
Adaptive Discretization on Multidimensional Continuous
Search Spaces

Jiun-Jiue Liou
Ying-ping Chen

NCLab Report No. NCL-TR-2008002
February 2008

Natural Computing Laboratory (NCLab)
Department of Computer Science
National Chiao Tung University

329 Engineering Building C
1001 Ta Hsueh Road

HsinChu City 300, TAIWAN
http://nclab.tw/

Adaptive Discretization on Multidimensional Continuous Search

Spaces

Jiun-Jiue Liou and Ying-ping Chen
Department of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan
vcore.tw@gmail.com, ypchen@nclab.tw

February 02, 2008

Abstract

This paper extends an adaptive discretization method, Split-on-Demand (SoD), to be
capable of handling multidimensional continuous search spaces. The proposed extension
is called multidimensional Split-on-Demand (mSoD), which considers multiple dimensions
of the search space as a whole instead of independently discretizing each dimension as SoD
does. In this study, we integrate mSoD and SoD with the extended compact genetic algorithm
(ECGA) to numerically examine the effectiveness and performance of mSoD and SoD on the
problems with and without linkage among dimensions of the search space. The experimental
results indicate that mSoD outperforms SoD on both of the test problems and that mSoD can
offer better scalability, stability, and accuracy. The behavior of mSoD is discussed, followed
by the potential future work.

1 Introduction

Genetic algorithms (GAs) [1] are methodologies inspired by natural evolution and widely ap-
plied to tackle enormous real-world problems as a flexible optimization framework. In genetic
algorithms, promising individuals are selected from the current population to produce new so-
lutions by utilizing the recombination and mutation operators, mimicking the biological genetic
operations. According to the way genetic algorithms operate and the GA design decomposition
theory [2], the key components to the GA success include identifying, reproducing, and exchang-
ing the solution fragments. Because the recombination operator mixes promising sub-solutions
and creates new solutions, genetic algorithms work well on the problems which can be implicitly
or explicitly decomposed into sub-problems.

In order to further enhance the effects of sub-solution identifying and exchanging provided by
the crossover and mutation operators in GAs, estimation of distribution algorithms (EDAs) [3]
are proposed and developed by utilizing probabilistic models to capture and reflect the problem
structure. EDAs are nowadays one of the promising branches in evolutionary computation
that can offer high performance and robustness for solving optimization problems. In EDAs,
thanks to the adopted models, decision variables are oftentimes encoded with some discrete
coding scheme, such as binary coding. However, it is reportedly difficult to find high accuracy
solutions in solving continuous problems for such a setting. To overcome this difficulty, several
attempts have been made, including continuous PBIL with Gaussian distribution [4], real-coded
variant of PBIL with interval updating [5], BEA for continuous function optimization [6], and
the real-coded BOA [7].

1

Instead of directly modifying the algorithm, as an alternative and more general approach,
Chen et al. [8] proposed an adaptive discretization method, called Split-on-Demand (SoD), to
interface the discrete type optimization algorithms, including EDAs or GAs, with continuous
variables by discretizing continuous domains. Integrated with the extended compact genetic
algorithm (ECGA) [9], SoD was successfully employed to solve some real-world problems [10, 11].
Although SoD enables the discrete algorithms to tackle continuous problems, it processes each
dimension of the search space independently disregarding any relationship or available linkage
information among dimensions.

To develop better discretization techniques, in this study, our goal is to enhance the ca-
pability and performance of SoD and to make SoD able to take the advantage of available
linkage information among dimensions, which may be obtained by a variety of linkage learning
techniques [12]. In particular, we propose an extension of SoD, called multidimensional Split-
on-Demand (mSoD), considering a group of dimensions and discretizing the multidimensional
region. We integrate mSoD and SoD with ECGA to observe the performance difference.

In the next section, we will briefly review SoD and ECGA to provide a background of this
study. In section 3, we will describe in detail how the proposed multidimensional Split-on-
Demand (mSoD) operates and the integration of mSoD and ECGA. The numerical experiments
and the experimental results for observing the performance difference of mSoD and SoD are
given in section 4, followed by the discussion in section 5. Finally, section 6 concludes this work.

