entropy H(Xi|Πi) is given
by

H(Xi|Πi) = −
∑
xi,πi

p(xi, πi)log2p(xi|πi) ,

where p(xi, πi) is the probability of instances with Xi = xi and Πi = πi; p(xi|πi) is the conditional
probability of instances with Xi = xi given that Πi = πi.

The term
∑`

i=1 n×H(Xi|Πi) is of the same function as the compressed population complexity
(Cp) in ECGA because H(Xi|Πi) denotes the average number of bits required to store a value
of Xi with compression given the information of Πi. Thus, we can check if a variable Xi should
be pruned away or not by the following inequality

−
∑
xi,πi

q(xi, πi)log2p(xi|πi) > 1 ,

where q(xi, πi) is the frequency of Xi = xi and Πi = πi observed in the set of solutions selected
from the reserved sub-population. Using the idea described in section 5.2, if this inequality
holds, then Xi should be removed because it encodes a one-bit partial solution to a bit string
of an expected length more than one bit.

However, despite the similarities in ideas, some technical complications remain to be over-
come before we can finish the design of a pruning mechanism for network-based probabilistic
models. For instance, what if a variable which we intend to prune is a parent node of some other
variables? In summary, pruning network-based probabilistic models is potentially feasible and
requires further investigations.

22



8 Summary and Conclusions

This paper started at reviewing previous studies on EDAs and scaling difficulties. It then illus-
trated how the scaling difficulty shadows EDAs’ ability in recognizing building blocks. Following
that, a notion called linkage sensibility was introduced to describe the observation, and we use
the term sensible linkage to refer to the problem structures that can be extracted by inspecting
only the set of selected solutions. Based on the concept, we briefly defined the effectiveness
of distributions estimated by probabilistic model building and proposed a general approach to
achieve a more effective modeling. Finally, an implementation of the proposed approach on
ECGA was introduced as well as experimented on several test functions of different scaling
difficulties.

In this study, we focused on the scaling difficulties and their influences on the ability of EDAs
to appropriately identify building blocks. However, at a higher scope, our attempt was trying
to resolve an important issue which was rarely addressed for EDAs: what if the information
contained in the given population is inevitably insufficient? The approach to solve this problem
was proposed and successfully implemented for ECGA. It may be adopted and carried over to
other EDAs such that more flexible and robust EDAs can be developed.

Acknowledgments

The authors are grateful to the National Center for High-performance Computing for computer
time and facilities.

References

[1] H. Mühlenbein and G. Paaß, “From recombination of genes to the estimation of distributions
I. binary parameters,” in PPSN IV: Proceedings of the 4th International Conference on
Parallel Problem Solving from Nature. London, UK: Springer-Verlag, 1996, pp. 178–187.

[2] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation, ser. Genetic algorithms and evolutionary computation. Boston,
MA: Kluwer Academic Publishers, October 2001, vol. 2, ISBN: 0-7923-7466-5.

[3] M. Pelikan, D. E. Goldberg, and F. G. Lobo, “A survey of optimization by building and
using probabilistic models,” Computational Optimization and Applications, vol. 21, no. 1,
pp. 5–20, 2002.

[4] G. Harik, “Linkage learning via probabilistic modeling in the ECGA,” Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign., IlliGAL Report No.
99010, 1999.

[5] D. E. Goldberg, The Design of Innovation: Lessons from and for Competent Genetic Al-
gorithms. Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[6] J. H. Holland, Adaptation in natural and artificial systems. Cambridge, MA, USA: MIT
Press, 1992.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[8] S. Baluja, “Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning,” Carnegie Mellon University, Pitts-
burgh, PA, USA, Tech. Rep., 1994.

23



[9] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 4, p. 287, November 1999.

[10] J. de Bonet, C. Isbell, and P. Viola, “MIMIC: Finding optima by estimating probability
densities,” in Advances in Neural Information Processing Systems, M. C. Mozer, M. I.
Jordan, and T. Petsche, Eds., vol. 9. The MIT Press, 1997, pp. 424–430.

[11] S. Baluja and S. Davies, “Using optimal dependency-trees for combinational optimization,”
in ICML ’97: Proceedings of the Fourteenth International Conference on Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 30–38.