2 Background: SoD and ECGA

To provide a background of this study, in this section, we briefly review the discretization method
to extend, Split-on-Demand (SoD), and the backend optimization engine, the extended compact
genetic algorithm (ECGA), respectively.

2.1 Split-on-Demand

Split-on-Demand is an adaptive discretization method for encoding continuous decision variables
with discrete codes by discretizing the continuous domain. The fundamental idea of SoD is
simply to split the continuous interval where we wish to know in more detail and to build
a more accurate probabilistic model. SoD splits the interval in which there are more than a
certain number of individuals or search points. In order to determine which interval to split, a
split rate γ, where 0 < γ < 1, is used. Let the population size be N . If an interval contains
more than N × γ individuals, the interval should be split at a random.

The pseudo code for SoD is shown in Figure 1. For a given interval, described by [lower bound,
upper bound], to split, a split point m is generated at random. The interval is split into two
intervals: [`,m] and [m,u]. The split process runs recursively until the number of individuals
in the target interval is no more than the threshold. Along the evolutionary process, the split
rate, γ, is decreased with a split rate decreasing factor ε. The decreasing factor is utilized to
manipulate the split rate such that the backend optimization algorithm will look into certain
parts of the search space in more and more detail.

2.2 Extended Compact Genetic Algorithm

The extended compact genetic algorithm (ECGA) [9] is one of the estimation of distribution
algorithms. The key idea of ECGA is that finding good probability models is equivalent to
linkage learning. The probabilistic models adopted by ECGA are a class of models known as
the marginal product models (MPMs). ECGA uses MPMs to model the partitions of decision

2

1: procedure Split-on-Demand
2: Split(lower bound, upper bound)
3: γ ← γ × ε
4: end procedure

1: procedure Split(`, u)
2: m← random[`, u]
3: N` ← number of individuals in [`,m]
4: Nu ← number of individuals in [m,u]
5: if N` ≥ N × γ then
6: Split(`, m)
7: else if N` > 0 then
8: Add a code for the range [`,m]
9: else

10: Ignore the range [`,m]
11: end if
12: if Nu ≥ N × γ then
13: Split(m, u)
14: else if Nu > 0 then
15: Add a code for the range [m,u]
16: else
17: Ignore the range [m,u]
18: end if
19: end procedure

Figure 1: Pseudo code for SoD.

variables. The measure of good distributions is quantified according to the minimum descrip-
tion length (MDL) principle [13]. The MDL principle penalizes both the inaccuracy and the
complexity of models to achieve the balance.

The complexity measurement of MPM is the sum of Model Complexity, formulated as Equa-
tion (1), and Compressed Population Complexity, formulated as Equation (2).

Model Complexity = log N
∑

I

2S[I] , (1)

where N is the population size, and S[I] is the length of the Ith subset of genes.

Compressed Population Complexity = N
∑

E(MI) , (2)

where E(MI) is the entropy of the marginal distribution of subset I. The goal for the greedy
MPM search is to find an MPM model with the minimal combined complexity:

Combined Complexity = Model Complexity+
Compressed Population Complexity .

Instead of using traditional crossover and mutation operators, ECGA generates the offspring
population from the constructed MPM. New individuals are generated without breaking building
blocks represented in the form of gene groups. In ECGA, the original framework handles only
binary decision variables. Hung and Chen [14] extended the variable domain of ECGA to
integers, and therefore, ECGA can be integrated with SoD as real-coded ECGA (rECGA) for
tacking continuous optimization problems.

3

−100 −50 0 50 100
−100

−50

0

50

100

x
1

x 2

P
11

P
12

P
13

P
14

P
15

P
21

P
22

P
23

P
24

P
25

(a) Split configuration generated by SoD.

−100 −50 0 50 100
−100

−50

0

50

100

x
1

x 2

P
1

P
2

P
3

(b) Split configuration generated by mSoD.

Figure 2: Possible split configurations generated by SoD and mSoD, respectively, for the identical
population of size 10. In Figure 2(a), Pij denote the jth split point on the xi axis. In Figure 2(b),
Pj denote the jth split point on the x1-x2 plane.

3 Multidimensional SoD

In this section, we present the extension of SoD, called multidimensional Split-on-Demand
(mSoD), which is able to split multidimensional continuous search spaces. We will also integrate
mSoD and ECGA, called mrECGA, for the comparison study on the performance difference
between mSoD and the original SoD.

3.1 Extension to Multidimensions

The major difference between mSoD and SoD is that mSoD splits multidimensional regions while
SoD splits one dimensional intervals. Collective decision variables or dimensions are considered
altogether during the splitting process. For example, consider a population of size 10 spread
on a two dimensional search space, where the bound of each dimension is [-100, 100]. To
handle this case, SoD needs to split the x1 and x2 axes independently, and a possible split
configuration generated by SoD is shown in Figure 2(a). On the other hand, mSoD considers
the two dimensions as a whole. When a split point is generated, the target region is split in

4

1: procedure Multidimensional-Split-on-Demand
2: mSplit(bound1, bound2, . . . , boundn)
3: γ ← γ × ε
4: end procedure

1: procedure mSplit(b1, b2, . . . , bn)
2: . bi is the bound of the ith dimension and
3: . consists of the lower bound and the upper bound
4: Generate a random split point P in the target region
5: Split the target region according to P
6: for each newly created region Rk do
7: Nk ← Number of individuals in Rk

8: if Nk ≥ N × γ then
9: mSplit(bk

1, bk
2, . . . , bk

n)
10: . bk

i is the bound of the ith dimension of Rk

11: else if Nk > 0 then
12: Add a code for region Rk

13: else
14: Ignore region Rk

15: end if
16: end for
17: end procedure

Figure 3: Pseudo code for multidimensional SoD.

every dimension according to the position of the split point. Thus, for the identical population,
a possible split configuration generated by mSoD is shown in Figure 2(b).

Firstly, mSoD randomly generates a split point in the whole search space. Suppose the first
split point P1 is at (-50, 0). It splits the whole region into 4 sub-regions. Similarly, if the
second split point P2 is randomly generated at (50, -50), P2 further divides the sub-region on
the southeast corner of the whole search space into four new regions. Assume that the next split
point is P3, the same split operation is repeated, and the whole split process is finished because
no region contains more than two individuals. When the split process terminates, each non-
empty region is assigned a code. Thus, every individual in the population is encoded. Similar
to SoD, the split rate, γ, and the split rate decreasing factor, ε, are also used to control how the
region should be split. The detailed procedure of mSoD is shown as the pseudo code in Figure 3.

For more practical examples, we use mSoD to discretize the continuous domains during the
ECGA optimization process. Two simple examples are provided for the visualization of the
split configurations generated by mSoD at different evolutionary stages. The objective function
used in the example is the sphere function of two dimensions,

∑2
i=1 x2

i , where the range of each
dimension is [-200, 200], and the global optimum is located at (0, 0). For a typical run, Figure 4
depicts the split configurations at generation 1, 10, and 50, respectively. The split configuration
seems coarse at generation 1 because the population is highly diverse in the beginning. In
later stages, mSoD conducts more split operations near (0, 0) because the population begins to
converge to the global optimum.

The objective function used in the other example is the sphere function of three dimensions,∑3
i=1 x2

i , where the range of each dimension is also [-200, 200]. The global optimum is located
at (0, 0, 0). The split configurations at generation 1, 10, and 50 are shown in Figure 5.