[12] M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution algorithm,” in Ad-
vances in Soft Computing - Engineering Design and Manufacturing, R. Roy, T. Furuhashi,
and P. K. Chawdhry, Eds. London: Springer-Verlag, 1999, pp. 521–535.

[13] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian optimization algo-
rithm,” in Proceedings of the Genetic and Evolutionary Computation Conference GECCO-
99, W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, Eds., vol. I. Orlando, FL: Morgan Kaufmann Publishers, San Fransisco, CA, 13-17
1999, pp. 525–532.

[14] R. Etxeberria and P. Larrañaga, “Global optimization using bayesian networks,” in Pro-
ceedings of the Second Symposium on Artificial Intelligence (CIMAF-99), A. O. Rodriguez,
M. S. Ortiz, and R. S. Hermida, Eds., Habana, Cuba, 1999, pp. 332–339.

[15] H. Mühlenbein and T. Mahnig, “FDA: A scalable evolutionary algorithm for the optimiza-
tion of additively decomposed functions,” Evolutionary Computation, vol. 7, no. 4, pp.
353–376, 1999.

[16] H. Mühlenbein and R. Höns, “The estimation of distributions and the minimum relative
entropy principle,” Evolutionary Computation, vol. 13, no. 1, pp. 1–27, 2005.

[17] D. Thierens, D. E. Goldberg, and Â. G. Pereira, “Domino convergence, drift and the tem-
poral salience structure of problems,” in Proceedings of the 1998 IEEE International Con-
ference on Evolutionary Computation. IEEE Press, 1998, pp. 535–540.

[18] D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and the sizing of
populations,” Complex Systems, vol. 6, no. 4, pp. 333–362, 1992.

[19] D. E. Goldberg and M. Rudnick, “Genetic algorithms and the variance of fitness,” Complex
Systems, vol. 5, no. 3, pp. 265–278, 1991.

[20] D. E. Goldberg, K. Deb, and B. Korb, “Messy genetic algorithms revisited: Studies in
mixed size and scale,” Complex Systems, vol. 4, no. 4, pp. 415–444, 1990.

[21] F. G. Lobo, D. E. Goldberg, and M. Pelikan, “Time complexity of genetic algorithms on
exponentially scaled problems,” in Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2000), D. Whitley, D. Goldberg, E. Cantú-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, Eds. Las Vegas, Nevada, USA: Morgan Kaufmann, 10-12
2000, pp. 151–158.

[22] G. Harik, “Learning gene linkage to efficiently solve problems of bounded difficulty using
genetic algorithms,” Ph.D. dissertation, University of Illinois, 1997.

[23] Y.-p. Chen and D. E. Goldberg, “Convergence time for the linkage learning genetic algo-
rithm,” Evolutionary Computation, vol. 13, no. 3, pp. 279–302, 2005.

24



[24] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,” in Foundations of
Genetic Algorithms 2, 1993, pp. 93–108.

[25] ——, “Sufficient conditions for deceptive and easy binary functions,” Annals of Mathematics
and Artificial Intelligence, vol. 10, no. 4, pp. 385–408, 1994.

[26] J. Rissanen, “Modelling by shortest data description,” Automatica, vol. 14, pp. 465–471,
1978.

[27] T. M. Cover and J. A. Thomas, Elements of information theory. New York, NY, USA:
Wiley-Interscience, 1991.

[28] T. M. Mitchell, Machine Learning. McGraw-Hill Higher Education, 1997.

[29] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6, no. 2,
pp. 461–464, 1978.

[30] M. Pelikan, D. E. Goldberg, and K. Sastry, “Bayesian optimization algorithm, decision
graphs, and occam’s razor,” in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds. San
Francisco, California, USA: Morgan Kaufmann, 2001, pp. 519–526.

25


	Introduction
	Background
	Linkage Sensibility
	Effective Distributions
	ECGA with Model Pruning
	Extended Compact Genetic Algorithm
	Model Pruning
	Integration

	Experiments
	Effect of Selection Pressure
	Impact on Population Requirement
	Building vs. Verifying

	Discussion
	Parameter Settings in Action
	Overhead in Uniformly Scaled Problems
	Pruning Network-based Probabilistic Models

	Summary and Conclusions