Thanks to the design of mSoD, a multidimensional region can be viewed as a whole. The
search points distributed within the region can be grouped across dimensions instead of being
assigned unrelated codes for each dimension independently. This design can offer an important

5

advantage to the backend optimization engine that the linkage information among dimensions,
if available, can be utilized to help the optimization process. For real-world problems, even if
the domain knowledge regarding the variables or the search space exists, it is usually difficult to
incorporate such information in most evolutionary algorithms. By employing mSoD, we can take
advantage of known relations of decision variables to encode the related variables collectively. For
instance, given a two dimensional optimization problem, if we know the two decision variables are
related, we can handle them together for discretization instead of processing them individually.
Furthermore, mSoD also makes possible to integrate the linkage learning techniques [12] into
common evolutionary algorithms because the obtained linkage information can now be utilized.

3.2 mSoD Working with ECGA

Because mSoD handles only the task of discretizing the continuous domain, in order to exam-
ine the performance of mSoD, a backend optimization engine is needed for the optimization
task. In this study, ECGA is adopted to cooperate with mSoD for tackling continuous opti-
mization problems. The integrated optimization framework of mSoD and ECGA is called the
multidimensional real-coded ECGA (mrECGA). The procedure of mrECGA can described as:

1. Generate a random population of size N .

2. Apply tournament selection of size S.

3. Use mSoD to encode the individuals.

4. Model the population with a greedy MPM search.

5. Stop if the obtained MPM model has converged.

6. Generate a new population with the MPM model.

7. Return to step 2.

4 Experiments

In this section, we numerically examine the performance of mSoD and compare the performance
difference between mSoD and SoD. We will introduce the problems adopted for benchmarking,
the parameter settings for conducting the experiments, and finally the experimental results. The
discussion on the experimental results and the observation in the experiments will be given in
the next section.

4.1 Problem Definitions

Since the goal is to compare the performance difference between mSoD and SoD, we conduct
the experiments on two types of problems, the problems with linkage and the problems without
linkage. Because mSoD is explicitly designed for discretizing multidimensional search spaces, it
is expected to perform well on continuous problems consisting of groups of interrelated decision
variables or dimensions. We call such problems as the problems with linkage in this study. In
order to properly control the dimension relationship of the test problem, we define the problem
with linkage of n = m× k dimensions as

flinkage(m, k, ~x) =
m∑

i=1

gi(k, ~xi) , (3)

6

−200 −100 0 100 200
−200

−100

0

100

200

x
1

x 2

(a) Generation 1

−200 −100 0 100 200
−200

−100

0

100

200

x
1

x 2

(b) Generation 10

−200 −100 0 100 200
−200

−100

0

100

200

x
1

x 2

(c) Generation 50

Figure 4: Split configurations generated by mSoD at different generations during the ECGA
evolutionary process for the sphere function of two dimensions, Σ2

i=1x
2
i .

7

−200
−100

0
100

200 −200
−100

0
100

200

−200

−100

0

100

200

x
2x

1

x 3

(a) Generation 1

−200
−100

0
100

200 −200
−100

0
100

200

−200

−100

0

100

200

x
2x

1

x 3

(b) Generation 10

−200
−100

0
100

200 −200
−100

0
100

200

−200

−100

0

100

200

x
2x

1

x 3

(c) Generation 50

Figure 5: Split configurations generated by mSoD at different generations during the ECGA
evolutionary process for the sphere function of three dimensions, Σ3

i=1x
2
i .

8

where m is the number of subproblems, k is the number of dimensions of each subproblem, ~x is
an n dimensional vector,

~x = [x1, x2, . . . , xn] ,

and ~xi is the ith k dimensional vector within ~x,

~xi = [x(i−1)k+1, x(i−1)k+2, . . . , x(i−1)k+k] .

g(·, ·) is the elementary subproblem designed to make all dimensions interrelated and defined as

g(k, ~y) = (y1 − c)2 +
k−1∑
j=1

(yj+1 − yj)2 , (4)

where k is the number of dimensions, c is a constant for controlling the location of the global
optimum, and ~y is a k dimensional vector,

~y = [y1, y2, . . . , yk] .

The function g(k, ~y) is a specifically designed function to be used as the elementary subproblem.
The global optimum is 0 and can be obtained when each yi is equal to yi−1 for i > 1 and y1 is
equal to the assigned constant c. Because each yi cannot be optimized independently, all the
variables of g(k, ~y), y1, y2, . . . , yk, have to be considered together to obtain the global optimum.

The function flinkage(m, k, ~x) is composed of m subproblems g(·, ·), and the constant ci is
assigned different values for each subproblem gi(·, ·). The function flinkage(m, k, ~x) is the test
problem with linkage in the experiments.

Since the decision variables in each subproblem gi(·, ·) are strongly interrelated, we apply
mSoD on each gi(·, ·) accordingly. In order to analyze and observe the performance of mSoD and
SoD on different numbers of related variables, subproblems, and total dimensions, we conduct
the experiments of both mSoD and SoD with various k and m.

For the test problem without linkage, in this study, we adopt the sphere function, which can
be described as

fsphere(n, ~x) =
n∑

i=1

x2
i , (5)

where n is the number of dimensions, and ~x is an n dimensional vector. The global optimum is
0 when all xi’s are equal to 0. Since all decision variables are independent, each of them can be
optimized independently, and no relation exists among them. We apply both mSoD and SoD
on all the dimensions.

4.2 Experimental Settings

The error value is defined as |f(x) − f(x∗)|, where x∗ is the location of the global optimum,
and f(x∗) is the global optimum. The lower bounds and upper bounds for all decision variables
are -200 and 200, respectively. The parameter settings in the experiments for both mrECGA
(mSoD+ECGA) and rECGA (SoD+ECGA) are

• maximum generation: 2000;

• population size: 200;

• tournament size: 8;

• crossover probability: 0.975;

9

• split rate (γ): 0.5;

• split rate decreasing factor (ε): 0.998.

All the experimental results are averaged over 50 runs. If the algorithm reaches a given accuracy
level ζ = 10−6 in a run, we consider the run as a successful run. The successful rate (SR) is
calculated as the ratio of the number of success runs divided by the number of total runs.

4.3 Experimental Results

Tables 1 and 2 report the statistics of mSoD and SoD on the test problems with linkage of
various k, the number of dimensions of the subproblem, and m, the number of subproblems.
The statistics include the averaged error values, the standard deviations of the error values, and
the successful rates over the 50 independent runs. Table 3 shows the experimental results on
the test problems without linkage for both mSoD and SoD.

For easy observations, we also plot the experimental results listed in Tables 1, 2, and 3 in
Figures 6 and 7. The left axis represents the mean error value in the log scale (base 10). The
standard deviations are shown in the form of errorbars with an exception that if the standard
deviation is greater than the mean, the lower part of the errorbar is not shown on the plot because
of the log scale. The right axis represents the successful rate for each individual experiment.
These results will be discussed in the next section.

5 Discussion

From an overall point of view, mSoD outperforms SoD on both of the test problems with and
without linkage when cooperating with ECGA. For all the experiments, the successful rates
of mSoD are equal to or greater than that of SoD. For most of the experiments, mSoD can
provide better solutions than SoD can. Therefore, mSoD offers better discretizing capability
when working with ECGA. In the following sections, we will discuss the experimental results for
the different types of the test problems.

5.1 Test Problems with Linkage

For the problems with linkage, we can observe in Tables 1 and 2 as well as in Figure 6 that
mrECGA successfully solved the problems with k=2, 3, and 4 in all runs. mrECGA also solved
the problems with k=5 and m=1, 2, and 3 but failed to solve the problems with m=5 and 6.
rECGA failed to solve the problems on most runs as k increased. It can be argued that it was a
series of unfair experiments because mSoD utilized the linkage information while SoD did not.
However, the purpose of these experiments are twofold: (1) verifying that mSoD can outperform
SoD on the problems with linkage as expected; (2) demonstrating that mSoD can utilize the
linkage information if available while SoD cannot. The results indicate that mSoD achieves the
design goal.

5.2 Test Problems without Linkage

For the problems without linkage, Table 3 and Figure 7 indicate that mrECGA solved all the
problems in all runs, and the success rates of mrECGA are equal to or greater than that of
rECGA. When the problem size increased, the performance of rECGA largely reduced. Further-
more, it was unexpected that although the variables in the sphere function are all independent
and can be optimized individually, mrECGA still provided better solutions than rECGA did. In
addition to the outcome that mSoD outperformed SoD on both types of the problems, the reason
why mSoD can offer better performance on the sphere function needs further investigations.

10

k = 2

m 1 3 5 7 9 11 13 15
n = m× k 2 6 10 14 18 22 26 30

Mean 7.06e-22 1.72e-17 1.51e-15 2.92e-14 2.08e-13 9.55e-13 1.63e-12 6.20e-12
Std. Dev. 5.61e-22 9.59e-18 5.42e-16 1.14e-14 6.06e-14 2.94e-13 1.18e-12 3.58e-12

SR 100% 100% 100% 100% 100% 100% 100% 100%

k = 3

m 1 3 5 7 9 11
n = m× k 3 9 15 21 27 33

Mean 1.21e-19 5.05e-15 5.46e-13 8.98e-12 4.85e-11 1.88e-10
Std. Dev. 8.83e-20 2.75e-15 2.20e-13 3.38e-12 1.54e-11 5.34e-11

SR 100% 100% 100% 100% 100% 100%

k = 4

m 1 2 3 4 5 6 7 8
n = m× k 4 8 12 16 20 24 28 32

Mean 2.10e-18 6.40e-15 4.62e-13 5.81e-12 3.67e-11 1.74e-10 7.70e-10 2.96e-09
Std. Dev. 1.33e-18 3.96e-15 2.65e-13 2.63e-12 1.48e-11 5.95e-11 2.78e-10 1.07e-09

SR 100% 100% 100% 100% 100% 100% 100% 100%

k = 5

m 1 2 3 4 5 6
n = m× k 5 10 15 20 25 30

Mean 1.39e-16 5.71e-13 4.88e-11 1.82e-08 2.99e-06 1.36e-04
Std. Dev. 2.19e-16 3.10e-13 3.24e-11 2.99e-08 5.84e-06 1.84e-04

SR 100% 100% 100% 100% 40% 0%

Table 1: mSoD on the problems with linkage of various k and m.

k = 2

m 1 3 5 7 9 11 13 15
n = m× k 2 6 10 14 18 22 26 30

Mean 1.48e-05 6.12e-07 7.37e-10 1.78e-17 4.05e-17 4.60e-08 1.64e-05 1.70e-03
Std. Dev. 1.04e-04 4.28e-06 5.16e-09 3.37e-18 7.39e-18 2.97e-07 1.04e-04 1.12e-02

SR 98% 98% 100% 100% 100% 98% 78% 50%

k = 3

m 1 3 5 7 9 11
n = m× k 3 9 15 21 27 33

Mean 9.27e-01 9.74e-06 4.29e-05 2.86e-03 1.08e-01 1.56e+00
Std. Dev. 6.04e+00 6.78e-05 2.84e-04 4.91e-03 2.45e-01 1.40e+00

SR 62% 96% 56% 0% 0% 0%

k = 4

m 1 2 3 4 5 6 7 8
n = m× k 4 8 12 16 20 24 28 32

Mean 1.89e+00 1.91e-04 3.94e-03 1.48e-01 1.41e+00 6.32e+00 1.78e+01 5.70e+01
Std. Dev. 9.07e+00 7.68e-04 5.00e-03 1.86e-01 1.52e+00 5.21e+00 1.20e+01 5.14e+01

SR 10% 12% 0% 0% 0% 0% 0% 0%

k = 5

m 1 2 3 4 5 6
n = m× k 5 10 15 20 25 30

Mean 1.37e+00 2.35e-01 4.01e+00 2.92e+01 1.62e+02 3.14e+02
Std. Dev. 3.53e+00 2.84e-01 3.60e+00 2.79e+01 1.20e+02 1.98e+02

SR 2% 0% 0% 0% 0% 0%

Table 2: SoD on the problems with linkage of various k and m.

11

mSoD

n 10 20 30 40 50 60
Mean 1.29e-14 1.33e-11 6.75e-10 7.88e-9 4.85e-8 2.55e-7

Std. Dev. 6.85e-15 4.58e-12 2.12e-10 2.03e-9 1.12e-8 5.89e-8
SR 100% 100% 100% 100% 100% 100%

SoD

n 10 20 30 40 50 60
Mean 4.62e-18 4.56e-17 1.22e-9 2.80e-4 1.20e-1 2.58e-1

Std. Dev. 1.10e-18 6.17e-18 6.23e-9 1.96e-3 8.30e-1 1.49e+0
SR 100% 100% 100% 92% 50% 14%

Table 3: mSoD and SoD on the problems without linkage of different problem sizes.

0 5 10 15 20 25 30 35

−25

−20

−15

−10

−5

0

Dimensions n (n = m x k)

E
rr

or
 (

lo
g

sc
al

e)

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

fu
l R

at
e

(%
)

mSoD mean

SoD mean

mSoD SR

SoD SR

(a) k = 2 with different m.

0 5 10 15 20 25 30 35

−25

−20

−15

−10

−5

0

Dimensions n (n = m x k)

E
rr

or
 (

lo
g

sc
al

e)

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

fu
l R

at
e

(%
)

mSoD mean

SoD mean

mSoD SR

SoD SR

(b) k = 3 with different m.

0 5 10 15 20 25 30 35

−25

−20

−15

−10

−5

0

Dimensions n (n = m x k)

E
rr

or
 (

lo
g

sc
al

e)

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

fu
l R

at
e

(%
)

mSoD mean

SoD mean

mSoD SR

SoD SR

(c) k = 4 with different m.

0 5 10 15 20 25 30 35

−25

−20

−15

−10

−5

0

Dimensions n (n = m x k)

E
rr

or
 (

lo
g

sc
al

e)

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

fu
l R

at
e

(%
)

mSoD mean

SoD mean

mSoD SR

SoD SR

(d) k = 5 with different m.

Figure 6: Performance of mSoD and SoD on the problems with linkage.

12

10 20 30 40 50 60

−25

−20

−15

−10

−5

0

Dimensions n

E
rr

or
 (

lo
g

sc
al

e)

10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

fu
l R

at
e

(%
)

mSoD mean

SoD mean

mSoD SR

SoD SR

Figure 7: Performance of mSoD and SoD on the problems without linkage.

5.3 Virtual Alphabet

The experimental results may be explained by the concept of virtual alphabets proposed by
Goldberg [15]. Since SoD maps each dimension into its own set of virtual alphabets, the block-
ing situation may easily occur when the landscape prevents the optimization algorithm from
accessing the global optimum via all dimensions. Instead, mSoD maps the related variables
into one set of virtual alphabets, the blocking situation may be automatically resolved by the
mechanism of mSoD. The results on the problems with linkage evidentially support the use of
the virtual alphabet concept to explain the reason why mSoD performs well. Further studies
are needed for the direct evidence.

6 Summary and Conclusions

In this paper, we proposed an extension to SoD, called multidimensional Split-on-Demand
(mSoD), considering the multidimensional space as a whole and splitting the space accordingly.
To numerically examine the effectiveness, we integrated mSoD and SoD with ECGA and con-
ducted experiments on the problems with and without linkage. The results showed that mSoD
outperformed SoD on both types of the test problems, and the observations were discussed.

The ability of mSoD to adaptively discretize multidimensional search spaces opens a portal
between the algorithms designed for discrete variables and the problems composed of continuous
variables. The mechanism of mSoD also enables the backend optimization algorithm to incorpo-
rate the available linkage information, which may greatly promote the optimization performance.
The experimental results demonstrate that advancing the adaptive discretization technique is a
promising research direction. More work along this line needs to be done, and we will continue
to develop better discretization methods.

Acknowledgments

The work was supported in part by the National Science Council of Taiwan under Grants NSC-
96-2221-E-009-196, NSC-96-2627-B-009-001, and NSC-96-2815-C-009-047-E as well as by the
ATU Plan (Aiming for the Top University and Elite Research Center Development Plan) of the
National Chiao Tung University and Ministry of Education, Taiwan. The authors are grateful
to the National Center for High-performance Computing for computer time and facilities.

13

References

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University
of Michigan Press, 1975, ISBN: 0-262-58111-6.

[2] D. E. Goldberg, The Design of Innovation: Lessons from and for Competent Genetic Algo-
rithms, ser. Genetic Algorithms and Evolutionary Computation. Kluwer Academic Pub-
lishers, June 2002, vol. 7, ISBN: 1-4020-7098-5.

[3] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation, ser. Genetic algorithms and evolutionary computation. Boston,
MA: Kluwer Academic Publishers, October 2001, vol. 2, ISBN: 0-7923-7466-5.

[4] M. Sebag and A. Ducoulombier, “Extending population-based incremental learning to con-
tinuous search spaces,” in Proceedings of the Fifth International Conference on Parallel
Problem Solving from Nature (PPSN V), 1998, pp. 418–427.

[5] I. L. Servet, L. Trave-Massuyes, and D. Stern, “Telephone network traffic overloading di-
agnosis and evolutionary computation techniques,” in Proceeings of the Third European
Conference on Artificial Evolution (AE 97), 1997, pp. 137–144.

[6] S.-Y. Shin and B.-T. Zhang, “Bayesian evolutionary algorithms for continuous function
optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation 2001,
2001, pp. 508–515.

[7] C. W. Ahn, R. S. Ramakrishna, and D. E. Goldberg, “Real-coded Bayesian optimization
algorithm, bringing the strength of BOA into the continuous world,” in Proceedings of
Genetic and Evolutionary Computation Conference 2004, 2004, pp. 840–851.

[8] C.-H. Chen, W.-N. Liu, and Y.-p. Chen, “Adaptive discretization for probabilistic model
building genetic algorithms,” in Proceedings of ACM SIGEVO Genetic and Evolutionary
Computation Conference 2006, 2006, pp. 1103–1110.

[9] G. R. Harik, “Linkage learning via probabilistic modeling in the ECGA,” Illinois Genetic
Algorithms Laboratory, UIUC, Urbana, IL, IlliGAL Report No. 99010, 1999.

[10] C.-H. Chen and Y.-p. Chen, “Real-coded ECGA for economic dispatch,” in Proceedings of
ACM SIGEVO Genetic and Evolutionary Computation Conference 2007, 2007, pp. 1920–
1927.

[11] P.-C. Hung, Y.-p. Chen, and H. W. Zan, “Characteristic determination for solid state
devices with evolutionary computation: A case study,” in Proceedings of ACM SIGEVO
Genetic and Evolutionary Computation Conference 2007, 2007, pp. 2029–2036.

[12] Y.-p. Chen, T.-L. Yu, K. Sastry, and D. E. Goldberg, “A survey of genetic linkage learning
techniques,” Illinois Genetic Algorithms Laboratory, UIUC, Urbana, IL, IlliGAL Report
No. 2007014, 2007.

[13] J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Science, 1989.

[14] P.-C. Hung and Y.-p. Chen, “iECGA: Integer extended compact genetic algorithm,” in
Proceedings of ACM SIGEVO Genetic and Evolutionary Computation Conference 2006,
2006, pp. 1415–1416.

[15] D. E. Goldberg, “Real-coded genetic algorithms, virtual alphabets, and blocking,” Illinois
Genetic Algorithms Laboratory, UIUC, Urbana, IL, IlliGAL Report No. 90001, 1990.

14

	Introduction
	Background: SoD and ECGA
	Split-on-Demand
	Extended Compact Genetic Algorithm

	Multidimensional SoD
	Extension to Multidimensions
	mSoD Working with ECGA

	Experiments
	Problem Definitions
	Experimental Settings
	Experimental Results

	Discussion
	Test Problems with Linkage
	Test Problems without Linkage
	Virtual Alphabet

	Summary and Conclusions

